AMUSE: Multilingual Semantic Parsing for Question Answering over Linked Data SherzodHakimov,SoufianJebbara,PhilippCimiano {shakimov, sjebbara, cimiano} @ cit-ec.uni-bielefeld.de SemanticComputingGroup CognitiveInteractionTechnology–CenterofExcellence(CITEC) BielefeldUniversity 33615Bielefeld,Germany Abstract. ThetaskofansweringnaturallanguagequestionsoverRDFdatahas received wIde interest in recent years, in particular in the context of the series of QALD benchmarks. The task consists of mapping a natural language ques- tiontoanexecutableform,e.g.SPARQL,sothatanswersfromagivenKBcan be extracted. So far, most systems proposed are i) monolingual and ii) rely on a set of hard-coded rules to interpret questions and map them into a SPARQL query. We present the first multilingual QALD pipeline that induces a model fromtrainingdataformappinganaturallanguagequestionintologicalformas probabilisticinference.Inparticular,ourapproachlearnstomapuniversalsyn- tacticdependencyrepresentationstoalanguage-independentlogicalformbased onDUDES(Dependency-basedUnderspecifiedDiscourseRepresentationStruc- tures)thatarethenmappedtoaSPARQLqueryasadeterministicsecondstep. Ourmodelbuildsonfactorgraphsthatrelyonfeaturesextractedfromthedepen- dencygraphandcorrespondingsemanticrepresentations.Werelyonapproximate inferencetechniques,MarkovChainMonteCarlomethodsinparticular,aswell asSampleRanktoupdateparametersusingarankingobjective.Ourfocuslieson developingmethodsthatovercomethelexicalgapandpresentanovelcombina- tionofmachinetranslationandwordembeddingapproachesforthispurpose.As aproofofconceptforourapproach,weevaluateourapproachontheQALD-6 datasetsforEnglish,German&Spanish. Keywords: questionanswering,multilinguality,QALD,probabilisticgraphical models,factorgraphs 1 Introduction ThetaskofQuestionAnsweringoverLinkedData(QALD)hasreceivedincreasedat- tentionoverthelastyears(seethesurveys[14]and[36]).Thetaskconsistsinmapping natural language questions into an executable form, e.g. a SPARQL query in particu- lar,thatallowstoretrieveanswerstothequestionfromagivenknowledgebase.Con- sIderthequestion:WhocreatedWikipedia?,whichcanbeinterpretedasthefollowing SPARQLquerywithrespecttoDBpedia1: 1The prefixes dbo and dbr stand for the namespaces http://dbpedia.org/ontology and http://dbpedia.org/resource/,respectively. 2 SELECT DISTINCT ?uri WHERE { dbr:Wikipedia dbo:author ?uri .} AnimportantchallengeinmappingnaturallanguagequestionstoSPARQLqueries lies in overcoming the so called ‘lexical gap’ (see [13], [14]). The lexical gap makes interpretingtheabovementionedquestioncorrectlychallenging,asthereisnosurface relationbetweenthequerystringcreatedandtheURIlocalnameauthor.TobrIdgethe lexical gap, systems need to infer that create should be interpreted as author in the abovecase. ThelexicalgapisonlyexacerbatedwhenconsIderingmultiplelanguagesasweface across-lingualgapthatneedstobebrIdged.ConsIderforinstancethequestion:Werhat Wikipedia gegru¨ndet?, which involves mapping gru¨nden to author to successfully interpretthequestion. Addressing the lexical gap in question answering over linked data, we present a newsystemwecallAMUSEthatreliesonprobabilisticinferencetoperformstructured predictioninthesearchspaceofpossibleSPARQLqueriestopredictthequerythathas thehighestprobabilityofbeingthecorrectinterpretationofthegivenquerystring.As themaincontributionofthepaper,wepresentanovelapproachtoquestionanswering over linked data that relies on probabilistic inference to determine the most probable meaningofaquestiongivenamodel.Theparametersofthemodelareoptimizedona giventrainingdatasetconsistingofnaturallanguagequestionswiththeircorresponding SPARQLqueriesasprovIdedbytheQALDbenchmark.Theinferenceprocessbuilds on approximate inference techniques, Markov Chain Monte Carlo in particular, to as- signknowledgebase(KB)Identifiersaswellasmeaningrepresentationstoeverynode in a dependency tree representing the syntactic dependency structure of the question. Onthebasisoftheseassignedmeaningrepresentationstoeverynode,afullsemantic representationcanbecomputedrelyingonbottom-upsemanticcompositionalongthe parsetree.Asanovelty,ourmodelcanbetrainedondifferentlanguagesbyrelyingon universaldependencies.Toourknowledge,thisisthefirstsystemforquestionanswer- ingoverlinkeddatathatcanbetrainedtoperformondifferentlanguages(threeinour case)withouttheneedofimplementinganylanguage-specificheuristicsorknowledge. Toovercomethecross-linguallexicalgap,weexperimentwithautomaticallytranslated labelsandrelyonanembeddingapproachtoretrievesimilarwordsintheembedding space.Weshowthatbyusingwordembeddingsonecaneffectivelycontributetoreduc- ingthelexicalgapcomparedtoabaselinesystemwhereonlyknownlabelsareused. 2 Approach Our intuition in this paper is that the interpretation of a natural language question in terms of a SPARQL query is a compositional process in which partial semantic rep- resentationsarecombinedwitheachotherinabottom-upfashionalongadependency treerepresentingthesyntacticstructureofagivenquestion.Insteadofrelyingonhand- crafted rules guIding the composition, we rely on a learning approach that can infer such ‘rules’ from training data. We employ a factor graph model that is trained using arankingobjectiveandSampleRankastrainingproceduretolearnamodelthatlearns to prefer good over bad interpretations of a question. In essence, an interpretation of 3 aquestionrepresentedasadependencytreeconsistsofanassignmentofseveralvari- ables:i)aKBIdandsemantictypetoeverynodeintheparsetree,andii)anargument index(1or2)toeveryedgeinthedependencytreespecifyingwhichslotoftheparent node,subjectorobject,thechildnodeshouldbeappliedto.Theinputtoourapproach isthusasetofpairs(q,sp)ofquestionq andSPARQLquerysp.Asanexample,con- sIderthefollowingquestionsinEnglish,German&Spanish:WhocreatedWikipedia? WerhatWikipediagegru¨ndet?¿Quie´ncreo´ Wikipedia?respectively.Independentlyof the language they are expressed in, the three question can be interpreted as the same SPARQLqueryfromtheintroduction. OurapproachconsistsoftwoinferencelayerswhichwecallL2KBandQC.Each of these layers consists of a different factor graph optimized for different subtasks of theoveralltask.Thefirstinferencelayeristrainedusinganentitylinkingobjectivethat learnstolinkpartsofthequerytoKBIdentifiers.Inparticular,thisinferencestepas- signs KB Identifiers to open class words such as nouns, proper nouns, adjectives and verbs etc. In our case, the knowledge base is DBpedia. We use Universal Dependen- cies2[28]togetdependencyparsetreesfor3languages.Thesecondinferencelayeris aqueryconstructionlayerthattakesthetopkresultsfromtheL2KBlayerandassigns semanticrepresentationstoclosedclasswordssuchasquestionpronouns,determiners, etc.toyieldalogicalrepresentationofthecompletequestion.Theapproachistrained ontheQALD-6traindatasetforEnglish,German&Spanishquestionstooptimizethe parameters of the model. The model learns mappings between the dependency parse tree for a given question text and RDF nodes in the SPARQL query. As output, our system produces an executable SPARQL query for a given NL question. All data and source code are freely available3. As semantic representations, we rely on DUDES, whicharedescribedinthefollowingsection. 2.1 DUDES DUDES(Dependency-basedUnderspecifiedDiscourseRepresentationStructures)[9] isaformalismforspecifyingmeaningrepresentationsandtheircomposition.Theyare based on Underspecified Discourse Representation Theory (UDRT) [33,10], and the resultingmeaningrepresentations.Formally,aDUDEisdefinedasfollows: Definition1. ADUDEisa5-tuple(v,vs,l,drs,slots)where – visthemainvariableoftheDUDES – vsisa(possiblyempty)setofvariables,theprojectionvariables – listhelabelofthemainDRS – drsisaDRS(themainsemanticcontentoftheDUDE) – slotsisa(possiblyempty)setofsemanticdependencies The core of a DUDES is thus a Discourse Representation Structure (DRS) [15]. Themainvariablerepresentsthevariabletobeunifiedwithvariablesinslotsofother DUDESthattheDUDEinquestionisinsertedinto.EachDUDEcapturesinformation aboutwhichsemanticargumentsarerequiredforaDUDEtobecompleteinthesense 2http://universaldependencies.org/v2,70treebanks,50languages 3https://github.com/ag-sc/AMUSE 4 that all slots have been filled. These required arguments are modeled as set of slots thatarefilledvia(functional)applicationofotherDUDES.Theprojectionvariablesare relevantinmeaningrepresentationsofquestions;theyspecifywhichentityisaskedfor. When converting DUDES into SPARQL queries, they will directly correspond to the variables in the SELECT clause of the query. Finally, slots capture information about whichsyntacticelementsmaptowhichsemanticargumentsintheDUDE. Asbasicunitsofcomposition,weconsider5pre-definedDUDEStypesthatcorre- spondtodataelementsinRDFdatasets.WeconsiderResourceDUDESthatrepresent resourcesorindividualsdenotedbypropernounssuchasWikipedia(see1stDUDESin Figure1).WeconsiderClassDUDESthatcorrespondtosetsofelements,i.e.classes, forexampletheclassofPersons(see2ndDUDESinFigure1).WealsoconsiderProp- erty DUDES that correspond to object or datatype properties such as author (see 3rd DUDESinFigure1).Wefurtherconsiderrestrictionclassesthatrepresentthemeaning ofintersectiveadjectivessuchasSwedish(see4thDUDESinFigure1).Finally,aspe- cialtypeofDUDEScanbeusedtocapturethemeaningofquestionpronouns,e.g.Who orWhat(see5thDUDESinFigure1). Fig.1:Exampelesforthe5typesofDUDES When applying a DUDE d to d where d subcategorizes a number of semantic 2 1 1 arguments,weneedtoindicatewhichargumentd fills.Forinstance,applyingthe1st 2 DUDES in Figure 1 to the 3rd DUDES in Figure 1 at argument index 1 yields the followingDUDE: v:-vs:{}l:1 1: dbo:author(dbr:Wikipedia,y) (y,a2,2) 2.2 ImperativelyDefinedFactorGraphs Inthissection,weintroducetheconceptoffactorgraphs[19],followingthenotationsin [41]and[17].AfactorgraphGisabipartitegraphthatdefinesaprobabilitydistribution π.ThegraphconsistsofvariablesV andfactorsΨ.Variablescanbefurtherdividedinto sets of observed variables X and hidden variables Y. A factor Ψ connects subsets of i observedvariablesx andhiddenvariablesy ,andcomputesascalarscorebasedonthe i i exponentialofthescalarproductofafeaturevectorf (x ,y )andasetofparametersθ : i i i i 5 Ψi = efi(xi,yi)·θi.Theprobabilityofthehiddenvariablesgiventheobservedvariables istheproductoftheindividualfactors: 1 (cid:89) 1 (cid:89) π(y|x;θ)= Ψ (x ,y )= efi(xi,yi)·θi (1) Z(x) i i i Z(x) Ψi∈G Ψi∈G where Z(x) is the partition function. For a given input consisting of a dependency parsed sentence, the factor graph is rolled out by applying template procedures that matchoverpartsoftheinputandgeneratecorrespondingfactors.Thetemplatesarethus imperativelyspecifiedproceduresthatrolloutthegraph.AtemplateT ∈T definesthe j subsetsofobservedandhiddenvariables(x(cid:48),y(cid:48))withx(cid:48) ∈ X andy(cid:48) ∈ Y forwhich j j itcangeneratefactorsandafunctionf (x(cid:48),y(cid:48))togeneratefeaturesforthesevariables. j Additionally,allfactorsgeneratedbyagiventemplateT sharethesameparametersθ . j j Withthisdefinition,wecanreformulatetheconditionalprobabilityasfollows: π(y|x;θ)= 1 (cid:89) (cid:89) efj(x(cid:48),y(cid:48))·θj (2) Z(x) Tj∈T (x(cid:48),y(cid:48))∈Tj Input to our approach is a pair (W,E) consisting of a sequence of words W = {w ,...,w } and a set of dependency edges E ⊆ W ×W forming a tree. A state 1 n (W,E,α,β,γ)representsapartialinterpretationoftheinputintermsofpartialseman- ticrepresentations.Thepartialfunctions α : W → KB,β : W → {t ,t ,t ,t ,t } 1 2 3 4 5 andγ :E →{1,2}mapwordstoKBidentifiers,wordstothefivebasicDUDEStypes, and edges to indices of semantic arguments, with 1 corresponding to the subject of a property and 2 corresponding to the object, respectively. Figure 2 shows a schematic visualizationofaquestionalongwithitsfactorgraph.Factorsmeasurethecompatibil- itybetweendifferentassignmentsofobservedandhiddenvariables.Theinterpretation of a question is the one that maximizes the posterior of a model with parameters θ: y∗ =argmax π(y|x;θ). y 2.3 Inference Werelyonanapproximateinferenceprocedure,MarkovChainMonteCarloinparticu- lar[1].Themethodperformsiterativeinferenceforexploringthestatespaceofpossible questioninterpretationsbyproposingconcretechangestosetsofvariablesthatdefine aproposaldistribution.Theinferenceprocedureperformsaniterativelocalsearchand canbedividedinto(i)generatingpossiblesuccessorstatesforagivenstatebyapplying changes,(ii)scoringthestatesusingthemodelscore,and(iii)decidingwhichproposal to accept as successor state. A proposal is accepted with a probability that is propor- tionaltothelikelihoodassignedbythedistributionπ.Tocomputethelogicalformofa question,weruntwoinferenceproceduresusingtwodifferentmodels.Thefirstmodel L2KB is trained using a linking objective that learns to map open class words to KB identifiers.TheMCMCsamplingprocessisrunformstepsfortheL2KBmodel;the top k states are used as an input for the second inference model called QC that as- signsmeaningstoclosedclasswordstoyieldafullfledgedsemanticrepresentationof the question. Both inference strategies generate successor states by exploration based 6 Fig.2:Factorgraphforthequestion:WhocreatedWikipedia?.Observedvariablesare depictedasbubbleswithstraightlines;hiddenvariablesasbubbleswithdashedlines. Blackboxesrepresentfactors. onedgesinthedependencyparsetree.Weexploreonlythefollowingtypesofedges: Corearguments,Non-coredependents,NominaldependentsdefinedbyUniversalDe- pendencies4andnodesthathavethefollowingPOStags:NOUN,VERB,ADJ,PRON, PROPN, DET. In both inference models, we alternate across iterations between using theprobabilityofthestategiventhemodelandtheobjectivescoretodecidewhichstate toaccept.Initially,allpartialassignmentsα ,β ,γ .areempty. 0 0 0 We rely on an inverted index to find all KB IDs for a given query term. The in- verted index maps terms to candidate KB IDs for all 3 languages. It has been created takingintoaccountanumberofresources:namesofDBpediaresources,Wikipediaan- chor texts and links, names of DBpedia classes, synonyms for DBpedia classes from WordNet [26,16], as well as lexicalizations of properties and restriction classes from DBlexipedia[40].EntriesintheindexaregroupedbyDUDEStype,sothatitsupports type-specificretrieval.TheindexstoresthefrequencyofthementionspairedwithKB ID.Duringretrieval,theindexreturnsanormalizedfrequencyscoreforeachcandidate KBID. L2KB:LinkingtoKnowledgeBase ProposalGeneration:TheL2KBproposalgen- erationproposeschangestoagivenstatebyconsideringsingledependencyedgesand changing:i)theKBIDsofparentandchildnodes,ii)theDUDEStypeofparentand childnodes,andiii)theargumentindexattachedtotheedge.TheSemanticTypevari- ablesrangeoverthe5basicDUDEStypesdefined,whiletheargumentindexvariable ranges in the set {1,2}. The resulting partial semantic representations for the depen- 4http://universaldependencies.org/u/dep/index.html 7 dency edge are checked for satisfiability with respect to the knowledge base, pruning theproposalifitisnotsatisfiable.Figure3depictsthelocalexplorationofthedobj-edge betweenWikipediaandcreated.Theleftimageshowsaninitialstatewithemptyassign- mentsforallhiddenvariables.TherightimageshowsaproposalthatischangedtheKB IDsandDUDEtypesofthenodesconnectsbythedobjedge.Theinferenceprocesshas assigned the KB ID dbo:author and the Property DUDES type to the created node. The Wikipedia nodes gets assigned the type Resource DUDES as well as the KB ID dbr:Wikipedia.Thedependencyedgegetsassignedtheargumentindex1,representing thatdbr:Wikipediashouldbeinsertedatthesubjectpositionofthedbo:authorproperty. Thepartialsemanticrepresentationrepresentedbythisedgeistheonedepictedatthe endofSection2.2.Asitissatisfiable,itisnotpruned.Incontrast,astateinwhichthe edge is assigned the argument index 2 would yield the following non-satisfiable rep- resentation,correspondingtothingsthatwereauthoredbyWikipediainsteadofthings thatauthoredWikipedia: v:-vs:{}l:1 1: dbo:author(y,dbr:Wikipedia) (y,a2,2) Fig.3:Left:InitialstatebasedondependencyparsewhereeachnodehasemptyKBID andSemanticType.Right:ProposalgeneratedbytheLKBproposalgenerationforthe questionWhocreatedWikipedia? ObjectiveFunction: AsobjectivefortheL2KBmodelwerelyonalinkingobjective that calculates the overlap between inferred entity links and entity links in the gold standardSPARQLquery. Allgeneratedstatesarerankedbytheobjectivescore.Top-kstatesarepassedtothe next sampling step. In the next iteration, the inference is performed on these k states. Followingthisprocedureformiterationsyieldsasequenceofstates(s ,...,s )that 0 m aresampledfromthedistributiondefinedbytheunderlyingfactorgraphs. QC: Query Construction Proposal Generation: Proposals in this inference layer consistofassignmentsofthetypeQueryVarDUDEStonodesforclasswords,inpar- ticular determiners, that could fill the argument position of a parent with unsatisfied arguments. 8 ObjectiveFunction: Asobjectiveweuseanobjectivefunctionthatmeasuresthe(graph) similaritybetweentheinferredSPARQLqueryandthegoldstandardSPARQLquery. Figure4showsaninputstateandasampledstatefortheQCinferencelayerofour examplequery:WhocreatedWikipedia?.Theinitialstate(seeLeft)hasSlot1assigned to the edge dobj. Property DUDES have 2 slots by definition. The right figure shows aproposedstateinwhichtheargumentslot2hasbeenassignedtothensubjedgeand the QueryVar DUDES type has been assigned to node Who. This corresponds to the representationandSPARQLqueriesbelow: v:-vs:{y}l:1 1: dbo:author(dbr:Wikipedia,y) SELECT DISTINCT ?y WHERE { dbr:Wikipedia dbo:author ?y .} Fig.4:Left:Inputstate;Right:ProposalgeneratedbytheQCproposalgenerationfor thequestionWhocreatedWikipedia? 2.4 Features Asfeaturesforthefactors,weuseconjunctionsofthefollowinginformation:i)lemma ofparentandchildnodes,ii)KBIdsofparentandchildnodes,iii)POStagsofparent andchildnodes,iv)DUDEtypeofparentandchild,v)indexofargumentatedge,vi) dependencyrelationofedge,vii)normalizedfrequencyscoreforretrievedKBIds,viii) string similarity between KB Id and lemma of node, ix) rdfs:domain and rdfs:range restrictionsfortheparentKBId(incaseofbeingaproperty). 2.5 LearningModelParameters Inordertooptimizeparametersθ,weuseanimplementationoftheSampleRank[41] algorithm.TheSampleRankalgorithmobtainsgradientsfortheseparametersfrompairs ofconsecutivestatesinthechainbasedonapreferencefunctionPdefinedintermsof theobjectivefunctionOasfollows: (cid:40) 1, ifO(s(cid:48))>O(s) P(s(cid:48),s)= (3) 0, otherwise 9 We have observed that accepting proposals only on the basis of the model score requires a large number of inference steps. This is due to the fact that the exploration spaceishugeconsideringallthecandidateresources,predicates,classesetc.inDBpe- dia. To guide the search towards good solutions, we switch between model score and objectivescoretocomputethelikelihoodofacceptanceofaproposal.Oncethetraining procedureswitchesthescoringfunctioninthenextsamplingstep,themodelusesthe parametersfromtheprevioussteptoscorethestates. 2.6 Addressingthelexicalgap AkeycomponentintheproposedquestionansweringpipelineistheL2KBlayer.This layerisresponsibleforproposingpossibleKBidentifiersforpartsofthequestion.Con- siderthequestionWhoisthewriterofTheHungerGames?Itseemstobeatrivialtask to link the query word writer to the appropriate identifier dbo:author, however it stillrequirespriorknowledgeaboutthesemanticsofthequerywordandtheKBentry (e.g.thatthewriterofabookistheauthor). Toaddressthelexicalgap,werelyontheonehandonlexicalizationsofDBpedia propertiesasextractedbyM-ATOLL[39,40]formultiplelanguages5.Inparticularfor Spanish and German, however, M-ATOLL produces very sparse results. We propose twosolutionstoovercomethelexicalgapbyusingmachinetranslationtotranslateEn- glishlabelsintootherlanguagesaswellasusingwordembeddingstoretrievecandidate propertiesforagivenmentiontext. Machine Translations We rely on the online dictionary Dict.cc6 as our translation engine.WequerythewebserviceforeachavailableEnglishlabelandtargetlanguage and store the obtained translation candidates as new labels for the respective entity andlanguage.Whilethesetranslationsarepronetobenoisywithoutapropercontext, we receive a reasonable starting point for the generation of candidate lexicalizations, especiallyincombinationwiththewordembeddingapproach. Word Embedding Retrieval Many word embedding methods such as the skip-gram method[25]havebeenshowntoencodeusefulsemanticandsyntacticproperties.The objective of the skip-gram method is to learn word representations that are useful for predictingcontextwords.Asaresult,thelearnedembeddingsoftendisplayadesirable linear structure that can be exploited using simple vector addition. Motivated by the compositionality of word vectors, we propose a measure of semantic relatedness be- tween a mention m and a DBpedia entry e using the cosine similarity between their respectivevectorrepresentationsv andv .Forthiswefollowtheapproachin[5]to m e deriveentityembeddingvectorsfromwordvectors:Wedefinethevectorofamention masthesumofthevectorsofitstokens7v =(cid:80) v ,wherethev arerawvectors m t∈m t t fromthesetofpretrainedskip-gramvectors.Similarly,wederivethevectorrepresenta- tionofaDBpediaentryebyaddingtheindividualwordvectorsfortherespectivelabel (cid:80) l ofe,thusv = v . e e t∈le t 5M-ATOLLcurrentlyprovideslexicalizationsforEnglish,GermanandSpanish 6http://www.dict.cc 7Weomitallstopwordtokens. 10 As an example, the vector for the mention text movie director is composed as v = v + v . The DBpedia entry dbo:director has the moviedirector movie director labelfilmdirectorandisthuscomposedofv =v +v . dbo:director film director Togeneratepotentiallinkingcandidatesgivenamentiontext,wecancomputethe cosinesimilaritybetweenv andeachpossiblev asameasureofsemanticrelatedness m e andthusproducearankingofallcandidateentries.Bypruningtherankingatachosen threshold,wecancontroltheproducedcandidatelistforprecisionandrecall. For this work, we trained 3 instances of the skip-gram model with each 100 di- mensionsontheEnglish,GermanandSpanishWikipediarespectively.Followingthis approach, the top ranking DBpedia entries for the mention text total population are listedbelow: Mention DBpediaentry Cos.Similarity totalpopulationdbo:populationTotal 1.0 dbo:totalPopulation 1.0 dbo:agglomerationPopulationTotal 0.984 dbo:populationTotalRanking 0.983 dbo:PopulatedPlace/areaTotal 0.979 AmoredetailedevaluationisconductedinSection3whereweinvestigatethecan- didateretrievalincomparisontoanM-ATOLLbaseline. 3 ExperimentsandEvaluation WepresentexperimentscarriedoutontheQALD-6datasetcomprisingofEnglish,Ger- man&Spanishquestions.Wetrainandtestonthemultilingualsubtask.Thisyieldsa trainingdatasetconsistingof350and100testinstances.Wetrainthemodelwith350 training instances for each language from QALD-6 train dataset by performing 10 it- erationsoverthedatasetwithlearningratesetto0.01tooptimizetheparameters.We setk to10.Weperformapreprocessingsteponthedependencyparsetreebeforerun- ningthroughthepipeline.Thisstepconsistsofmergingnodesthatareconnectedwith compoundedges.Thisresultsinhavingonenodeforcompoundnamesandreducesthe traversingtimeandcomplexityforthemodel.Theapproachisevaluatedontwotasks: alinkingtaskandaquestionansweringtask.Thelinkingtaskisevaluatedbycompar- ing the proposed KB links to the KB elements contained in the SPARQL question in terms of F-Measure. The question answering task is evaluated by executing the con- structed SPARQL query over the DBpedia KB, and comparing the retrieved answers withanswersretrievedforthegoldstandardSPARQLqueryintermsofF-Measure. Before evaluating the full pipeline on the QA task, we evaluate the impact of us- ingdifferentlexicalresourcesincludingthewordembeddingtoinferunknownlexical relations. 3.1 EvaluatingtheLexiconGeneration We evaluate the proposed lexicon generation methods using machine translation and embeddingswithrespecttoalexiconofmanualannotationsthatareobtainedfromthe training set of the QALD-6 dataset. The manual lexicon is a mapping of mention to expected KB entry derived from the (question-query) pairs in QALD-6 dataset. Since
Description: