UNIVERSITEIT ANTWERPEN Faculteit Wetenschappen Departement Fysica An ab initio study of the electronic and dynamical properties of Si, Ge and Si/Ge nanowires Een ab initio studie van de elektronische en dynamische eigenschappen van Si, Ge en Si/Ge nanodraden Proefschrift voorgelegdtot het behalen van de graad van doctor in de wetenschappen aan de Universiteit Antwerpen te verdedigen door Hartwin Peelaers Promotor: Prof. dr. B. Partoens Co-promotor: Prof. dr. F. M. Peeters Antwerpen 2009 Contents Acknowledgements iv List of abbreviations vii 1 Introduction 1 1.1 Nanowire growth . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Top-down approach . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Bottom-up approach . . . . . . . . . . . . . . . . . . . 3 1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Nanowire FETs . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.3 Logicdevices, solarcellsandnanoelectronicpowersources 10 1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . 12 2 Density Functional Theory 15 2.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 The Hohenberg-Kohn theorems . . . . . . . . . . . . . . . . . 17 2.2.1 The first Hohenberg-Kohn theorem . . . . . . . . . . . 17 2.2.2 The second Hohenberg-Kohn theorem . . . . . . . . . . 19 2.2.3 The Levy-Lieb constrained search formulation . . . . . 20 2.3 Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . 20 2.4 The exchange-correlation energy . . . . . . . . . . . . . . . . . 23 2.4.1 The exchange-correlation hole . . . . . . . . . . . . . . 23 2.4.2 Local Density Approximation . . . . . . . . . . . . . . 27 2.4.3 The Generalized Gradient Approximation . . . . . . . 29 2.5 Hellmann-Feynman theorem . . . . . . . . . . . . . . . . . . . 29 2.6 Practical calculations . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.1 Crystal lattice and reciprocal space . . . . . . . . . . . 31 2.6.2 Bloch theorem . . . . . . . . . . . . . . . . . . . . . . . 32 2.6.3 Basis sets . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6.4 Band structures and k-point grids . . . . . . . . . . . . 34 2.6.5 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . 35 3 Electronic properties of B and P doped semiconductor nano- wires 39 3.1 Silicon nanowires . . . . . . . . . . . . . . . . . . . . . . . . . 39 i CONTENTS 3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 Computational details . . . . . . . . . . . . . . . . . . 41 3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Germanium nanowires . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Experimental verifications . . . . . . . . . . . . . . . . . . . . 51 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Density Functional Perturbation Theory 55 4.1 Phonons: Introduction . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Phonons from lattice dynamics . . . . . . . . . . . . . . . . . 56 4.3 Practical phonon calculations . . . . . . . . . . . . . . . . . . 57 4.3.1 Frozen phonons . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Density functional perturbation theory . . . . . . . . . 57 5 Phonons in semiconductor nanowires 61 5.1 Silicon nanowires . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Germanium nanowires . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Core-shell nanowires . . . . . . . . . . . . . . . . . . . . . . . 73 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6 GW approximation: theory 81 6.1 The bandgap problem . . . . . . . . . . . . . . . . . . . . . . 81 6.2 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3 Dyson equations and selfenergies . . . . . . . . . . . . . . . . 87 6.4 Hedin equations . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.5 Practical G W calculations . . . . . . . . . . . . . . . . . . . 98 0 0 7 Full quasi-particle corrected band structures of Si and Ge nanowires 103 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.2 LDA convergence . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.3 GW convergence . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.3.1 Convergence parameters . . . . . . . . . . . . . . . . . 105 7.3.2 Convergence study . . . . . . . . . . . . . . . . . . . . 107 7.4 Complete band structure . . . . . . . . . . . . . . . . . . . . . 113 7.4.1 Wannier functions . . . . . . . . . . . . . . . . . . . . . 114 ii CONTENTS 7.4.2 GW corrected bands . . . . . . . . . . . . . . . . . . . 116 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 Electronic structure of doped and undoped Si nanowires us- ing a hybrid functional 127 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.2 Computational details . . . . . . . . . . . . . . . . . . . . . . 128 8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9 Conclusions and outlook 137 10 Samenvatting 141 Curriculum Vitae 144 List of publications 145 Bibliography 147 iii On this page I wish to express my gratitude to my promotor Prof. B. Partoens and to my co-promotor Prof. F.M. Peeters, as this thesis would not be the thesis you are reading today without their support, their willingness to answer all questions I had, and the fruitful discussions I had with them. I also want to thank the people I collaborated with: those from Prof. X. Gonze’s group in Louvain-la-Neuve and from Prof. Ph. Ghosez’s group in Li`ege. My thanks also go out to my colleagues from the CMT group in Antwerp, to the visitors there, and especially to my roommates. Finally, I also want to thank my parents and brothers for supporting me during my studies. List of abbreviations Abbreviation or symbol 1D (2D, 3D) one-(two-, three-) dimensional BZ Brillouin zone CVD chemical vapor deposition DB dangling bond DFPT density functional perturbation theory DFT density functional theory DOS density of states FET field effect transistor GGA generalized gradient approximation HOMO highest occupied molecular orbital HK Hohenberg-Kohn IBZ irreducible Brillouin zone IFC interatomic force constant KS Kohn-Sham LDA local density approximation LED light emitting diode LSDA local spin density approximation LUMO lowest unoccupied molecular orbital MBE molecular beam epitaxy MOSFET metal-oxide-semiconductor field effect transistor MLWF maximally localized Wannier function NW nanowire PAW projected augmented wave RPA random phase approximation SEM scanning electron microscopy TEM tunneling electron microscopy VLS vapor-liquid-solid VSS vapor-solid-solid vii
Description: