AN ACOUSTIC ANALYSIS OF SINGLE-REED WOODWIND INSTRUMENTS WITH AN EMPHASIS ON DESIGN AND PERFORMANCE ISSUES AND DIGITAL WAVEGUIDE MODELING TECHNIQUES a dissertation submitted to the department of music and the committee on graduate studies of stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy Gary Paul Scavone March 1997 (cid:13)c Copyright 1997 by Gary Paul Scavone All Rights Reserved AN ACOUSTIC ANALYSIS OF SINGLE-REED WOODWIND INSTRUMENTS WITH AN EMPHASIS ON DESIGN AND PERFORMANCE ISSUES AND DIGITAL WAVEGUIDE MODELING TECHNIQUES Gary Paul Scavone Stanford University, 1997 Currentacoustictheoryregardingsingle-reedwoodwindinstrumentsisreviewedandsummarized, with special attention given to a complete analysis of conical air column issues. This theoretical acoustic foundation is combined with an empirical perspective gained through professional perfor- mance experience in a discussion of woodwind instrument design and performance issues. Early saxophone design speci(cid:12)cations, as given by Adolphe Sax, are investigated to determine possible influencesoninstrumentresponseandintonation. Issuesregardingsaxophonemouthpiecegeometry are analyzed. Piecewise cylindrical and conical section approximations to narrow and wide mouth- piece chamber designs o(cid:11)er an acoustic basis to the largely subjective examinations of mouthpiece e(cid:11)ects conductedin the past. The influence of vocal tract manipulations in the controland perfor- mance of woodwind instruments is investigated and compared with available theoretical analyses. Several extendedperformancetechniques are discussed in terms of acousticprinciples. Discrete-time methods are presented for accurate time-domain implementation of single-reed woodwindinstrumentacoustictheoryusingdigitalwaveguidetechniques. Twomethodsforavoiding unstable digital waveguide scattering junction implementations, associated with taper rate discon- tinuities in conical air columns, are introduced. A digital waveguide woodwind tonehole model is presented which incorporates both shunt and series impedance parameters. Two-port and three- port scattering junction tonehole implementations are investigated and the results are compared withtheacousticliterature. Severalmethodsformodelingthesingle-reedexcitationmechanismare discussed. Expressive controls within the context of digital waveguide woodwind models are presented, as well as model extensions for the implementation of register holes and mouthpiece variations. Issues regarding the control and performance of real-time models are discussed. Techniques for verifying and calibrating the time-domain behavior of these models are investigated and a study is presented which seeks to identify an instrument’s linear and nonlinear characteristics based on periodicprediction. iii Acknowledgements IamgreatlyindebtedtotheDepartmentofMusicandtheCenterforComputerResearchinMusic and Acoustics (CCRMA) for their (cid:12)nancial support throughoutmy studies at Stanford University. CCRMAprovidedawonderfulinterdisciplinaryenvironmentinwhichtopursuemyinterests. When I (cid:12)rst sought out a means for combining my musical and technical interests, I had no clear vision of where this search would lead ...I’d like to thankJohn Chowning for encouragingme to apply to the Ph.D. program in Computer-Based Music Theory and Acoustics without a speci(cid:12)c project in mind and the trust in my abilities he demonstratedby admitting me. Along the way, Julius Smith and Perry Cook listened patiently to my questions and always hadenlightenedsuggestionstomake. ChrisChafe’senthusiasm,of course,wasconstantandgreatly appreciated. DougKeefekindlyallowedmetovisithislaboratoryinSeattleandgraciouslyagreedto beareaderforthisthesis,longbeforeIevenbeganwritingit! TheDSPgroupatCCRMAingeneral, and Tim Stilson, Bill Putnam, Scott Van Duyne, and Dave Berners in particular, provided much helpduringthecourseofthiswork. FernandoLopez-Lezcanosu(cid:11)eredthroughmyseeminglyendless computerglitchesand troubles. My brother,John, did his parttohelp maintain my sanitythrough timely o(cid:11)ers to visit his Lake Arrowhead cabin, as well as enticing ski trip proposals. Meanwhile, my family in Western New York just kept sending those packages of candy and encouragingcards. Despite the appearance that I would never (cid:12)nish this dissertation, their support never faltered ...many thanks to Jackie, Jerry, Sheri, Peter,Paul, Gail and Noni. My grandmother,Eleanor, has been and will always continue to serve as a source for encouragementin my life ...her picture sits prominently on top of my computer monitor. Finally, Melissa provided companionship, listened to my troubles, and helped take my mind o(cid:11) the work at hand, all of which played a large part in allowing me to enjoy this undertaking through to its completion. To all these people, I express my sincerestgratitude. iv Preface Thestudyofmusicalinstrumentacousticbehavioris arelativelyyoungscience. Earlyworkwith directapplicationtowoodwindinstrumentswasconductedbyWeber(1830),Helmholtz(1954),and BouasseandFouch(cid:19)ee(1930). Itisclear,however,thattheinstrumentsthemselves\came(cid:12)rst." The art of instrument building was acquired principally through empirical means. Over the course of severalcenturies,knowledgewas handeddownfrom generationtogenerationandincrementalgains wereachieved. Mostmodernacousticinstrumentsreachedtheirpresentform by thelatenineteenth centuryand have undergonerelatively little improvement since. Inthepast,therewaslittleassociationbetweentheinstrumentbuilderandthephysiciststudying musical instrument acoustics. Several large instrument manufacturers, such as C. G. Conn Ltd., employedscientistsforthepurposeofimprovingtheirinstrumentdesigns,thoughtheirresearchwas largelybasedonexperimentalmeasurements. Onlyinrecentyearshasmusicalinstrumenttheoretical acousticsreachedanadvancedenoughleveltoo(cid:11)erpotentialrewardstothedesignprocess. Oneaim of this study is to demonstrate that these theoreticaladvances have necessitatedclose cooperation between scientists and professionalinstrument performers. That is, the theory has progressed to a pointwheresubtlecontrolissuesincorporatedbyprofessionalperformers,butotherwiseunknownto thephysicist,canhavegreatimportanceincon(cid:12)rmingorrefutingtheoreticalmodels. Theinsightof expertperformerswithreasonablegroundingin acousticfundamentalswill play a signi(cid:12)cantrole in re(cid:12)ningcurrenttheory,aswellasin furtherexplorationsintodelicateissuesofinstrumentbehavior. Theprimaryobjectiveofthisstudyistodetailtheimplementationofthebestavailable acoustic theoryregardingsingle-reedwoodwindinstrumentsusingdigitalwaveguidetechniques. Digitalwave- guide modeling is an e(cid:14)cient discrete-time method for time-domain simulation of one-dimensional wave propagation,which has gained increasing popularity in the (cid:12)eld of musical acoustics research sincethepublicationofMcIntyreet al.(1983). Severalstudieshave previouslybeenconductedwith regard to waveguide modeling of woodwind instruments (Hirschman,1991; Va¨lim¨aki, 1995). What distinguishesthis workis its comprehensivescope,togetherwith itsfoundationon themostcurrent literature from the musical acoustics research community. Issues regarding conical air columns in general, and saxophones in particular, are analyzed in great detail. Instabilities associated with v PREFACE vi discrete-time models of conical-section discontinuities are discussed and stable solutions are pre- sented. A variety of extensions regarding toneholes, mouthpieces, and performance expression are introduced. Chapter1 of this studypresentsa detailed and comprehensivediscussion of the acoustic behav- ior of single-reed woodwind instruments, as determined from available musical acoustics research literature. No new theoryis presentedin this chapter,thoughthe discussion with regard to conical air columns is particularly comprehensive in comparison to most sources. Chapter 2 seeks to build on the material of the previous chapter and combine it with insights gained from professional per- formance expertise. Several issues relevant to instrument design and the performance community areanalyzedin termsof acousticprinciples. Chapter3 shadowsChapter1, detailingtheimplemen- tation of the theory presented in the (cid:12)rst chapter using digital waveguide techniques. A variety of improvements and/or extensions to current waveguide modeling theory are discussed. Chapter 4 o(cid:11)ers further extensions to digital waveguide models of woodwind instruments which are inspired, in part, from the discussion of Chapter 2. Further, techniques for calibrating the models based on time-domain measurements are reviewed and an investigation of linear and nonlinear instrument behavior is presented. Contents Acknowledgements iv Preface v List of Figures ix List of Tables xv List of Symbols xvi 1 Single-Reed Woodwind Acoustic Principles 1 1.1 Sound Propagationin Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Lumped AcousticSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Woodwind InstrumentBores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Cylindrical Bores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Conical Bores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Boundary Layer E(cid:11)ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.4 Time-Domain Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4 Sound Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.4.1 Non-Flaring Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.4.2 Horns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.4.3 Toneholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.5 The Nonlinear Excitation Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2 Acoustical Aspects of Woodwind Design & Performance 51 2.1 Woodwind Air Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.1.1 Cylinders and Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.1.2 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.1.3 The Saxophone’s \Parabolic"Cone . . . . . . . . . . . . . . . . . . . . . . . . 66 2.2 Woodwind Toneholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.2.1 The Tonehole Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.2.2 The Single Tonehole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.2.3 Register Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.3 The Single-Reed Excitation Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.3.1 Mouthpieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.3.2 Reeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.4 The Oral Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.5 ContemporaryPerformanceTechniques . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.5.1 Multiphonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 vii CONTENTS viii 2.5.2 The Saxophone’s Altissimo Register . . . . . . . . . . . . . . . . . . . . . . . 89 2.5.3 Additional ContemporaryTechniques . . . . . . . . . . . . . . . . . . . . . . 91 3 Digital Waveguide Modeling of Single-Reed Woodwinds 92 3.1 Modeling Sound Propagationin One Dimension . . . . . . . . . . . . . . . . . . . . . 93 3.2 Modeling Lumped AcousticSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.3 Modeling Woodwind InstrumentBores . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.3.1 Cylindrical Bores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3.2 Conical Bores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.3 Diameter and Taper Discontinuities . . . . . . . . . . . . . . . . . . . . . . . 108 3.3.4 Fractional Delay Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.3.5 Boundary-Layer E(cid:11)ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.4 Modeling Sound Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.4.1 Non-Flaring Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.4.2 Horns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.4.3 Toneholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.5 Modeling the NonlinearExcitation Mechanism . . . . . . . . . . . . . . . . . . . . . 143 3.5.1 The Pressure-DependentReflectionCoe(cid:14)cient . . . . . . . . . . . . . . . . . 145 3.5.2 The Reed-ReflectionPolynomial . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.5.3 The Dynamic WoodwindReed Model . . . . . . . . . . . . . . . . . . . . . . 150 3.5.4 Excitation Mechanisms Attached to Truncated Cones . . . . . . . . . . . . . 153 4 Digital Waveguide Model Extensions and Calibration 156 4.1 Extensions to Digital Waveguide Models of Woodwinds . . . . . . . . . . . . . . . . 157 4.1.1 Register Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4.1.2 MouthpieceModels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.2 PerformanceExpression in Digital Waveguide WoodwindModels . . . . . . . . . . . 163 4.2.1 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.2.2 Control Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4.3 Calibrating Digital Waveguide WoodwindModels . . . . . . . . . . . . . . . . . . . . 169 4.3.1 Measuring Woodwind InstrumentResponsesin the Time Domain. . . . . . . 169 4.3.2 PeriodicPredictionfortheDeterminationofLinearandNonlinearInstrument Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5 Conclusions and Future Research 193 5.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.2 Suggestionsfor Future Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 A The Surface Area of a Spherical Wave Front in a Cone 196 B Saxophone Air Column Measurements 198 C Experimental Equipment 199 D MATLAB Code 200 D.1 openpipe.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 D.2 boundary.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 D.3 openhole.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 D.4 closhole.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 D.5 branch.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 D.6 clarinet.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 List of Figures 1.1 Wave-induced pressure variations on a cubic section of air. . . . . . . . . . . . . . . . 3 1.2 Linear acoustic system block diagrams.. . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 The Helmholtz resonatorand its mechanical analog. . . . . . . . . . . . . . . . . . . 8 1.4 A cylindrical pipe in cylindrical polar coordinates. . . . . . . . . . . . . . . . . . . . 9 1.5 A non-uniform bore(a) and its approximation in terms of cylindrical sections (b). . 14 1.6 Theoretical input impedance magnitude, relative to Z at x = 0; of the cylindrical 0 section structureshown in Fig. 1.5(b). . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 A conical section in sphericalcoordinates. . . . . . . . . . . . . . . . . . . . . . . . . 16 1.8 A divergent conicalsection and its associateddimensional parameters. . . . . . . . . 20 1.9 A convergent conical sectionand its associateddimensional parameters. . . . . . . . 20 1.10 Partial frequencyratios, relative to f ; for a closed-openconic frustum. . . . . . . . 22 0 1.11 A non-uniform bore (a) and its approximation in terms of cylindrical and conical sections (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.12 Theoretical input impedance magnitude, relative to Z = (cid:26)c=S at x = 0; of the 0 cylindrical and conic sectionstructureshown in Fig. 1.11(b). . . . . . . . . . . . . . 25 1.13 Phase velocity (v ) normalized by c vs. frequency (top); Attenuation coe(cid:14)cient ((cid:11)) p vs. frequency(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.14 Input impedance magnitude of an ideally terminated cylindrical bore with viscous and thermallosses (borelength = 0.3 meters,bore radius = 0.008 meters). . . . . . 28 1.15 Ageneralwindinstrumentrepresentedbylinearandnonlinearelementsinafeedback loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.16 Theoretical input impedance magnitude (top) and impulse response (bottom) of a cylindrical bore,normalized by the bore characteristicimpedance. . . . . . . . . . . 31 1.17 Theoretical input impedance magnitude (top) and impulse response (bottom) of a conical bore,relative to R =(cid:26)c=S(0) at the small end of the bore. . . . . . . . . . . 33 0 1.18 A conical frustum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.19 Reflectancemagnitudeandlengthcorrection(l=a)versusthefrequencyparameterka for a flanged and unflanged circular pipe. . . . . . . . . . . . . . . . . . . . . . . . . 37 1.20 Cross-section of a horn and the displacement of a volume element within it. . . . . . 38 1.21 Basic tonehole geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.22 T section transmission-line element representingthe tonehole. . . . . . . . . . . . . . 43 1.23 L section transmission-line element representingthe tonehole. . . . . . . . . . . . . . 44 1.24 Inputimpedancemagnitude(top),relativetothemainborewave impedanceZ ;and 0 reflectance (bottom)for the written note G on a simple six-hole flute, as described 4 in Keefe (1990). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.25 A single-reed woodwind mouthpiece. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.26 The single-reed as a mechanical oscillator blown closed. . . . . . . . . . . . . . . . . 46 ix LIST OF FIGURES x 1.27 The volume flow and pressure relationships for a single-reed oral cavity/mouthpiece geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.28 Steady flow (u ) througha pressure controlled valve blown closed. . . . . . . . . . . 49 ro 1.29 Dynamic flow througha pressure controlled valve blown closed for p =p =0:4: . . 50 oc C 2.1 Open-end radiation characteristics for an unflanged cylindrical pipe: (top) Load impedance magnitude relative to the wave impedance Z ; (bottom) Tuning devia- 0 tion in cents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2 Thermoviscous e(cid:11)ects for wave travel over two lengths of a cylindrical pipe of length 0.5metersandradius0.008meters: (top)Attenuationcharacteristic;(bottom)Tuning deviation in cents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.3 Partial frequency ratios for a closed-open conic section versus (cid:12); the ratio of closed- to open-endradii. The frequencies are normalized by f ; the fundamental resonance 0 for an open-openpipe of the same length as the frustum. . . . . . . . . . . . . . . . 57 2.4 Partial frequency ratios for a closed-open conic section versus (cid:12); the ratio of closed- to open-end radii. The frequencies are normalized by f ; the fundamental resonance c for the same conic section complete to its apex. . . . . . . . . . . . . . . . . . . . . . 58 2.5 Partial frequency ratios for a closed-open conic section versus frustum length, for a cone of half angle 2(cid:14) and small-end radius of 0.005 meters. The partial frequencies are normalized by f ; the fundamental resonancefor an open-open pipe of the same 0 length as the frustum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.6 The input impedancemagnitude,relative toR =(cid:26)c=S at its input end, of a conical 0 frustum of length 0.5 meters,small-end radius 0.005 meters,and half angle of 2(cid:14): . . 60 2.7 Exponentialhorn pro(cid:12)les for flare parametersof m=2 ({) and m=3 (- -). . . . . . 63 2.8 Partialfrequencyratios,relative tothefundamentalresonance,forexponentialhorns de(cid:12)ned by flare parametersof m=2 ({) and m=3 (- -). . . . . . . . . . . . . . . . 63 2.9 Partialfrequencyratios,relativetothefundamentalresonanceofanopen-openconic frustum of the same length, for exponential horns de(cid:12)ned by the flare parameters m=2 ({) and m=3 (- -).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.10 The pro(cid:12)le of an alto saxophone built by Adolphe Sax, in exaggerated proportions [after (Kool,1987)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.11 Quadraticsurfaces: (a)Circularcone;(b)Ellipticcone;(c)Hyperboloidofonesheet; (d) Elliptic paraboloid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.12 Various views of a \Parabolic cone." . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.13 Pro(cid:12)le of an alto saxophonebore,up to its lower bow. The boresectionbetweenthe neckpipe and lower bow is represented by a conical frustum ({) and an exponential horn (- -). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.14 Partialfrequencyratios,relativetothefundamentalresonanceofanopen-openconic section of the same length, of a combined cone/exponential horn structure ({) and a closed-open conical frustum (- -). The dotted lines indicate exact integer multiple relationships to the (cid:12)rst closed-openconical frustum resonance. . . . . . . . . . . . . 71 2.15 An early saxophonemouthpiece design. . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.16 Approximate saxophone mouthpiece structures: (top) Wide chamber design; (bot- tom) Narrow chamber design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.17 Theoreticalmouthpieceandair column structureinput impedances,relative to R = 0 (cid:26)c=S at the input of the structure: (top) Wide chamber design; (bottom) Narrow chamber design.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.18 Normalized partial frequency ratios for the theoretical mouthpiece and air column structures vs. air column length: ({) Wide chamber design; (- -) Narrow chamber design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.19 A B[ clarinet multiphonic (cid:12)ngering and the correspondingwritten notes it produces. 89
Description: