ebook img

AMUSE: Multilingual Semantic Parsing for Question Answering over Linked Data PDF

16 Pages·2017·0.44 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview AMUSE: Multilingual Semantic Parsing for Question Answering over Linked Data

AMUSE: Multilingual Semantic Parsing for Question Answering over Linked Data SherzodHakimov,SoufianJebbara,PhilippCimiano {shakimov, sjebbara, cimiano} @ cit-ec.uni-bielefeld.de SemanticComputingGroup CognitiveInteractionTechnology–CenterofExcellence(CITEC) BielefeldUniversity 33615Bielefeld,Germany Abstract. ThetaskofansweringnaturallanguagequestionsoverRDFdatahas received wIde interest in recent years, in particular in the context of the series of QALD benchmarks. The task consists of mapping a natural language ques- tiontoanexecutableform,e.g.SPARQL,sothatanswersfromagivenKBcan be extracted. So far, most systems proposed are i) monolingual and ii) rely on a set of hard-coded rules to interpret questions and map them into a SPARQL query. We present the first multilingual QALD pipeline that induces a model fromtrainingdataformappinganaturallanguagequestionintologicalformas probabilisticinference.Inparticular,ourapproachlearnstomapuniversalsyn- tacticdependencyrepresentationstoalanguage-independentlogicalformbased onDUDES(Dependency-basedUnderspecifiedDiscourseRepresentationStruc- tures)thatarethenmappedtoaSPARQLqueryasadeterministicsecondstep. Ourmodelbuildsonfactorgraphsthatrelyonfeaturesextractedfromthedepen- dencygraphandcorrespondingsemanticrepresentations.Werelyonapproximate inferencetechniques,MarkovChainMonteCarlomethodsinparticular,aswell asSampleRanktoupdateparametersusingarankingobjective.Ourfocuslieson developingmethodsthatovercomethelexicalgapandpresentanovelcombina- tionofmachinetranslationandwordembeddingapproachesforthispurpose.As aproofofconceptforourapproach,weevaluateourapproachontheQALD-6 datasetsforEnglish,German&Spanish. Keywords: questionanswering,multilinguality,QALD,probabilisticgraphical models,factorgraphs 1 Introduction ThetaskofQuestionAnsweringoverLinkedData(QALD)hasreceivedincreasedat- tentionoverthelastyears(seethesurveys[14]and[36]).Thetaskconsistsinmapping natural language questions into an executable form, e.g. a SPARQL query in particu- lar,thatallowstoretrieveanswerstothequestionfromagivenknowledgebase.Con- sIderthequestion:WhocreatedWikipedia?,whichcanbeinterpretedasthefollowing SPARQLquerywithrespecttoDBpedia1: 1The prefixes dbo and dbr stand for the namespaces http://dbpedia.org/ontology and http://dbpedia.org/resource/,respectively. 2 SELECT DISTINCT ?uri WHERE { dbr:Wikipedia dbo:author ?uri .} AnimportantchallengeinmappingnaturallanguagequestionstoSPARQLqueries lies in overcoming the so called ‘lexical gap’ (see [13], [14]). The lexical gap makes interpretingtheabovementionedquestioncorrectlychallenging,asthereisnosurface relationbetweenthequerystringcreatedandtheURIlocalnameauthor.TobrIdgethe lexical gap, systems need to infer that create should be interpreted as author in the abovecase. ThelexicalgapisonlyexacerbatedwhenconsIderingmultiplelanguagesasweface across-lingualgapthatneedstobebrIdged.ConsIderforinstancethequestion:Werhat Wikipedia gegru¨ndet?, which involves mapping gru¨nden to author to successfully interpretthequestion. Addressing the lexical gap in question answering over linked data, we present a newsystemwecallAMUSEthatreliesonprobabilisticinferencetoperformstructured predictioninthesearchspaceofpossibleSPARQLqueriestopredictthequerythathas thehighestprobabilityofbeingthecorrectinterpretationofthegivenquerystring.As themaincontributionofthepaper,wepresentanovelapproachtoquestionanswering over linked data that relies on probabilistic inference to determine the most probable meaningofaquestiongivenamodel.Theparametersofthemodelareoptimizedona giventrainingdatasetconsistingofnaturallanguagequestionswiththeircorresponding SPARQLqueriesasprovIdedbytheQALDbenchmark.Theinferenceprocessbuilds on approximate inference techniques, Markov Chain Monte Carlo in particular, to as- signknowledgebase(KB)Identifiersaswellasmeaningrepresentationstoeverynode in a dependency tree representing the syntactic dependency structure of the question. Onthebasisoftheseassignedmeaningrepresentationstoeverynode,afullsemantic representationcanbecomputedrelyingonbottom-upsemanticcompositionalongthe parsetree.Asanovelty,ourmodelcanbetrainedondifferentlanguagesbyrelyingon universaldependencies.Toourknowledge,thisisthefirstsystemforquestionanswer- ingoverlinkeddatathatcanbetrainedtoperformondifferentlanguages(threeinour case)withouttheneedofimplementinganylanguage-specificheuristicsorknowledge. Toovercomethecross-linguallexicalgap,weexperimentwithautomaticallytranslated labelsandrelyonanembeddingapproachtoretrievesimilarwordsintheembedding space.Weshowthatbyusingwordembeddingsonecaneffectivelycontributetoreduc- ingthelexicalgapcomparedtoabaselinesystemwhereonlyknownlabelsareused. 2 Approach Our intuition in this paper is that the interpretation of a natural language question in terms of a SPARQL query is a compositional process in which partial semantic rep- resentationsarecombinedwitheachotherinabottom-upfashionalongadependency treerepresentingthesyntacticstructureofagivenquestion.Insteadofrelyingonhand- crafted rules guIding the composition, we rely on a learning approach that can infer such ‘rules’ from training data. We employ a factor graph model that is trained using arankingobjectiveandSampleRankastrainingproceduretolearnamodelthatlearns to prefer good over bad interpretations of a question. In essence, an interpretation of 3 aquestionrepresentedasadependencytreeconsistsofanassignmentofseveralvari- ables:i)aKBIdandsemantictypetoeverynodeintheparsetree,andii)anargument index(1or2)toeveryedgeinthedependencytreespecifyingwhichslotoftheparent node,subjectorobject,thechildnodeshouldbeappliedto.Theinputtoourapproach isthusasetofpairs(q,sp)ofquestionq andSPARQLquerysp.Asanexample,con- sIderthefollowingquestionsinEnglish,German&Spanish:WhocreatedWikipedia? WerhatWikipediagegru¨ndet?¿Quie´ncreo´ Wikipedia?respectively.Independentlyof the language they are expressed in, the three question can be interpreted as the same SPARQLqueryfromtheintroduction. OurapproachconsistsoftwoinferencelayerswhichwecallL2KBandQC.Each of these layers consists of a different factor graph optimized for different subtasks of theoveralltask.Thefirstinferencelayeristrainedusinganentitylinkingobjectivethat learnstolinkpartsofthequerytoKBIdentifiers.Inparticular,thisinferencestepas- signs KB Identifiers to open class words such as nouns, proper nouns, adjectives and verbs etc. In our case, the knowledge base is DBpedia. We use Universal Dependen- cies2[28]togetdependencyparsetreesfor3languages.Thesecondinferencelayeris aqueryconstructionlayerthattakesthetopkresultsfromtheL2KBlayerandassigns semanticrepresentationstoclosedclasswordssuchasquestionpronouns,determiners, etc.toyieldalogicalrepresentationofthecompletequestion.Theapproachistrained ontheQALD-6traindatasetforEnglish,German&Spanishquestionstooptimizethe parameters of the model. The model learns mappings between the dependency parse tree for a given question text and RDF nodes in the SPARQL query. As output, our system produces an executable SPARQL query for a given NL question. All data and source code are freely available3. As semantic representations, we rely on DUDES, whicharedescribedinthefollowingsection. 2.1 DUDES DUDES(Dependency-basedUnderspecifiedDiscourseRepresentationStructures)[9] isaformalismforspecifyingmeaningrepresentationsandtheircomposition.Theyare based on Underspecified Discourse Representation Theory (UDRT) [33,10], and the resultingmeaningrepresentations.Formally,aDUDEisdefinedasfollows: Definition1. ADUDEisa5-tuple(v,vs,l,drs,slots)where – visthemainvariableoftheDUDES – vsisa(possiblyempty)setofvariables,theprojectionvariables – listhelabelofthemainDRS – drsisaDRS(themainsemanticcontentoftheDUDE) – slotsisa(possiblyempty)setofsemanticdependencies The core of a DUDES is thus a Discourse Representation Structure (DRS) [15]. Themainvariablerepresentsthevariabletobeunifiedwithvariablesinslotsofother DUDESthattheDUDEinquestionisinsertedinto.EachDUDEcapturesinformation aboutwhichsemanticargumentsarerequiredforaDUDEtobecompleteinthesense 2http://universaldependencies.org/v2,70treebanks,50languages 3https://github.com/ag-sc/AMUSE 4 that all slots have been filled. These required arguments are modeled as set of slots thatarefilledvia(functional)applicationofotherDUDES.Theprojectionvariablesare relevantinmeaningrepresentationsofquestions;theyspecifywhichentityisaskedfor. When converting DUDES into SPARQL queries, they will directly correspond to the variables in the SELECT clause of the query. Finally, slots capture information about whichsyntacticelementsmaptowhichsemanticargumentsintheDUDE. Asbasicunitsofcomposition,weconsider5pre-definedDUDEStypesthatcorre- spondtodataelementsinRDFdatasets.WeconsiderResourceDUDESthatrepresent resourcesorindividualsdenotedbypropernounssuchasWikipedia(see1stDUDESin Figure1).WeconsiderClassDUDESthatcorrespondtosetsofelements,i.e.classes, forexampletheclassofPersons(see2ndDUDESinFigure1).WealsoconsiderProp- erty DUDES that correspond to object or datatype properties such as author (see 3rd DUDESinFigure1).Wefurtherconsiderrestrictionclassesthatrepresentthemeaning ofintersectiveadjectivessuchasSwedish(see4thDUDESinFigure1).Finally,aspe- cialtypeofDUDEScanbeusedtocapturethemeaningofquestionpronouns,e.g.Who orWhat(see5thDUDESinFigure1). Fig.1:Exampelesforthe5typesofDUDES When applying a DUDE d to d where d subcategorizes a number of semantic 2 1 1 arguments,weneedtoindicatewhichargumentd fills.Forinstance,applyingthe1st 2 DUDES in Figure 1 to the 3rd DUDES in Figure 1 at argument index 1 yields the followingDUDE: v:-vs:{}l:1 1: dbo:author(dbr:Wikipedia,y) (y,a2,2) 2.2 ImperativelyDefinedFactorGraphs Inthissection,weintroducetheconceptoffactorgraphs[19],followingthenotationsin [41]and[17].AfactorgraphGisabipartitegraphthatdefinesaprobabilitydistribution π.ThegraphconsistsofvariablesV andfactorsΨ.Variablescanbefurtherdividedinto sets of observed variables X and hidden variables Y. A factor Ψ connects subsets of i observedvariablesx andhiddenvariablesy ,andcomputesascalarscorebasedonthe i i exponentialofthescalarproductofafeaturevectorf (x ,y )andasetofparametersθ : i i i i 5 Ψi = efi(xi,yi)·θi.Theprobabilityofthehiddenvariablesgiventheobservedvariables istheproductoftheindividualfactors: 1 (cid:89) 1 (cid:89) π(y|x;θ)= Ψ (x ,y )= efi(xi,yi)·θi (1) Z(x) i i i Z(x) Ψi∈G Ψi∈G where Z(x) is the partition function. For a given input consisting of a dependency parsed sentence, the factor graph is rolled out by applying template procedures that matchoverpartsoftheinputandgeneratecorrespondingfactors.Thetemplatesarethus imperativelyspecifiedproceduresthatrolloutthegraph.AtemplateT ∈T definesthe j subsetsofobservedandhiddenvariables(x(cid:48),y(cid:48))withx(cid:48) ∈ X andy(cid:48) ∈ Y forwhich j j itcangeneratefactorsandafunctionf (x(cid:48),y(cid:48))togeneratefeaturesforthesevariables. j Additionally,allfactorsgeneratedbyagiventemplateT sharethesameparametersθ . j j Withthisdefinition,wecanreformulatetheconditionalprobabilityasfollows: π(y|x;θ)= 1 (cid:89) (cid:89) efj(x(cid:48),y(cid:48))·θj (2) Z(x) Tj∈T (x(cid:48),y(cid:48))∈Tj Input to our approach is a pair (W,E) consisting of a sequence of words W = {w ,...,w } and a set of dependency edges E ⊆ W ×W forming a tree. A state 1 n (W,E,α,β,γ)representsapartialinterpretationoftheinputintermsofpartialseman- ticrepresentations.Thepartialfunctions α : W → KB,β : W → {t ,t ,t ,t ,t } 1 2 3 4 5 andγ :E →{1,2}mapwordstoKBidentifiers,wordstothefivebasicDUDEStypes, and edges to indices of semantic arguments, with 1 corresponding to the subject of a property and 2 corresponding to the object, respectively. Figure 2 shows a schematic visualizationofaquestionalongwithitsfactorgraph.Factorsmeasurethecompatibil- itybetweendifferentassignmentsofobservedandhiddenvariables.Theinterpretation of a question is the one that maximizes the posterior of a model with parameters θ: y∗ =argmax π(y|x;θ). y 2.3 Inference Werelyonanapproximateinferenceprocedure,MarkovChainMonteCarloinparticu- lar[1].Themethodperformsiterativeinferenceforexploringthestatespaceofpossible questioninterpretationsbyproposingconcretechangestosetsofvariablesthatdefine aproposaldistribution.Theinferenceprocedureperformsaniterativelocalsearchand canbedividedinto(i)generatingpossiblesuccessorstatesforagivenstatebyapplying changes,(ii)scoringthestatesusingthemodelscore,and(iii)decidingwhichproposal to accept as successor state. A proposal is accepted with a probability that is propor- tionaltothelikelihoodassignedbythedistributionπ.Tocomputethelogicalformofa question,weruntwoinferenceproceduresusingtwodifferentmodels.Thefirstmodel L2KB is trained using a linking objective that learns to map open class words to KB identifiers.TheMCMCsamplingprocessisrunformstepsfortheL2KBmodel;the top k states are used as an input for the second inference model called QC that as- signsmeaningstoclosedclasswordstoyieldafullfledgedsemanticrepresentationof the question. Both inference strategies generate successor states by exploration based 6 Fig.2:Factorgraphforthequestion:WhocreatedWikipedia?.Observedvariablesare depictedasbubbleswithstraightlines;hiddenvariablesasbubbleswithdashedlines. Blackboxesrepresentfactors. onedgesinthedependencyparsetree.Weexploreonlythefollowingtypesofedges: Corearguments,Non-coredependents,NominaldependentsdefinedbyUniversalDe- pendencies4andnodesthathavethefollowingPOStags:NOUN,VERB,ADJ,PRON, PROPN, DET. In both inference models, we alternate across iterations between using theprobabilityofthestategiventhemodelandtheobjectivescoretodecidewhichstate toaccept.Initially,allpartialassignmentsα ,β ,γ .areempty. 0 0 0 We rely on an inverted index to find all KB IDs for a given query term. The in- verted index maps terms to candidate KB IDs for all 3 languages. It has been created takingintoaccountanumberofresources:namesofDBpediaresources,Wikipediaan- chor texts and links, names of DBpedia classes, synonyms for DBpedia classes from WordNet [26,16], as well as lexicalizations of properties and restriction classes from DBlexipedia[40].EntriesintheindexaregroupedbyDUDEStype,sothatitsupports type-specificretrieval.TheindexstoresthefrequencyofthementionspairedwithKB ID.Duringretrieval,theindexreturnsanormalizedfrequencyscoreforeachcandidate KBID. L2KB:LinkingtoKnowledgeBase ProposalGeneration:TheL2KBproposalgen- erationproposeschangestoagivenstatebyconsideringsingledependencyedgesand changing:i)theKBIDsofparentandchildnodes,ii)theDUDEStypeofparentand childnodes,andiii)theargumentindexattachedtotheedge.TheSemanticTypevari- ablesrangeoverthe5basicDUDEStypesdefined,whiletheargumentindexvariable ranges in the set {1,2}. The resulting partial semantic representations for the depen- 4http://universaldependencies.org/u/dep/index.html 7 dency edge are checked for satisfiability with respect to the knowledge base, pruning theproposalifitisnotsatisfiable.Figure3depictsthelocalexplorationofthedobj-edge betweenWikipediaandcreated.Theleftimageshowsaninitialstatewithemptyassign- mentsforallhiddenvariables.TherightimageshowsaproposalthatischangedtheKB IDsandDUDEtypesofthenodesconnectsbythedobjedge.Theinferenceprocesshas assigned the KB ID dbo:author and the Property DUDES type to the created node. The Wikipedia nodes gets assigned the type Resource DUDES as well as the KB ID dbr:Wikipedia.Thedependencyedgegetsassignedtheargumentindex1,representing thatdbr:Wikipediashouldbeinsertedatthesubjectpositionofthedbo:authorproperty. Thepartialsemanticrepresentationrepresentedbythisedgeistheonedepictedatthe endofSection2.2.Asitissatisfiable,itisnotpruned.Incontrast,astateinwhichthe edge is assigned the argument index 2 would yield the following non-satisfiable rep- resentation,correspondingtothingsthatwereauthoredbyWikipediainsteadofthings thatauthoredWikipedia: v:-vs:{}l:1 1: dbo:author(y,dbr:Wikipedia) (y,a2,2) Fig.3:Left:InitialstatebasedondependencyparsewhereeachnodehasemptyKBID andSemanticType.Right:ProposalgeneratedbytheLKBproposalgenerationforthe questionWhocreatedWikipedia? ObjectiveFunction: AsobjectivefortheL2KBmodelwerelyonalinkingobjective that calculates the overlap between inferred entity links and entity links in the gold standardSPARQLquery. Allgeneratedstatesarerankedbytheobjectivescore.Top-kstatesarepassedtothe next sampling step. In the next iteration, the inference is performed on these k states. Followingthisprocedureformiterationsyieldsasequenceofstates(s ,...,s )that 0 m aresampledfromthedistributiondefinedbytheunderlyingfactorgraphs. QC: Query Construction Proposal Generation: Proposals in this inference layer consistofassignmentsofthetypeQueryVarDUDEStonodesforclasswords,inpar- ticular determiners, that could fill the argument position of a parent with unsatisfied arguments. 8 ObjectiveFunction: Asobjectiveweuseanobjectivefunctionthatmeasuresthe(graph) similaritybetweentheinferredSPARQLqueryandthegoldstandardSPARQLquery. Figure4showsaninputstateandasampledstatefortheQCinferencelayerofour examplequery:WhocreatedWikipedia?.Theinitialstate(seeLeft)hasSlot1assigned to the edge dobj. Property DUDES have 2 slots by definition. The right figure shows aproposedstateinwhichtheargumentslot2hasbeenassignedtothensubjedgeand the QueryVar DUDES type has been assigned to node Who. This corresponds to the representationandSPARQLqueriesbelow: v:-vs:{y}l:1 1: dbo:author(dbr:Wikipedia,y) SELECT DISTINCT ?y WHERE { dbr:Wikipedia dbo:author ?y .} Fig.4:Left:Inputstate;Right:ProposalgeneratedbytheQCproposalgenerationfor thequestionWhocreatedWikipedia? 2.4 Features Asfeaturesforthefactors,weuseconjunctionsofthefollowinginformation:i)lemma ofparentandchildnodes,ii)KBIdsofparentandchildnodes,iii)POStagsofparent andchildnodes,iv)DUDEtypeofparentandchild,v)indexofargumentatedge,vi) dependencyrelationofedge,vii)normalizedfrequencyscoreforretrievedKBIds,viii) string similarity between KB Id and lemma of node, ix) rdfs:domain and rdfs:range restrictionsfortheparentKBId(incaseofbeingaproperty). 2.5 LearningModelParameters Inordertooptimizeparametersθ,weuseanimplementationoftheSampleRank[41] algorithm.TheSampleRankalgorithmobtainsgradientsfortheseparametersfrompairs ofconsecutivestatesinthechainbasedonapreferencefunctionPdefinedintermsof theobjectivefunctionOasfollows: (cid:40) 1, ifO(s(cid:48))>O(s) P(s(cid:48),s)= (3) 0, otherwise 9 We have observed that accepting proposals only on the basis of the model score requires a large number of inference steps. This is due to the fact that the exploration spaceishugeconsideringallthecandidateresources,predicates,classesetc.inDBpe- dia. To guide the search towards good solutions, we switch between model score and objectivescoretocomputethelikelihoodofacceptanceofaproposal.Oncethetraining procedureswitchesthescoringfunctioninthenextsamplingstep,themodelusesthe parametersfromtheprevioussteptoscorethestates. 2.6 Addressingthelexicalgap AkeycomponentintheproposedquestionansweringpipelineistheL2KBlayer.This layerisresponsibleforproposingpossibleKBidentifiersforpartsofthequestion.Con- siderthequestionWhoisthewriterofTheHungerGames?Itseemstobeatrivialtask to link the query word writer to the appropriate identifier dbo:author, however it stillrequirespriorknowledgeaboutthesemanticsofthequerywordandtheKBentry (e.g.thatthewriterofabookistheauthor). Toaddressthelexicalgap,werelyontheonehandonlexicalizationsofDBpedia propertiesasextractedbyM-ATOLL[39,40]formultiplelanguages5.Inparticularfor Spanish and German, however, M-ATOLL produces very sparse results. We propose twosolutionstoovercomethelexicalgapbyusingmachinetranslationtotranslateEn- glishlabelsintootherlanguagesaswellasusingwordembeddingstoretrievecandidate propertiesforagivenmentiontext. Machine Translations We rely on the online dictionary Dict.cc6 as our translation engine.WequerythewebserviceforeachavailableEnglishlabelandtargetlanguage and store the obtained translation candidates as new labels for the respective entity andlanguage.Whilethesetranslationsarepronetobenoisywithoutapropercontext, we receive a reasonable starting point for the generation of candidate lexicalizations, especiallyincombinationwiththewordembeddingapproach. Word Embedding Retrieval Many word embedding methods such as the skip-gram method[25]havebeenshowntoencodeusefulsemanticandsyntacticproperties.The objective of the skip-gram method is to learn word representations that are useful for predictingcontextwords.Asaresult,thelearnedembeddingsoftendisplayadesirable linear structure that can be exploited using simple vector addition. Motivated by the compositionality of word vectors, we propose a measure of semantic relatedness be- tween a mention m and a DBpedia entry e using the cosine similarity between their respectivevectorrepresentationsv andv .Forthiswefollowtheapproachin[5]to m e deriveentityembeddingvectorsfromwordvectors:Wedefinethevectorofamention masthesumofthevectorsofitstokens7v =(cid:80) v ,wherethev arerawvectors m t∈m t t fromthesetofpretrainedskip-gramvectors.Similarly,wederivethevectorrepresenta- tionofaDBpediaentryebyaddingtheindividualwordvectorsfortherespectivelabel (cid:80) l ofe,thusv = v . e e t∈le t 5M-ATOLLcurrentlyprovideslexicalizationsforEnglish,GermanandSpanish 6http://www.dict.cc 7Weomitallstopwordtokens. 10 As an example, the vector for the mention text movie director is composed as v = v + v . The DBpedia entry dbo:director has the moviedirector movie director labelfilmdirectorandisthuscomposedofv =v +v . dbo:director film director Togeneratepotentiallinkingcandidatesgivenamentiontext,wecancomputethe cosinesimilaritybetweenv andeachpossiblev asameasureofsemanticrelatedness m e andthusproducearankingofallcandidateentries.Bypruningtherankingatachosen threshold,wecancontroltheproducedcandidatelistforprecisionandrecall. For this work, we trained 3 instances of the skip-gram model with each 100 di- mensionsontheEnglish,GermanandSpanishWikipediarespectively.Followingthis approach, the top ranking DBpedia entries for the mention text total population are listedbelow: Mention DBpediaentry Cos.Similarity totalpopulationdbo:populationTotal 1.0 dbo:totalPopulation 1.0 dbo:agglomerationPopulationTotal 0.984 dbo:populationTotalRanking 0.983 dbo:PopulatedPlace/areaTotal 0.979 AmoredetailedevaluationisconductedinSection3whereweinvestigatethecan- didateretrievalincomparisontoanM-ATOLLbaseline. 3 ExperimentsandEvaluation WepresentexperimentscarriedoutontheQALD-6datasetcomprisingofEnglish,Ger- man&Spanishquestions.Wetrainandtestonthemultilingualsubtask.Thisyieldsa trainingdatasetconsistingof350and100testinstances.Wetrainthemodelwith350 training instances for each language from QALD-6 train dataset by performing 10 it- erationsoverthedatasetwithlearningratesetto0.01tooptimizetheparameters.We setk to10.Weperformapreprocessingsteponthedependencyparsetreebeforerun- ningthroughthepipeline.Thisstepconsistsofmergingnodesthatareconnectedwith compoundedges.Thisresultsinhavingonenodeforcompoundnamesandreducesthe traversingtimeandcomplexityforthemodel.Theapproachisevaluatedontwotasks: alinkingtaskandaquestionansweringtask.Thelinkingtaskisevaluatedbycompar- ing the proposed KB links to the KB elements contained in the SPARQL question in terms of F-Measure. The question answering task is evaluated by executing the con- structed SPARQL query over the DBpedia KB, and comparing the retrieved answers withanswersretrievedforthegoldstandardSPARQLqueryintermsofF-Measure. Before evaluating the full pipeline on the QA task, we evaluate the impact of us- ingdifferentlexicalresourcesincludingthewordembeddingtoinferunknownlexical relations. 3.1 EvaluatingtheLexiconGeneration We evaluate the proposed lexicon generation methods using machine translation and embeddingswithrespecttoalexiconofmanualannotationsthatareobtainedfromthe training set of the QALD-6 dataset. The manual lexicon is a mapping of mention to expected KB entry derived from the (question-query) pairs in QALD-6 dataset. Since

Description:
Abstract. The task of answering natural language questions over RDF data has received wIde interest in recent years, in particular in the context of the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.