ebook img

An Accidental Blook PDF

207 Pages·2017·0.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Accidental Blook

Perhaps Not The Answer You Were Expecting But You Asked For It (An Accidental Blook) ConorMcBride October23,2019 2 Contents 1 HaskellCuriosities 7 1.1 Whatis()inHaskell,exactly? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Whatdoes()meaninHaskell? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 ImplementthefunctionlinesinHaskell . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 BooleanExpressionevaluation(subtletypeerror) . . . . . . . . . . . . . . . . . . . 9 1.5 Purelyfunctionaldatastructuresfortexteditors . . . . . . . . . . . . . . . . . . . . 10 1.6 WhataresomemotivatingexamplesforCofreeCoMonadinHaskell? . . . . . . . 12 1.7 Findindicesofthingsinlists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.8 HowdoIextendthismergeWordsfunctiontoanynumberofstrings? . . . . . . . 15 1.9 ExampleofUndecidableInstancesyieldingnonterminatingtypecheck . . . . . . . 16 1.10 Whydo3andx(whichwasassigned3)havedifferentinferredtypesinHaskell? . 17 1.11 Usecaseforrank-3(orhigher)polymorphism? . . . . . . . . . . . . . . . . . . . . . 18 1.12 Whydon’tHaskellcompilersfacilitatedeterministicmemorymanagement? . . . . 19 1.13 HowdoesArrowLoopwork? Also,mfix? . . . . . . . . . . . . . . . . . . . . . . . . 19 1.14 Whatdoes⇒meaninatypesignature? . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.15 MeaningofDoubleandFloatingpoint? . . . . . . . . . . . . . . . . . . . . . . . 21 1.16 Haskellterminology: meaningoftypevs. datatype,aretheysynonyms? . . . . . . 22 1.17 CanyouformulatetheBubblesortasamonoidorsemigroup? . . . . . . . . . . . . 23 1.18 IsthisacorrectlyimplementedmergesortinHaskell? . . . . . . . . . . . . . . . . . 24 1.19 Haskelltypesystemnuances(ambiguity) . . . . . . . . . . . . . . . . . . . . . . . . 26 1.20 UnderstandingacaseofHaskellTypeAmbiguity . . . . . . . . . . . . . . . . . . . 27 1.21 WhydoesHaskelluse→insteadof=? . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.22 Isitpossibletomakeatypeaninstanceofaclassifitstypeparametersareinthe wrongorder? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.23 FunctortypevariablesforFlipdatatype . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.24 Whydoesproduct []return1?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.25 MinimumofTwoMaybes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.26 IstheequivalentofHaskell’sFoldableandTraversablesimplyasequenceinClojure? 31 1.27 How do you keep track of multiple properties of a string without traversing it multipletimes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.28 Checkingwhetherabinarytreeisabinarysearchtree . . . . . . . . . . . . . . . . . 33 1.29 Findingaleafwithvaluexinabinarytree . . . . . . . . . . . . . . . . . . . . . . . 33 1.30 Takingfromalistuntilencounteringaduplicate . . . . . . . . . . . . . . . . . . . . 34 1.31 RankNTypesandPolyKinds(quantifieralternationissues) . . . . . . . . . . . . . . 35 1.32 Howtowritethiscaseexpressionwiththeviewpatternsyntax? . . . . . . . . . . . 36 1.33 RecursiveTypeFamilies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.34 DeterminewhetheravalueisafunctioninHaskell . . . . . . . . . . . . . . . . . . 38 1.35 AutomaticFunctorInstance(not) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.36 HowdoIapplythefirstpartialfunctionthatworksinHaskell? . . . . . . . . . . . 39 1.37 ‘Zipping’aplainlistwithanestedlist . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.38 Bunchedaccumulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.39 FunctoronPhantomType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 4 CONTENTS 1.40 CreatinganInterpreter(withstore)inHaskell . . . . . . . . . . . . . . . . . . . . . 43 1.41 Existentialtypewrappersnecessity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.42 Non-linearPatternsinType-LevelFunctions . . . . . . . . . . . . . . . . . . . . . . 46 1.43 Initialalgebraforrosetrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2 PatternMatching 49 2.1 AlgorithmfortypecheckingML-likepatternmatching? . . . . . . . . . . . . . . . . 49 2.2 HaskellPatternMatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3 Complexpatternmatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4 HowtoreturnanelementbeforeIentered? . . . . . . . . . . . . . . . . . . . . . . . 52 2.5 BuzzardBazookaZoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.6 Why++isnotallowedinpatternmatching? . . . . . . . . . . . . . . . . . . . . . . 54 3 Recursion 55 3.1 Whatareparamorphisms? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Whycanyoureverselistwithfoldl,butnotwithfoldrinHaskell . . . . . . . . . . 56 3.3 Canfoldbeusedtocreateinfinitelists? . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4 HowdoIgiveaFunctorinstancetoadatatypebuiltforgeneralrecursionschemes? 59 3.5 Arethere(term-transforming)morphismsinHaskell? . . . . . . . . . . . . . . . . . 61 3.6 IsthisFibonaccisequencefunctionrecursive? . . . . . . . . . . . . . . . . . . . . . . 62 3.7 CansomeoneexplainthislazyFibonaccisolution? . . . . . . . . . . . . . . . . . . . 63 3.8 Monoidalfoldsonfixedpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.9 ListCreatedEvaluatingListElements . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.10 FunctionsofGADTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 ApplicativeFunctors 69 4.1 Wheretofindprogrammingexercisesforapplicativefunctors?. . . . . . . . . . . . 69 4.2 N-arytreetraversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.1 FirstAttempt: HardWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.2 SecondAttempt: NumberingandThreading . . . . . . . . . . . . . . . . . . 72 4.2.3 ThirdAttempt: Type-DirectedNumbering . . . . . . . . . . . . . . . . . . . 74 4.2.4 Eventually... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3 Partialapplicationoffunctionsandcurrying,howtomakeabettercodeinsteadof alotofmaps? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 Translatingmonadtoapplicative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 Applicativescompose,monadsdon’t. . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.6 ExamplesSeparatingFunctor,ApplicativeandMonad . . . . . . . . . . . . . . . . 79 4.7 Parsec: ApplicativesvsMonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.8 Refactoringdonotationintoapplicativestyle . . . . . . . . . . . . . . . . . . . . . . 81 4.9 Zipwithdefaultvaluesinsteadofdroppingvalues? . . . . . . . . . . . . . . . . . . 82 4.10 sum3withzipWith3inHaskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.11 Whatisthe’Const’applicativefunctorusefulfor? . . . . . . . . . . . . . . . . . . . 83 4.12 Applicativeinstanceforfreemonad . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.13 Examples of a monad whose Applicative part can be better optimized than the Monadpart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.14 Howarbitraryisthe“ap”implementationformonads? . . . . . . . . . . . . . . . . 85 4.15 Applicativewithoutafunctor(forarrays) . . . . . . . . . . . . . . . . . . . . . . . . 85 4.16 DoesthissimpleHaskellfunctionalreadyhaveawell-knownname? (strength) . . 86 4.17 TheKidsareallRight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.18 Whyis((,) r)aFunctorthatisNOTanApplicative? . . . . . . . . . . . . . . . . 87 4.19 ApplicativeRewriting(forreader) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.20 SerialisedDiagonalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.21 Applicativestyleforinfixoperators? . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.22 WhereistheMonoidinApplicative? . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 CONTENTS 5 4.23 ApplicativesfromMonoidsincludingminandmax . . . . . . . . . . . . . . . . . . 93 5 Monads 95 5.1 Whyweusemonadicfunctionsa→mb . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 MonadswithJoininsteadofBind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3 Usingreturnversusnotusingreturninthelistmonad. . . . . . . . . . . . . . . . . 97 5.4 Exampleshowingmonadsdon’tcompose . . . . . . . . . . . . . . . . . . . . . . . . 98 5.5 ThePausemonad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.6 Haskellmonadreturnarbitrarydatatype . . . . . . . . . . . . . . . . . . . . . . . . 100 5.7 ShouldIavoidusingMonadfail? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.8 Whyisn’tKleislianinstanceofMonoid? . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.9 Monadsattheprompt? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.10 IsthisacasetouseliftM? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.11 Zappycolistsdonotformamonad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.12 Haskellio-streamsandforeverproducesnooutputtostdout . . . . . . . . . . . 104 6 DifferentialCalculusforTypes 105 6.1 Findtheprecedingelementofanelementinlist . . . . . . . . . . . . . . . . . . . . 105 6.2 SplittingaList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3 nubasaListComprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.4 HowtomakeabinarytreezipperaninstanceofComonad? . . . . . . . . . . . . . 109 6.5 What’stheabsurdfunctioninData.Voidusefulfor? . . . . . . . . . . . . . . . . . 115 6.6 Writingcojoinorcobindforn-dimensionalgrids . . . . . . . . . . . . . . . . . . . . 117 6.6.1 CursorsinLists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.6.2 ComposingCursors,TransposingCursors? . . . . . . . . . . . . . . . . . . . 118 6.6.3 Hancock’sTensorProduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6.4 InContextforTensorProducts . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.6.5 NaperianFunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.7 ZipperComonads,Generically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.8 Traversableandzippers: necessityandsufficiency . . . . . . . . . . . . . . . . . . . 131 6.9 Howtowritethis(funnyfilter)functionidiomatically? . . . . . . . . . . . . . . . . 131 6.10 Computingatermofalistdependingonallpreviousterms . . . . . . . . . . . . . 132 6.11 ReasonableComonadimplementations(fornonemptylists) . . . . . . . . . . . . . 137 6.12 Representable(orNaperian)Functors . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.13 TriesasNaperianFunctors;MatchingviatheirDerivatives . . . . . . . . . . . . . . 143 7 DependentlyTypedHaskell 149 7.1 Dependentlytypedlanguagebestsuitedto“realworld”programming? . . . . . . 149 7.2 Whynotbedependentlytyped? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.3 SimpledependenttypeexampleinHaskellforDummies. Howaretheyusefulin practiceinHaskell? WhyshouldIcareaboutdependenttypes? . . . . . . . . . . . 154 7.4 Haskellsingletons: WhatdowegainwithSNat? . . . . . . . . . . . . . . . . . . . . 155 7.5 Motivationforlimitationondatakindpromotion . . . . . . . . . . . . . . . . . . . 156 7.6 Whatisanindexedmonad? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.7 Fixpointsoffunctorsonindexedsets . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.8 Whyisthetypesystemrefusingmyseeminglyvalidprogram? . . . . . . . . . . . 161 7.9 IsitpossibletoprogramandcheckinvarantsinHaskell? . . . . . . . . . . . . . . . 164 7.10 Whyistypecaseabadthing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.11 Whycan’tIpatternmatchonatypefamily?. . . . . . . . . . . . . . . . . . . . . . . 166 7.12 Positiveintegertype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.13 Testifavaluematchesaconstructor . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.14 DifferencebetweenHaskellandIdris: ReflectionofRuntime/Compiletimeinthe typeuniverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.15 WhyGADT/existentialdataconstructorscannotbeusedinlazypatterns? . . . . . 170 6 CONTENTS 7.16 CanGADTsbeusedtoprovetypeinequalitiesinGHC? . . . . . . . . . . . . . . . . 171 7.17 Implementingazipperforlength-indexedlists . . . . . . . . . . . . . . . . . . . . . 171 7.18 Monoidforintegersmodulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.19 Aretherenon-trivialFoldableorTraversableinstancesthatdon’tlooklikecontain- ers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.20 AreGHC’sTypeFamliesAnExampleofSystemF-omega? . . . . . . . . . . . . . . 177 7.21 HowtoderiveEqforaGADTwithanon-*kindedphantomtypeparameter. . . . 178 7.22 DoallTypeClassesinHaskellHaveaCategoryTheoreticAnalogue? . . . . . . . . 179 7.23 HaskelltyperesolutioninTypeClasses(Generator,Comonad) . . . . . . . . . . . . 180 7.24 Proveidempotencyoftype-leveldisjunction . . . . . . . . . . . . . . . . . . . . . . 181 7.25 Recursivelydefinedinstancesandconstraints . . . . . . . . . . . . . . . . . . . . . . 182 7.26 HowcanIgetthelengthofdependentlytypedinterval? . . . . . . . . . . . . . . . 184 7.27 Howtomakecatamorphismsworkwithparameterized/indexedtypes? . . . . . . 185 7.28 ConstrainingConstructorsinaSignature . . . . . . . . . . . . . . . . . . . . . . . . 186 7.29 StandardnameofasumtypelikeEitherbutfor3cases? . . . . . . . . . . . . . . . 187 7.30 HowtospecifythetypeforaheterogenouscollectioninaGADTformulatedAST? 188 7.31 Type-threadedheterogenouslistsanddefaulting(?) withtypefamilies? . . . . . . . 189 7.32 Constructorthatlifts(viaDataKinds)to∗→A . . . . . . . . . . . . . . . . . . . . . 189 7.33 Howshouldthegeneraltypeofa“lemma”functionbeunderstood? . . . . . . . . 189 8 TypeTheory 193 8.1 Whatisthecombinatorylogicequivalentofintuitionistictypetheory? . . . . . . . 193 8.2 DoHaskorAgdahaveequalisers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 8.3 Whydoweneedcontainers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 8.4 TowhatextentareApplicative/Monadinstancesuniquelydetermined? . . . . . . 204 8.5 PatternmatchinginObservationalTypeTheory . . . . . . . . . . . . . . . . . . . . 206 8.6 ProvablecoherenceinOTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8.7 HowtosolvegoalswithinvalidtypeequalitiesinCoq? . . . . . . . . . . . . . . . . 208 8.8 Isitpossibletoexpressthetypeofbalanceduntaggedbinarytreesonthecalculus ofconstructions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 8.9 Agda-likeprogramminginCoq/ProofGeneral? . . . . . . . . . . . . . . . . . . . . 211 Chapter 1 Haskell Curiosities 1.1 What is () in Haskell, exactly? tl;dr () does not add a “null” value to every type, hell no; () is a “dull” value in a type of its own: (). Letmestepbackfromthequestionamomentandaddressacommonsourceofconfusion. A keythingtoabsorbwhenlearningHaskellisthedistinctionbetweenitsexpressionlanguageand itstypelanguage. You’reprobablyawarethatthetwoarekeptseparate. Butthatallowsthesame symbol to be used in both, and that is what is going on here. There are simple textual cues to tellyouwhichlanguageyou’relookingat. Youdon’tneedtoparsethewholelanguagetodetect thesecues. The top level of a Haskell module lives, by default, in the expression language. You define functions by writing equations between expressions. But when you see foo :: bar in the expres- sion language, it means that foo is an expression and bar is its type. So when you read () :: (),you’reseeingastatementwhichrelatesthe()intheexpressionlanguagewiththe()inthe typelanguage. Thetwo()symbolsmeandifferentthings,becausetheyarenotinthesamelan- guage. Thisrepetitionoftencausesconfusionforbeginners,untiltheexpression/typelanguage separationinstallsitselfintheirsubconscious,atwhichpointitbecomeshelpfullymnemonic. Thekeyworddataintroducesanewdatatypedeclaration,involvingacarefulmixtureofthe expressionandtypelanguages,asitsaysfirstwhatthenewtypeis,andsecondlywhatitsvalues are. In such a declaration, type constructor TyCon is being added to the type language and the ValCon value constructors are being added to the expression language (and its pattern sublan- guage). In a data declaration, the things which stand in argument places for the ValCon s tell youthetypesgiventotheargumentswhenthatValConisusedinexpressions. Forexample, data Tree a = Leaf | Node (Tree a) a (Tree a) declaresatypeconstructorTreeforbinarytreetypesstoringelementsatnodes,whosevalues aregivenbyvalueconstructorsLeafandNode. Iliketocolourtypeconstructors(Tree)blueand valueconstructors(Leaf,Node)red. Thereshouldbenoblueinexpressionsand(unlessyou’re usingadvancedfeatures)noredintypes. Thebuilt-intypeBoolcouldbedeclared, data Bool = True | False addingblueBooltothetypelanguage,andredTrueandFalsetotheexpressionlanguage. Sadly,mymarkdown-fuisinadequatetothetaskofaddingthecolourstothispost,soyou’lljust havetolearntoaddthecoloursinyourhead. The“unit”typeuses()asaspecialsymbol,butitworksasifdeclared data () = () -- the left () is blue; the right () is red 7 8 CHAPTER1. HASKELLCURIOSITIES meaning that a notionally blue () is a type constructor in the type language, but that a no- tionallyred()isavalueconstructorintheexpressionlanguage,andindeed() :: ().[Itisnot theonlyexampleofsuchapun. Thetypesoflargertuplesfollowthesamepattern: pairsyntax isasifgivenby data (a, b) = (a, b) adding(,)tobothtypeandexpressionlanguages. ButIdigress. Sothetype(), oftenpronounced“Unit”, isatypecontainingonevalueworthspeakingof: that value is written () but in the expression language, and is sometimes pronounced “void”. A type with only one value is not very interesting. A value of type () contributes zero bits of information: youalreadyknowwhatitmustbe. So,whilethereisnothingspecialabouttype() to indicate side effects, it often shows up as the value component in a monadic type. Monadic operationstendtohavetypeswhichlooklike wherethereturntypeisatypeapplication: thefunctiontellsyouwhicheffectsarepossible andtheargumenttellsyouwhatsortofvalueisproducedbytheoperation. Forexample put :: s -> State s () whichisread(becauseapplicationassociatestotheleft[“aswealldidinthesixties”,Roger Hindley])as put :: s -> (State s) () hasonevalueinputtypes,theeffect-monadState s,andthevalueoutputtype(). When yousee()asavalueoutputtype, thatjustmeans“thisoperationisusedonlyforitseffect; the valuedeliveredisuninteresting”. Similarly putStr :: String -> IO () deliversastringtostdoutbutdoesnotreturnanythingexciting. The()typeisalsousefulasanelementtypeforcontainer-likestructures,whereitindicates thatthedataconsistsjustofashape,withnointerestingpayload.Forexample,ifTreeisdeclared as above, then Tree () is the type of binary tree shapes, storing nothing of interest at nodes. Similarly [()] is the type of lists of dull elements, and if there is nothing of interest in a list’s elements,thentheonlyinformationitcontributesisitslength. To sum up, () is a type. Its one value, (), happens to have the same name, but that’s ok becausethetypeandexpressionlanguagesareseparate. It’susefultohaveatyperepresenting “no information” because, in context (e.g., of a monad or a container), it tells you that only the contextisinteresting. 1.2 What does () mean in Haskell? () means “Boring”. It means the boring type which contains one thing, also boring. There is nothing interesting to be gained by comparing one element of the boring type with another, because there is nothing to learn about an element of the boring type by giving it any of your attention. It is very different from the empty type, called (by people I wish had chosen a better name liketheoneIsuggested)inHaskellVoid. Theemptytypeisveryexciting,becauseifsomebody evergivesyouavaluebelongingtoit,youknowthatyouarealreadydeadandinHeavenand thatanythingyouwantisyours. Butifsomebodygivesyouavaluein(),don’tgetexcited. Justthrowitaway. Sometimes it’s fun to take type constructors parametrised by an “element type” and fill the parameter in with (). You can see just what information is inherent in the type constructor, rather than coming from the elements. E.g, Maybe () is a version of Bool, with Just () or 1.3. IMPLEMENTTHEFUNCTIONLINESINHASKELL 9 Nothing. Also,[()]amountstothe(possiblyinfinite)naturalnumbers: theonlyinformation youhaveisalength. So, () means “Boring”, but it’s often a clue that something interesting is happening some- whereelse. 1.3 Implement the function lines in Haskell Supposeyouhadalreadyknewtheresultoflinesforallbutthefirstcharacterofyourinput. Howwouldyouaddthefirstcharacterontothatresult? charon :: Char -> [[Char]] -> [[Char]] charon ’\n’ css = [] : css -- to begin with newline, insert blank line charon c [] = [[c]] -- very last char is in line of its own charon c (cs : css) = (c : cs) : css -- else put char in first line Andwiththatmysterysolved, lines = foldr charon [] For years, I have made students bang their fists on the furniture and chant “what do you do withtheemptylist? whatdoyoudowithxconsxs?”. Sometimesithelps. 1.4 Boolean Expression evaluation (subtle type error) Yoursuspicion,“IthinkthereisaprobleminthedataBExpdeclarationitself”,iscorrect. What you’vewrittendoesn’tmeanwhatIsuspectyouhopeitdoes. Theerrorisatthefarrightend(as errorsoftenare)soIhadtoscrolltofindit. Usingmoreverticalspace,let’ssee. data BExp = Eq AExp AExp | Lt AExp AExp | Gt AExp AExp | ELt AExp AExp | EGt AExp AExp | And BExp BExp | Or BExp BExp | Bool And it’s the last that is the big problem. It’s harder to spot because although you tell us, “I want the type to be :: BExp -> Bool”, you do not tell the compiler. If you had done the decent thing and communicated your intention by writing an explicit type signature, the error report mighthavebeenmorehelpful. Yourprogrambegins evalBExp True = True andthatisenoughtoconvincethetypecheckerthattheintendedtypeis evalBExp :: Bool -> Bool becauseTrue :: Bool. Whenline3showsupwith evalBExp (Eq a1 a2) = evalAExp (a1) == evalAExp (a2) suddenlyitwonderswhyyou’regivingevalBExpaBExpinsteadofaBool. Now,IsuspectthatyouhavetheimpressionthatyourfinalclauseinBExp 10 CHAPTER1. HASKELLCURIOSITIES | Bool makesTrue :: BExpandFalse :: BExp,butthat’snotwhatitdoesatall. Instead,you willdiscoverthatyouhaveanullarydataconstructorBool :: BExpwhosenameiscoincident withthedatatypeBoolbutlivesinanentirelyseparatenamespace. Ibelieveyourintentionisto embedthevaluesofBoolintoBExpsilently,butHaskelldoesnotallowsuchsubtlesubtyping. Toachievetheintendedeffect,youwillneedaconstructorwhichexplicitlypacksupaBool,so try data BExp = ... | BVal Bool and evalBExp :: BExp -> Bool evalBExp (BVal b) = b ... togetclosertoyourplan. Youare,ofcourse,freetousethenameBoolfortheBValconstructor,andsowrite data BExp = ... | Bool Bool where the first Bool is a data constructor and the second is a type constructor, but I would findthatchoiceconfusing. 1.5 Purely functional data structures for text editors Idon’tknowwhetherthissuggestionis“good”forsophisticateddefinitionsof“good”, butit’s easy and fun. I often set an exercise to write the core of a text editor in Haskell, linking with renderingcodethatIprovide. Thedatamodelisasfollows. First,Idefinewhatitistobeacursorinsidealistofx-elements,wheretheinformationavail- ableatthecursorhassometypem. (ThexwillturnouttobeCharorString.) type Cursor x m = (Bwd x, m, [x]) ThisBwdthingisjustthebackward“snoc-lists”. Iwanttokeepstrongspatialintuitions,soI turnthingsaroundinmycode,notinmyhead. Theideaisthatthestuffnearestthecursoristhe mosteasilyaccessible. That’sthespiritofTheZipper. data Bwd x = B0 | Bwd x :< x deriving (Show, Eq) Iprovideagratuitoussingletontypetoactasareadablemarkerforthecursor... data Here = Here deriving Show ...andIcanthussaywhatitistobesomewhereinaString type StringCursor = Cursor Char Here Now,torepresentabufferofmultiplelines,weneedStringsaboveandbelowthelinewith thecursor,andaStringCursorinthemiddle,forthelinewe’recurrentlyediting. type TextCursor = Cursor String StringCursor

Description:
5.3 Example showing monads don't compose to indicate side effects, it often shows up as the value component in a monadic type. ever gives you a value belonging to it, you know that you are already dead and in Heaven and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.