molecules Review Amino Acids in the Development of Prodrugs NunoVale1,2,3,4,*,AbigailFerreira1,5 ,JoanaMatos6,PaulaFresco1andMariaJoãoGouveia3,4 1 LaboratoryofPharmacology,DepartmentofDrugSciences,FacultyofPharmacy,UniversityofPorto, RuadeJorgeViterboFerreira228,4050-313Porto,Portugal;[email protected](A.F.); [email protected](P.F.) 2 InstituteofMolecularPathologyandImmunologyoftheUniversityofPorto(IPATIMUP),RuaJúlioAmaral deCarvalho,45,4200-135Porto,Portugal 3 InstitutodeInvestigaçãoeInovaçãoemSaúde(i3S),UniversityofPorto,RuaAlfredoAllen,208, 4200-135Porto,Portugal;[email protected] 4 DepartmentofMolecularPathologyandImmunology,InstituteofBiomedicalSciencesAbel Salazar(ICBAS),UniversityofPorto,RuadeJorgeViterboFerreira228,4050-313Porto,Portugal 5 LAQV&REQUIMTE,LaboratoryofAppliedChemistry,DepartmentofChemicalSciences,FacultyofPharmacy, UniversityofPorto,RuadeJorgeViterboFerreira228,4050-313Porto,Portugal 6 SpiroChemAG,RosentalArea,WRO-1074-3,Mattenstrasse24,4058Basel,Switzerland; [email protected] * Correspondence:[email protected];Tel.:+351-220428500 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:23July2018;Accepted:6September2018;Published:11September2018 Abstract:Althoughdrugscurrentlyusedforthevarioustypesofdiseases(e.g.,antiparasitic,antiviral, antibacterial,etc.) areeffective,theypresentseveralundesirablepharmacologicalandpharmaceutical properties. Most of the drugs have low bioavailability, lack of sensitivity, and do not target only the damaged cells, thus also affecting normal cells. Moreover, there is the risk of developing resistanceagainstdrugsuponchronictreatment. Consequently,theirpotentialclinicalapplications might be limited and therefore, it is mandatory to find strategies that improve those properties of therapeutic agents. The development of prodrugs using amino acids as moieties has resulted inimprovementsinseveralproperties,namelyincreasedbioavailability,decreasedtoxicityofthe parentdrug,accuratedeliverytotargettissuesororgans,andpreventionoffastmetabolism. Herein, weprovideanoverviewofmodelscurrentlyinuseofprodrugdesignwithaminoacids. Furthermore, wereviewthechallengesrelatedtothepermeabilityofpoorlyabsorbeddrugsandtransportand deliverontargetorgans. Keywords: amino acid transport; drug delivery; prodrug design; stability studies; invitro and invivoassays 1. TheProdrugConcept: AnOverview Thetermprodrugwasintroducedinthe1950stodescribeacovalentlinkbetweenadruganda chemicalmoiety. Thetermisalsousedtocharacterizesomesaltformsoftheactivedrugmolecule[1]. Manydrugsseemedicinalusedeniedduetopoorphysical,pharmacokineticorpharmacodynamic properties. Therefore,theuseofdifferentstrategiestoimprovesolubility,stability,permeabilityand targetingproblemsindrugdiscoveryanddevelopmentiscrucial. Sinceprodrugsmightalterthetissue distribution,efficacyandtoxicityoftheparentdrug,theimplementationofaprodrugapproachinthe earlystagesofdrugdevelopmentisagrowingtrend[2–5]. Prodrugsarebio-reversiblederivativesof drugmoleculesthatundergoenzymaticand/orchemicaltransformationtoreleasetheparentdrug[3]. Thereareseveralpro-moietiesthatcanbeusedinprodrugdesign,anditsselectionisacrucialstep. Thegoalisachievingachemicallystableprodrugthatafterbioconversiondoesnotgeneratetoxic Molecules2018,23,2318;doi:10.3390/molecules23092318 www.mdpi.com/journal/molecules Molecules2018,23,2318 2of61 Molecules 2018, 23, x FOR PEER REVIEW 2 of 60 metabolites[2]. Ideally,theprodrugshouldbeconvertedintotheparentdrugassoonasthegoalis be converted into the parent drug as soon as the goal is achieved, followed by rapid elimination of achieved,followedbyrapideliminationofthereleasedderivatizinggroup(Figure1). the released derivatizing group (Figure 1). Drug B Promoiety + Drug a r r Derivatization Transformation i e r Promoiety Drug Promoiety Drug FFiigguurree1 1.. IIlllluussttrraattiioonn ooff pprrooddrruuggc coonncceepptt.. ((AAddaapptteeddf frroommR Reeff..[ [55]])).. 2. AminoAcidsandRoutesofTransport 2. Amino Acids and Routes of Transport Drug-delivery is a cascade of molecular migration processes, in which the active principle Drug-delivery is a cascade of molecular migration processes, in which the active principle is is exposed to several biological media with various hydrophilic and lipophilic characters. exposed to several biological media with various hydrophilic and lipophilic characters. Membrane Membranepenetrationiscontrolledbyseveralphysicochemicalparameters,withthemostpromising penetration is controlled by several physicochemical parameters, with the most promising ones onesbeingspecies-specificbasicityandlipophilicity. Thelatterpropertyhasagreatimportancein being species-specific basicity and lipophilicity. The latter property has a great importance in several severalscientificareassuchaspharmacy,bio-andmedicinalchemistrysinceitexpressestheaffinityof scientific areas such as pharmacy, bio- and medicinal chemistry since it expresses the affinity of the themoleculeforalipophilicenvironment[6]. molecule for a lipophilic environment [6]. One of factors that determine drug bioavailability is related to transport across biological One of factors that determine drug bioavailability is related to transport across biological membranes, therefore drug permeability is a crucial parameter for its effectiveness and is directly membranes, therefore drug permeability is a crucial parameter for its effectiveness and is directly related to their physicochemical characteristics [7,8]. Water solubility and lipophilicity strongly related to their physicochemical characteristics [7,8]. Water solubility and lipophilicity strongly influencedruginteractionswithcomponentsoftheabsorptivesurfacewithinthegastrointestinaltract, influence drug interactions with components of the absorptive surface within the gastrointestinal givingrisetodifferentialpreferencesintermsoftransportpathways. Inmanycases,drugsofpoor tract, giving rise to differential preferences in terms of transport pathways. In many cases, drugs of aqueoussolubilityexhibitahighdegreeoflipophilicity,whichcouldbedemonstratedbysolubilization poor aqueous solubility exhibit a high degree of lipophilicity, which could be demonstrated by oflipophiliccompoundswithmonoglyceridesandfreefattyacids,andliposomes[9,10]. solubilization of lipophilic compounds with monoglycerides and free fatty acids, and liposomes Onestrategyforincreasingwater-solubilityistheuseofaminoacidsasmoieties. Aminoacids [9,10]. arebasicconstituentsofacellstructurebutrequirespecializedtransportsystemstocrosstheplasma One strategy for increasing water-solubility is the use of amino acids as moieties. Amino acids membrane. Several of these transport systems have been identified and classified based on their are basic constituents of a cell structure but require specialized transport systems to cross the plasma substrateaffinity,dependenceonsodiumions,energyandpH[11]. Aminoacidsarepharmacological membrane. Several of these transport systems have been identified and classified based on their agentswithlowtoxicitywhichmakesthemattractivecarriersfordevelopmentofprodrugsofpoorly substrate affinity, dependence on sodium ions, energy and pH [11]. Amino acids are absorbed therapeutic agents. In addition, an amino acid promoiety improves the water solubility pharmacological agents with low toxicity which makes them attractive carriers for development of oftheprodrug[12]. Theimportanceofthesetransportersinpharmacokineticshasbeenrecognized prodrugs of poorly absorbed therapeutic agents. In addition, an amino acid promoiety improves the throughseveralstudiesthatreportanimprovedbioavailabilityofaminoacidlinkedcompounds[11]. water solubility of the prodrug [12]. The importance of these transporters in pharmacokinetics has L-type amino acid transporters 1 (LAT1) and 2 (LAT2) are responsible for carrying large been recognized through several studies that report an improved bioavailability of amino acid neutral amino acids from extracellular fluids into the cells, and hence their involvement in linked compounds [11]. pharmacokinetics[13]. LAT1isatransmembraneproteinabundantlyexpressedattheblood-brain L-type amino acid transporters 1 (LAT1) and 2 (LAT2) are responsible for carrying large neutral barrier (BBB), where it ensures the transport of hydrophobic acids from the blood to the brain. amino acids from extracellular fluids into the cells, and hence their involvement in pharmacokinetics The natural substrates of LAT1 are large neutral amino acids such as L-leucine, L-tryptophan, [13]. LAT1 is a transmembrane protein abundantly expressed at the blood-brain barrier (BBB), where and L-phenylalanine. These compounds have excellent affinity for the LAT1 transporter protein it ensures the transport of hydrophobic acids from the blood to the brain. The natural substrates of andthusrapidlypassthroughtheBBB.Therefore,LAT1isaninterestingtargetfordrugdeliveryto LAT1 are large neutral amino acids such as L-leucine, L-tryptophan, and L-phenylalanine. These thecentralnervoussystem(CNS)[14]. Also,solubilityandpermeabilityinteractionsandtheirimpact compounds have excellent affinity for the LAT1 transporter protein and thus rapidly pass through onintestinaldrugabsorptionaremostprominentlydescribedbytheBiopharmaceuticsClassification the BBB. Therefore, LAT1 is an interesting target for drug delivery to the central nervous system System(BCS)[15]. (CNS) [14]. Also, solubility and permeability interactions and their impact on intestinal drug absorption are most prominently described by the Biopharmaceutics Classification System (BCS) [15]. MMoolleeccuulleess 22001188,, 2233,, x2 3F1O8R PEER REVIEW 33 ooff 6601 Previously, the transport systems for peptides, amino acids and nucleoside/nucleobase on the cornePalr eevpiiotuhesllyiu,mth ewtraasn rseppoorrttesyds [t1e6m].s Tfohrespee ptrtaidnesps,oarmt mineochacaindissmans dcannu cblee oussiedde /fnoru ctalerogbetaisnego dnrtuhge dceolrinveearyl e[2p,i1t7h,e1l8iu].m Amwiansor aecpiodr pterdod[1ru6]g. sTtrhaetseegiteras nustpiloizritnmg eecnhdaongiesnmosucsa nnubtreieunste tdrafnosrptoarrtgeertsi nthgadt arureg odveelriv eexrpyr[e2s,s1e7d,1 8in]. cAermtaiinno oarcgiadnps rhoadvreu gbesctroamteeg iaens autttirlaizcitnivgee anpdporgoeancohu fsonr uimtripernotvterda nasnpdo rttaerrgsettheadt darruego vdeerlievxepryre s[4se].d Ainmcoenrtga innuotrrigeannt sthraanvsepboercteorms,e tahnosaet ttrraacntisvpeoartpinpgro aamchinfoor aimcidpsr oavreed parnefdertraerdge ftoedr ddrruugg ddeelilviveerryy d[u4e]. toA mthoeinrg unbiuqturiietonutst rnaantsuproer atenrds ,otvheorslaeptprainngsp sourbtisntrgataem spineociaficciidtys [a1r7e,1p8r]e. fTehrreeyd afroer kdnrouwgnd etliov etrryandsupeotrot tnhoeitr uonbilqy uintaotuusranlalytu roecacnudrrionvge rlaamppinion gascuidbsst rbautet spalescoi ficaimtyin[1o7 ,a1c8i]d. Trheelyataerde ckonmopwonutnodtsr,a mnsapkoirntgn tohteomnl ysunitaatublrea ldlyeloivcceuryrr tinarggaemts ifnoor aacmidisnob uatcaidls-obaasmedin doraucgids raenldat epdrocdormupgos u[1n7d]s. , Mmoarkeionvgerth, aemminsuo iatacbidles adreel ibvueirlyditnagrg beltosckfosr foarm pirnooteaicnisd a-bnads eadre dgreungesraalnlyd repgraorddreudg sas[ 1s7a]f.e [M4,o1r9e].o ver, aminTohaec iindtsenarteiobnu oilfd tihnigs wbloorckk sisf otor prervoiteewin saanndd suarmemgeanreizrea ltlhyer eugsaer odfe admaisnsoa faeci[d4,s1 i9n] .drug design in orderT thoe iminpternovtieo ndroufgt hsiosluwboirliktyi satnodr deveileivwerayn. dsummarizetheuseofaminoacidsindrugdesignin ordertoimprovedrugsolubilityanddelivery. 3. Drugs and Diseases 3. DrugsandDiseases 3.1. Anti-Viral Drugs 3.1. Anti-ViralDrugs 3.1.1. Herpes Viruses Infections (Herpes Simplex or Zoster and Cytomegalovirus) 3.1.1. HerpesVirusesInfections(HerpesSimplexorZosterandCytomegalovirus) The anti-viral drug acyclovir (ACV 1, Figure 2) has poor oral bioavailability due to the lack of a Theanti-viraldrugacyclovir(ACV1,Figure2)haspoororalbioavailabilityduetothelackofa transport system on the intestinal tract capable of recognizing this drug as a substrate [20]. The transportsystemontheintestinaltractcapableofrecognizingthisdrugasasubstrate[20]. Theattempt attempt to improve this characteristic resulted in the preparation of several prodrugs of 1. Different toimprovethischaracteristicresultedinthepreparationofseveralprodrugsof1. Differentapproaches approaches have been implemented to achieve this goal [21]. Colla et al. and Maudgal et al. used havebeenimplementedtoachievethisgoal[21]. Collaetal. andMaudgaletal. usedaminoacid amino acid moieties to prepare prodrugs of 1 which were potentially useful in the preparation of eye moieties to prepare prodrugs of 1 which were potentially useful in the preparation of eye drop drop formulations [22,23]. A similar approach was used by Beauchamp et al. in order to improve formulations [22,23]. A similar approach was used by Beauchamp et al. in order to improve oral oral administration. With a different purpose, Shao et al. and Yang et al. reported the synthesis, nasal administration. Withadifferentpurpose,Shaoetal. andYangetal. reportedthesynthesis,nasaland and ocular absorption, and metabolism of aliphatic acid ester prodrugs of 1 [24]. Recently, Gao and ocularabsorption,andmetabolismofaliphaticacidesterprodrugsof1[24]. Recently,GaoandMitra Mitra have focused their work on the improvement of membrane transport of prodrugs of 1. Their havefocusedtheirworkontheimprovementofmembranetransportofprodrugsof1. Theirstudies studies resulted in the preparation of a series of N-acyl-ACV, α, β and γ-amino acid esters and resultedinthepreparationofaseriesofN-acyl-ACV,α,βandγ-aminoacidestersanddicarboxylic dicarboxylic acid esters of 1 [21,25]. acidestersof1[21,25]. FFiigguurree 22. .CChheemmicicaal lsstrtruuccttuurreess ooff AACCVV ((11)) aanndd tthhee aammiinnoo aacciidd pprrooddrruugg vvaallaaccyycclloovviirr ((11aa)).. VVaallaaccyycclloovviirr ((11aa, ,FFigiguurere 2)2,) a,na nL-Lv-avlyall yelsteesrt eorf 1o fis1 riaspridaplyid cloyncvoenrtveedr tteod thteo pthareepnat rdernutgd arfutegr aofrtaelr aodrmalinaidsmtraintiiosntr,a itniocnre,aisnincrge atshien gbitohaevabiiloaabvilaitiyla boifl itthyeo pfatrheentp adrreungt bdyru 3g- btoy 53--fotlod 5[-2f0o,l2d6–[2208,]2. 6T–h2i8s] . iTmhpisroivmepmreonvte rmeseunlttsr efrsoumlts thfreo tmranthspeotrrta onfs 1pao brty othfe1 apebpytidthee trpaenpstpiodret PtrEaPnTsp1o, artbuPnEdPaTn1t,lya bexupnrdeasnsetdly ienx tphree sinsetedstiinneth [e20in,2t9e–st3i3n]e. I[t2 i0s, 2im9–p3o3r].taIntti stoim npotoirctea tnhtatto an poetpicteidthe abtoandp eips tnidote rbeoqnudireisdn footr rreeqcougirneidtiofonr orfe cao pgrnoitdiroungo bfya tphreo dpreupgtidbey ttrhaenpspeportitdere [t3r1a]n. sTphoer tsetru[d3y1 ]p. eTrhfoersmtueddy bpye Krfaotrrmageaddbdya Kanadtr acgoa-wddoarkaenrsd wcoit-hw oarmkienros wacitidh admeriinvoataicvieds doefr i1v adteivmeosnosft1radteedm oann sutrpagterdadaen iunp tghrea doecuinlatrh ebioocauvlaairlabbioilaitvya iolaf b1i liotfy aopfp1rooxfimapapterloyx i2m-faotledl yaf2t-efro ltdopaifctaelr atodpmicinalisatrdamtioinni sotrfa Lti-osnerionfe La-snedr inLe-vaanlydl Le-svtearlsy loef st1e r[s17o]f. 1Dr[1u7g] . dDerluivgerdye ltiov edriyffetorednitf feeyreen sttreuycetustrreusc (truerteinsa(,r ecthinoaro,icdh,o vroitirde,ovuist rheuoumsohru amndo rscalnedras)c ilse raa c)hisalalecnhgailnlegn tgaisnkg ftoars kthfeo prhtharempahcaerumtiacacel uintidcuasltirnyd. uAsntroyt.heAr neoxtahmerpleex iasm thpel edirsugth geadnrcuicglogvairn c(GicCloVv;i r2,( GFiCgVur;e2 ,3)F uigsuedre in3) tuhsee dtrienattmheentrte aotfm ceynttoomfecgyatolomveirguasl ov(CirMusV()C MretVin)irteist,i ntihtias,t thparetspernetsse nptosopro oarqauqeuoeuosu ssosloulbuibliitlyit y[3[344].] . CCoonnsseeqquueennttlyly,, iinn tthheessee iinnffeeccttiioonnss, ,ffrreeqquueennt taaddmmininisistrtraatitoionn oof fththee ddrurugg oor rssuurgrgeeryry aarere nneecceessssaaryry, , wwhhiicchh ttuurrnnss ssoo ccrruucciiaall tthhee ddeevveellooppmmeenntt ooff ssttrraatteeggiieess ttoo eennhhaannccee ppeerrmmeeaattiioonn ooff 22 iinnttoo ccoorrnneeaall oorr rreettiinnaall ttiissssuueess.. Molecules2018,23,2318 4of61 Molecules 2018, 23, x FOR PEER REVIEW 4 of 60 FiFgiugurere3 3..G Gaanncciicclloovviirr aanndd iittss ddiieesstteerr pproroddruruggs.s . PepPteipdteidter atnrasnpsoprotretresrs( P(PEEPPTT11a anndd PPEEPPTT22)) aarree wwiiddeellyy uusseedd aass tatargrgetest sini ndrdurgu gdedseigsnig. nIn. fIanctf,a ct, L-vLa-lvinaelineset eerstperro pdrroudgrsuogfs 2oaf n2d a1ndp r1e spernetseedntaendi nante sintitneastlianbasl oarbbsaonrcbeanecneh aennhceamnceenmteansta arse sau rletsouflPt EoPf T1 medPEiaPteTd1 tmraendsiaptoerdt t[r3a4n].spTohrits [p3e4p]. tTidheist rpaenpstpidoer tterranisspeoxrptreers isse edxipnrethsseecdo irnn tehael ecporitnheealli uepmit,haenlidumdi,p aenpdti de derdivipaetipvteidseo dfe1rhivaavtievsehs oowf 1n haavbee tstheorwpenr am beeatttieorn peinrmtheiastitoisns uine t[h2i9s ,t3is4s]u.eT h[2e9,p3h4y].s Tichoec phheymsiiccoaclhpermopicearlt ies ofdpir-oepsteerrtiepsr oodf drui-gesstoerf p2r(oFdirguugrse o3f) 2w (Ferigeusrteu 3d)i ewderbey sPtuadteield’s bryes Peaatreclh’s greroseuaprc,ha ngdromupo, satnodf mthoestt eosft ed comthpeo utensdtesds hcoomwpedougnodosd sahfofiwneitdy tgoooPdE PaTff1i.niMtyo rteoo vPeErP,Ts1o.l uMbiolirteyovaenrd, lsioploupbihliitlyic iatyndp rloippoeprthiielsicmitya ke thepdreorpiverattiievse ms3aak,e3 tbhea ndder3ivcagtiovoeds c3aan, d3bid aanteds 3foc rgdoroudg cdaneldivideartyes[ 3f4o]r. dTrhuegp deepltivideerya p[3p4r]o. aTchhe aplleopwtiedde an approach allowed an improvement in the prodrugs lipophilicity without compromising their improvementintheprodrugslipophilicitywithoutcompromisingtheirsolubility. Infact,3bshoweda solubility. In fact, 3b showed a 42 times higher solubility compared to the parent drug. It is also 42timeshighersolubilitycomparedtotheparentdrug. Itisalsointerestingthatthedi-esterprodrugs interesting that the di-ester prodrugs did not show a greater selectivity to the virus but were found didnotshowagreaterselectivitytothevirusbutwerefoundtobemorepotent. Thisfactmaybe to be more potent. This fact may be explained by the higher binding affinity of these derivatives for explainedbythehigherbindingaffinityofthesederivativesforthepeptidetransporters[34]. the peptide transporters [34]. Theproblemsassociatedwithantiviraldrugsareofgreatconcern. Thelargenumberofherpetic The problems associated with antiviral drugs are of great concern. The large number of herpetic virus widespread in nature is responsible for many viral diseases affecting humans. Progress has virus widespread in nature is responsible for many viral diseases affecting humans. Progress has been made on the improvement of 1-based therapies. From a clinical point of view, this research been made on the improvement of 1-based therapies. From a clinical point of view, this research has, has, sofar, culminatedintheL-valylesterprodrug1a. Atpresent, therearefewstudiesrelatedto so far, culminated in the L-valyl ester prodrug 1a. At present, there are few studies related to dipdeippteipdteiddee drievraivtiavtievseso fo1f .1.S Saanntotoss eett aall.. eevvaalluuaatteedd tthhee cchheemmiciacla lstsatbaibliitlyit, ys,osloulbuilbitiyli,t ya,nadn adnatinvtirivali ral actiavcittiyvitoyf odfi pdeippetipdtiedde edreivriavtaitviveseso off1 1.. TThhee pprriinncciippaall uussee ooff tthhee ddipipeepptitdide-eb-absaesde dprpordordurgu agpapproparcoha ch occoucrcsuirns dinr udgrusgws iwthithan ana laclochoohollf ufunncctitoionnaall ggrroouupp [[3355]].. HHoowweevveer,r ,iti tisi simimpporotratnatn ttot uonudnedrsetrasntdan hdowho w thisthaips paproparcohacwh owrokrskfso froor tohtehrerd druruggssw witihthd diiffffeerreenntt ffuunnccttiioonnaall ggrroouupps.s .SaSnatnotso este atl.a la.lsaol ssotusdtuieddi ethdet he effeecftfeocft foufn fcutniocntiaolngalr oguropusp,as,s atsh ethteh tihoiloaln adnda maminieneg rgoruoupps,s,o onnt htheec chheemmiiccaall aanndd eennzzyymmaattiicc rreeaaccttiivviittyy of theorfe stuhleti nrgespurlotidnrgu gp[r3o5d]r.uTgh e[3P5h].e -TGhley dPihpee-pGtliyd eddiepreipvtaitdiev esdeorfiv1a,t1ivbe,sp roimf a1q, u1inbe, (p4r)i,mpaaqraucientea m(4o)l, (5) andpaarzaidceottahmyoml i(d5)i naend(6 a)zaidnodthcaypmtiodpinriel (m6)e athnydl ceasptteorp(r7i)l wmeetrheyelv easltuera t(e7d) w(Feirgeu ervea4lu).ated (Figure 4). Kinetics studies at pH 7.4, showed that the derivative 1b is degraded via two parallel pathways KineticsstudiesatpH7.4,showedthatthederivative1bisdegradedviatwoparallelpathways (Scheme 1). The major degradation pathway, (a), results in the formation of a diketopiperazine, (Scheme1).Themajordegradationpathway,(a),resultsintheformationofadiketopiperazine,whichis which is consistent with the intramolecular cyclization expected for dipeptide alkyl and aryl esters consistentwiththeintramolecularcyclizationexpectedfordipeptidealkylandarylesters[36]. [36]. However,high-performanceliquidchromatography(HPLC)analysisshowedthatthedipeptide However, high-performance liquid chromatography (HPLC) analysis showed that the mayalsodegradethroughdirectesterhydrolysis-pathway(b). Moreover,ithasbeenestablishedthat dipeptide may also degrade through direct ester hydrolysis-pathway (b). Moreover, it has been thedrug’sleavinggroupinfluencestheratiobetweenthetwodifferentpathways.Infact,degradationof established that the drug’s leaving group influences the ratio between the two different pathways. In derivatives5and7resultedinthequantitativeformationofthediketopiperazineandparentdrug. fact, degradation of derivatives 5 and 7 resulted in the quantitative formation of the On the other hand, derivative 6 indicates that direct hydrolysis was also operating on the drug diketopiperazine and parent drug. On the other hand, derivative 6 indicates that direct hydrolysis relewaases palastoh wopaeyr,astuinggg eosnt inthget hdarutgle srselbeuaslek ypaaltchowhaoyl,s saureggmesotrinegs uthscaet plteisbsl ebtuolkeys taelrcohhyodlrso layrsei sm[3o5re,3 7]. Whseunscsetupdtibylien gtot heesitredr ehgyrdadroaltyiosins i[n35h,3u7m].a Wnphleans mstau,dayllindge rtihveaitri vdeesgrrealdeaatsieodn tihne hcourmreasnp opnladsemnat,p aalrle nt drudgeraivnadtivthese rdeilpeaespetdid tehe( Pchorer-eGsplyo)nmdeonite tpyarwenitt hdrtuhge aenxdce tphteio dnipoefptdiderei v(Pahtiev-eGl4y)w mhoiciehtyd wegitrha dthatei on resuexltceedptiinonth oef fdoerrmivaattiiovne o4f wthheiccho rdreegsrpaodnadtieonnt raemsuilnteoda icnid thaem fiodrem(aGtiloyn-P oQf )thaes caorreraescptioonndienntte rammeindoia te. Botahcirdes uamltsidaer e(Gcolny-sPisQte) natsw ai thretahcetieonnz iynmteartmiceddeiagtrea. dBaottiohn roesfudlitps eaprtei dceopnsriosdternutg swvitiha sttheep weniszeymreamtiocv al ofadmeginraodaactiiodnr eosf iddiupeespatindde pdrioredcrtucglse avviaa gsteepowftihsee rdeimpeopvtaild oef caamrriineor. aDciedr irveasitdivueess danegdr daidraectito cnlehaavsagbee en shoowf nthteo dbipeeipntfliduee ncacrerdierb.y Dtehreivnaatitvuerse doefgtrhaedadtiroung ’hsalse baeveinn gshgorwounp toa nbde itnhfelureantceeadt bwyh tihceh ntahteurder uofg is the drug’s leaving group and the rate at which the drug is released. This implies that this approach is released. This implies that this approach is chemical and enzymatically more adequate for drugs containingalcoholoraminefunctionalgroups[35]. MMooleleccuuleless 2 2001188, ,2 233, ,x x F FOORR P PEEEERR R REEVVIIEEWW 55 ooff 6600 cchheemmiiccaall aanndd eennzzyymmaattiiccaallllyy mmoorree aaddeeqquuaattee ffoorr ddrruuggss ccoonnttaaiinniinngg aallccoohhooll oorr aammiinnee ffuunnccttiioonnaall ggrroouuppss Molecules2018,23,2318 5of61 [[3355]].. FFiFgiigugurureree 4 4.4. .T TThhheee P PPhhheee--G-GGllylyy dddeeerrriiivvvaaatttiiivvveeesss ooofff 111aaa,, , ppprrriiimmmaaaqqquuuiininneee ((4(44)),) ,, pppaaarraraaccecetetatamammoolol l((5(5)5), ,) ,aazaziziddiodotothhtyhymymmiiddiidinneien (e(66)() 6 a)annaddn d ccacapaptpottopopprrirliilml m meeteththhyyylll ee esststeteerrr (( 7(77)).). .TT Thhheee p ppaaarrreeennnttt d ddrrruuugggsss a aarrreee h hhiiiggghhhllliiiggghhhttteeeddd i ininn g ggrrreeeeeennn. .. SSScchchheeemmmeee 11 1.. .GG Geeennneeerrraaalll d ddeeegggrrraaadddaaatttiiiooonnn p ppaaattthhhwwwaaayyysss o oofff d ddiipippeeepppttitididdeee p pprroroodddrruruugggss si innin h huhumummaanan np plplaalsasmmsmaa [a [33[553]]5. .] . InIInng gegneenenreearrlaa,llt,, h tethhesey snsyytnhntethsheiesssioissf opofrf o ppdrrroouddgrrsuugtgoss i tmtoo p iirmmopvperroobvvieoe a bvbiaiooialaavvbaaiiillliaatbybiililisittyrye liiass t erredellataotteetddh e ttoao f tfithhneei t ayafffffioinnriitptyye pffotoirdr e trppaeneppstptiidoderet tetrrrasan.nsAspplotohrrtoteeurrsgs.h. AAhlltithghohouuagfgfihhn hhiitigyghhd aoafefffsiinnniitotyyt nddeooceeesss nsnaoortti lnnyeecicmeesspssalayrriitllyhy e iimtmrpapnllysy p tthoheret ttorrafantnhsspepoodrrrtt u oogff , tiththeie s dderrsuusgeg,n, ititit a l toiiss b eeisossaseevnnattiiialaall b titoloi tbybiiooiamavvpaairilolaavbbeiilmliittyey n iitmm. ppTrrohovevereemmfoeernnett,.. bTTohhteherreebffoioorreae,v, abbioloatthbh i blbiitioyoaavavnaaidillaabpbihilliaittyrym aaanncddo k ppihnhaeartrmimcaasctcouokdkiinineesettiiacc r e nsestetuudddeiideesst oaardreee tnenreemeeddieneded attoloe adddeetpteerrrommdirinnueeg .aaA lcleecaaoddr d pipnrrogodldyrr,uuTggh.. o AmAccscceoonrrdeditinnaggll.lyyc,, o TmThhpooammressdeentnh eeettb iaaoll.a. vccaooimlmapbpaialrireteydd i ntthhreae t s abnbidiooatavhvaeaiiltlaraabbniillsiitptyyo irintn i rnraatCtss a aaCnndod- 2tthhceee tltlrrsaanonsfspppoorrorttd iirnnu CgCsaaCoCofo-1-22 a cnceedllllsss h oooff w ppreroodddtrrhuuaggtss t ohofef 1h1 aiagnnhdd a ssfhfihonowwiteyeddo tfthhGaatlt u tt-hhAee C hhViigg-hSh a r parafofffdiinnriuittygy ofooff r GGPlEluuP--ATAC1CViVn--SSCaarar Cpporro-o2ddrcrueuglgl s ffoworra PsPEnEPoPTtT1s1 y ininno CnCyaaCmCooo--u22 s ccoeefllllsps rwowdaasrs u ngnootttr assnyysnnloooncnyaymtmiooonuusbs yooftf h pperropodedrpruutgigd e trttraranansnspsllooocrcataettirioo[nn3 8 bb]y.y Otthhnee tphpeeepiprttiidedxeep tetrrarainmnsspeponortrtste,erri n [[3t3r88a]].c. e OOllnun l tathhreeaiircr ceeuxxpmpeeurrilimamteieonnnttss,o, ifinnGttrrlauacc-eAellllCuulVlaa-rrS aaacrcccwuumamsuulslatatutiiodonine dooff i n cGoGmlluup--AaArCCisVVo-n-SSaawrr iwwthaass1 ssattunudddiie1edda , iinan s ccoaommmppeaaarrisisusoornne m wweiitnthht 11o afan1nddi n 11aac,, e aalsls eaax mtmreaeacastsusu,rreaemnmdeennttht oeofyf 11o ibinns eccerevlllle edexxtttrhraaacctttssn,, eaainntdhd e r th eprodrugnor1wasdetectedwhenapplyingGlu-ACV-SAR,indicatingthatGly-ACV-Sarisnot translocated by PEPT1 [38]. The high affinity of the prodrug for the peptide transporter did not Molecules 2018, 23, x FOR PEER REVIEW 6 of 60 Molecules2018,23,2318 6of61 they observed that neither the prodrug nor 1 was detected when applying Glu-ACV-SAR, indicating that Gly-ACV-Sar is not translocated by PEPT1 [38]. The high affinity of the prodrug for the peptide trreasnusltpionrtaerh idgihde rnboito arevsauillat biinli tay ohfigthheerp barioenavtadirluabgi.liTtyh eoof ptphoes iptearwenats devrueng.o Tbhseer voepdpfoosritteh ewparso devrueng 1oab.sTerhveesde sftourd itehsea rpervoedrryuigm p1oa.r taTnhteisne casstuedoifeds ruarges uvseerdy inimimpomrutannotc oinm pcraosme isoefd dcraungcse rupsaetdie nitns isminmceutnhoecosimdepreoffmecistsedo fccahnecmero pthaetireanptys csainncien flthuee nscideed eruffgecatbs soofr pcthioemnoanthdersaopdyr ucagns/ ipnrfoludernucges dwriuthg ambosroerpretiloianb laenadb ssoor pdtiroungsa/rperoofdpruagrtsi cuwliatrh vmaluoree[ 3r9e]l.iaDbilfef earebnsotrsptutidoine sairned iocfa tpedartthicautlbairo avvaaluilea b[i3li9t]y. Dofif1feirsenetq usatludafiteesr ainddmiciantiesdtr attihoant obfio1aavianilaimbimlituyn oocfo m1 pirso meqisueadl caafntecer rapdamtieinnitsstraantidonin ohfe a1ltah iienr vimolmunutneoecrosm[3p9,r4o0m].ised cancer patients and in healthier volunteers [39,40]. HHaann eett aall.. wweenntt ffuurrtthheerr oonn tthhee ssttuuddyy ooff aammiinnoo aacciidd pprrooddrruuggss.. TThheeyy ssttuuddiieedd tthhee ppeerrmmeeaabbiilliittyy aanndd hhyyddrroollyyssiiss ooff aammiinnoo aacciidd eesstteerr pprrooddrruuggss iinn CCaaCCoo--22//hhPPEEPPTT11 cceellllss,, nnoott oonnllyy ffoorr ddeerriivvaattiivveess ooff 11 bbuutt aallssoo ttoo aammiinnoo aacciidd ddeerriivvaattiivveess ooff aazziiddootthhyymmiiddiinnee [[3311,,3333]].. AAggaaiinn,, tthhee LL--vvaallyyll eesstteerr ooff aazziiddootthhyymmiiddiinnee aanndd 11 wweerree tthhee ddeerriivvaattiivveess wwiitthh hhiigghheerr mmeemmbbrraannee ppeerrmmeeaabbiilliittiieess.. AAnn iinntteerreessttiinngg ffaacctt iiss tthhaatt tthhee LL--ccoonnfifigguurraattiioonn oofft htehea maminionaoc iadciids miso rmeosruei tasbulietafbolret hfoerp trhoed rpurgosdtrruatge gsyt.raCteogmyp. aCrionmgpLa-rainndg DL--v aanlydl Des-tvearldyel reivsatetriv deseroifv1a,titvheesL o-vf a1ly, lthper eLse-vnatslytlh eprheisgehnetrs ptehrem heiagbhileitry paenrdmfeaasbteilritcyo navnedr sfiaosnterre lcaotinvveetrositohne prealraetnivted trou gth[e3 3p,a3r4e]n.t drug [33,34]. AAnnootthheerr iissssuuee wwaass aapppprrooaacchheedd bbyy tthhee HHiillffiinnggeerr rreesseeaarrcchh ggrroouupp:: tthheeyy uusseedd tthhee pprrooddrruugg ssttrraatteeggyy aass aa pprrootteeccttiioonnf frroommm meetatabboolilcicc ocnovnevresrisoinonu suinsignvgi dvaidraabrainbein(e8 ,(F8i, gFuigreu5re) a5s) aasd rau dgraungd adnidff edriefnfetrDen-ta nDd- Lan-adm Li-naomaicniod aecsitder esswteerrse wsyernet hseysnitzheedsiaznedd eavnadl ueavtaeldua(Fteigdu (rFeig5u)r[e4 15]). [D41a]t.a Doabttaa ionbetdaidneemd odnemstroantesttrhaatet tshuabts tsiutubtsitointuotfio5n(cid:48)- OofH 5g′-rOoHup grreosuuplt sriensuthltese innh tahnec eednhuapntackede oufpptraokder uogf sparnoddrpuagrse natnddr upga,raenndt dprroutge,c tainodn pofrothteecptiroond oruf gthfer opmrodderuamg finroamtio dnebaemfoinreathioynd rboelfyosries thoy8d.rolysis to 8. FFiigguurree 55.. CChheemmiiccaall ssttrruuccttuurreess ooff 88 aanndd aa ssyynntthheessiizzeedd aammiinnoo aacciidd eesstteerr.. Penciclovir(9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine,10,Figure6)isapotentandhighly Penciclovir (9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine, 10, Figure 6) is a potent and selective inhibitor of the replication of herpes virus, including herpes simplex virus type 1 and 2 highly selective inhibitor of the replication of herpes virus, including herpes simplex virus type 1 (HSV-1andHSV-2), varicella-zostervirus(VZV)andEpstein-Barrvirus(EBV)bothincellcultures and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV) and Epstein-Barr virus (EBV) both in cell and in animals [42]. The main advantage of 10 over 1 is that its antiviral activity in cell culture cultures and in animals [42]. The main advantage of 10 over 1 is that its antiviral activity in cell is more persistent. However, like other acyclic nucleoside analogs (described above), 10 has poor culture is more persistent. However, like other acyclic nucleoside analogs (described above), 10 has oral bioavailability [43]. In order to overcome this, Kim et al. synthesized the O-acyl-O-amino poor oral bioavailability [43]. In order to overcome this, Kim et al. synthesized the O-acyl-O-amino acidestersaspotentialprodrugsofpenciclovir. Thetwonaturallyoccurringbranchedchainamino acid esters as potential prodrugs of penciclovir. The two naturally occurring branched chain amino acyl groups, L-valyl and L-isoleucyl, were selected for the protection of one of the two hydroxyl acyl groups, L-valyl and L-isoleucyl, were selected for the protection of one of the two hydroxyl groups. Aspreviouslyshowntheyhaveanoptimalcombinationofthesidechainlengthanddegree groups. As previously shown they have an optimal combination of the side chain length and degree of branching for the oral bioavailability and chemical stability in the amino acid ester prodrug of branching for the oral bioavailability and chemical stability in the amino acid ester prodrug acyclovir [44,45]. All amino acid ester prodrugs 11a–d, 12a–b (Figure 6) were highly soluble in acyclovir [44,45]. All amino acid ester prodrugs 11a–d, 12a–b (Figure 6) were highly soluble in water, water,showingaremarkableincreaseinaqueoussolubility,comparedwiththeparentdrug. showing a remarkable increase in aqueous solubility, compared with the parent drug. The invitro antiviral activity of the prodrugs synthesized against HSV-1 in Vero cells were The in vitro antiviral activity of the prodrugs synthesized against HSV-1 in Vero cells were compared with thereof 10. Compounds 11a, 11f, and 11d showed no significant antiviral activity compared with thereof 10. Compounds 11a, 11f, and 11d showed no significant antiviral activity at a at a concentration of 100 µM. Although compounds 11c, 11g, 12a, 12b were active against HSV-1, concentration of 100 μM. Although compounds 11c, 11g, 12a, 12b were active against HSV-1, their their antiviral activity was approximately 3- to 5-fold lower than 10. Kim et al. assessed the antiviral activity was approximately 3- to 5-fold lower than 10. Kim et al. assessed the bioavailability bioavailabilityofprodrugsof10afterasingleoraladministrationthroughdeterminationofthetotal of prodrugs of 10 after a single oral administration through determination of the total amount of 10 amountof10recoveredintheurineover48h. Oftheprodrugstested,11apresentabioavailability recovered in the urine over 48 h. Of the prodrugs tested, 11a present a bioavailability approximately approximately 4-fold higher comparatively to that of 10 [45]. The introduction of amino acid 4-fold higher comparatively to that of 10 [45]. The introduction of amino acid pro-moieties not only pro-moietiesnotonlyincreaseantiviralactivity,butalsoimproveprodrugsbioavailability,comparedto increase antiviral activity, but also improve prodrugs bioavailability, compared to the parent drug. theparentdrug. Molecules2018,23,2318 7of61 Molecules 2018, 23, x FOR PEER REVIEW 7 of 60 FigureF6i.gSurteru 6c. tSutrruecstuorfesp oefn pceinccliocvloivrir( 1(100)) aanndd iittss aamminion aociadc eidsteers ptreordprurogsd 1r1u agnsd1 112.a nd12. TheantTivhier aanltaivgireanl tag2e-nbtr 2o-mbroom-5o,-65-,d6-idcihchlolorroo--11--((ββ-D-D-ri-broibfuorfaunroasynlo)bseynlz)ibmeindazziomlei d(1a3z, Foilgeu(r1e 37,) Fisi ag ure7)is member of a novel class of benzimidazole ribonucleosides that are potent inhibitors of human a member of a novel class of benzimidazole ribonucleosides that are potent inhibitors of human cytomegalovirus (HCMV) replication, with lower cellular toxicity at concentrations inhibiting viral cytomegalovirus(HCMV)replication,withlowercellulartoxicityatconcentrationsinhibitingviral growth [46]. The antiviral mechanism of action of 13 is unique and involves inhibition of viral DNA growth [p4r6o]c.essTinhge vairnutsi vaisrsaelmmblye c[h4a7]n. isLmike ocferatacitnio onthoerf 1n3ucilesousidneiq augeenatsn, d13i nevxhoilbvitess minohdeibsti toioranl of viral DNAprobicoeasvsaiinlagbivlitiyr udsuea tsos eexmtebnlsyive[4 f7ir]s.t pLaiskse efcfeecrtt,a pionssoibthlye rrelnatuecdl teoo istsi dgelycaogseidnet bso,n1d3 [e4x8]h. iSbointgs emt aol.d estoral bioavailasbyniltihtyesidzuede atmoienxot aecnids ievsteerfi prrsotdpruagsss oeff f1e3c (t1,4pa–ols asnidb l1y5)r ienl aotredder ttoo (iat)s ignvlyesctoigsaidtee thbeoirn adffi[n4i8ty] .foSro ngetal. and transport by hPEPT1 and (b) determine if the promoiety affords stabilization of glycoside bond. synthesizedaminoacidesterprodrugsof13(14a–land15)inorderto(a)investigatetheiraffinityfor For the synthesis of novel prodrugs, the amino acids were used as pro-moieties including aliphatic andtransportbyhPEPT1and(b)determineifthepromoietyaffordsstabilizationofglycosidebond. amino acids and its analogs, secondary amino acids and polar amino acids (Figure 7) [48]. ForthesynthTehsei psroodfrnuogvs eolf 1p3r woderreu egvsa,luthateeda fmori nthoeiar caifdfinsitwy eforre huPsEePdT1a bsyp ervoa-lmuaotioient ioef sthienirc laubdiliitnyg toa liphatic aminoaciindhsibaitn [d3Hi]tgslyacnyalslaorgcoss,isneec (o[3nHd]Garlyy-Saamr) iunpotaakcei dins HaneLda pcoelllas roavemreixnporeascsiindgs h(FPEigPuTr1e tr7a)n[s4p8o]r.ter. TheWpirtoh derxucegpstioofn 1f3orw 14ebre, 1e4vka, l1u4al taenddf o14rj,t haelli rpraofdfirnuigtsy efxohribhitPedE PsiTg1nibficyanetvlya lhuiagthieorn afofifntihtye ifrora bilityto inhibit[3hHPE]gPTly1c ythlasna rcthoes ipnaere(n[3t Hd]ruGgl.y -ASdadri)tiuonpatlalyk, ethineseH aeuLtahocres llaslsoov oebrseexrpverde ssthinatg Lh-aPmEiPnoT 1actirdasn sporter. exhibited 1.3- to 2-fold higher affinity for hPEPT1 than their counterparts [48]. It was hypothesized Withexceptionfor14b,14k,14land14j,allprodrugsexhibitedsignificantlyhigheraffinityforhPEPT1 that amino acid ester prodrugs can enhance both in vitro potency and systemic exposure of 13 thanthetphraoruegnht devrausgio.nA odf ditist iomnetaalblyo,litzhinegs eenazuytmheosr. sTaol stoesot bthsiesr vhyepdotthheastisL, -tahme ainutohoarcsi dtessteexdh eibigihtet d1.3-to 2-foldhidgihffeerreanft fianmiitnyo faocridh pProEdPruTg1s tohf a1n3 (t1h4ea,i r14cbo,u 1n4ct,e 1r4pi,a 1r4tjs, 1[44k8,] .14Ilt awnda s14hmy)p foort hNe-sgilyzceodsidthica btoanmd inoacid esterprosdtarbuiglitsy,c easnteer nbohnadn scteabbiloittyh, Cinacvo-i2tr coelpl uoptetankcey, aanntidvirsayl satcetimvitiyc ienx HpCoMsuVr-einofefc1te3dt cherllo suygstheme vaandsi onofits cytotoxicity [49]. The prodrugs were resistant to metabolism by metabolizing enzymes, and ester metabolizingenzymes. Totestthishypothesis,theauthorstestedeightdifferentaminoacidprodrugs bond cleavage was rate-limiting in the metabolic formation of the prodrug. of 13 (14a, 14b, 14c, 14i, 14j, 14k, 14l and 14m) for N-glycosidic bond stability, ester bond stability, Although 13 was metabolized by the DNA repair enzymes hOOG1 and mMPG, their amino Caco-2cealclidu pesttaekr ep,roadnrtuivgsir waleraec tniovti tay suinbsHtraCteM oVf -tihnefsee cetnezdymceelsl, swyhsitcehm suagngdesct ythtoatt opxroicdirtuyg[s4 o9f] 1.3T mheayp rodrugs wereresiesvtaadnet mtoetmabeotliazbinogl iesnmzymbyesm enectoaubnotelirzeidn ign feinrszt ypmasse os,rgaannds aensdt eorthbeor ntidssuceles.a Tvhaugse, mwetaasboralistem- loimf itingin 13 could be controlled by the selection of the promoiety. The observation that high ester bond themetabolicformationoftheprodrug. stability conferred greater N-glycosidic bond stability to prodrugs suggested that prodrug ester Although13wasmetabolizedbytheDNArepairenzymeshOOG1andmMPG,theiraminoacid bond cleavage must take place before N-glycosidic bond cleavage occurs. From all prodrugs tested, esterprodrugswerenotasubstrateoftheseenzymes,whichsuggestthatprodrugsof13mayevade 14i was 3-fold more selective than the parent drug for inhibition of HCMV replication. metabolizingenzymesencounteredinfirstpassorgansandothertissues. Thus, metabolismof13 couldbecontrolledbytheselectionofthepromoiety. Theobservationthathighesterbondstability conferredgreaterN-glycosidicbondstabilitytoprodrugssuggestedthatprodrugesterbondcleavage musttakeplacebeforeN-glycosidicbondcleavageoccurs. Fromallprodrugstested,14iwas3-fold moreselectivethantheparentdrugforinhibitionofHCMVreplication. Duetoitspotency,selectiveantiviralactivity,stabilityprofileandgreaterhalf-life(5-foldthan13), 14iwasconsideredanexcellentcandidateforinvivoassessmentandpharmacokineticcomparison withtheparentdrug. Theabilitytoevadeofmetabolizingenzymesinvitrooftheaminoacidester prodrugof13,mightprovideamodularapproachfortranslatingthisinvitrostabilityintoenhanced Molecules2018,23,2318 8of61 invivodeliveryof13[49]. Unfortunately,untilpresent,therearenoinvivostudiesthatcorroborate thishypothesis. Cidofovir(16,Figure8)isabroad-spectrumantiviralagentusedtotreatAcquired Immunodeficiency Syndrome (AIDS)-relative CMV retinitis, and a promising drug active against variolaandotherorthopoxviruses. However,itsloworalbioavailabilityledtothedevelopmentof novelanalogsinordertoimprovetheirtransportproperties[50]. MacKennaetal. usedaprodrug strategytargetingthepeptidetransporter-1(hPEPT1)usingcycliccidofovir(17,Figure8),whichisa prodrugof16. Afterconversionof17incellsbycyclicAMPphosphodiesterase,theirproductswere used to prepare dipeptides derivatives. The results obtained for derivatives of 17 were compared withthosepreviouslyobtainedfordipeptidederivativesof16. Theinvitrotransportevaluationof the18a–cshowedanenhancementinpermeabilitycomparedto16and17. Therefore,thederivatives of the valine amino acid were the best of the tested prodrugs [50] suggesting that this amino acid improvesaffinitytohPEPT1. Molecules 2018, 23, x FOR PEER REVIEW 8 of 60 Cl N Br Cl N HO O OH OH 13 Cl N Cl N Br Br Cl N Cl N O O R O O O O NH2 NH OH OH OH OH 14 15 14a R-Val 14gR-p-methoxyPhe 14b R-D-Val 14hR-p-ethoxyPhe 14c R-Ile 14i R-Asp 14d R-Phe 14j R-D-Asp 14e R-D-Phe 14kR-Pro 14f R-p-ChloroPhe 14l R-Lys 14mR-Ile Molecules 2018, 23, x FFOigRu PrEeEFRi7g R.uErSVet Ir7Eu.W Sct tr uucrteusreosf onf noovveell aammininoo acaidc iedsteers pterordprurog dorf u13g. of13. 9 of 60 Due to its potency, selective antiviral activity, stability profile and greater half-life (5-fold than 13), 14i was considered an excellent candidate for in vivo assessment and pharmacokinetic comparison with the parent drug. The ability to evade of metabolizing enzymes in vitro of the amino acid ester prodrug of 13, might provide a modular approach for translating this in vitro stability into enhanced in vivo delivery of 13 [49]. Unfortunately, until present, there are no in vivo studies that corroborate this hypothesis. Cidofovir (16, Figure 8) is a broad-spectrum antiviral agent used to treat Acquired Immunodeficiency Syndrome (AIDS)-relative CMV retinitis, and a promising drug active against variola and other orthopoxviruses. However, its low oral bioavailability led to the development of novel analogs in order to improve their transport properties [50]. MacKenna et al. used a prodrug strategy targeting the peptide transporter-1 (hPEPT1) using cyclic cidofovir (17, Figure 8), which is a prodrug of 16. After conversion of 17 in cells by cyclic AMP phosphodiesterase, their products were used to prepare dipeptides derivatives. The results obtained for derivatives of 17 were compared with those previously obtained for dipeptide derivatives of 16. The in vitro transport evaluation of the 18a–c showed an enhancement in permeability compared to 16 and 17. Therefore, the derivatives of the valine amino acid were the best of the tested prodrugs [50] suggesting that this amino acid improves affinity to hPEPT1. Figure8.FSigtruurec 8tu. Srtersucotufrceisd oof fcoidvoifrov(1ir6 ()1,6c),i ccilcolocciiddooffoovviri r(1(71) 7a)nda nitds diitpsedptiipdee pdetirdiveatdiveersi 1v8aat–icv. es18a–c. 3.1.2. Human Immunodeficiency Virus (HIV) Nucleoside analogs continue to play an important role as antiviral agents [51]. Nonetheless, the evaluation of several nucleoside analogues as antiretroviral chemotherapeutic agents has revealed potential drug delivery problems related to its rapid metabolism and low availability [52]. Zidovudine (AZT, 3′-azido-3′-deoxythymidide, 19, Figure 9) was the first 2′-3′-dideoxy-nucleoside (ddN) approved by US Food and Drug Administration (FDA) for treatment of patients suffering from AIDS [53,54]. The mechanism of action of 19 involves its conversion into the corresponding 5′-O-triphosphate, which inhibits the replication of the virus by competitive inhibition of the viral reverse transcriptase (RT) and by incorporation and subsequent chain termination of the growing viral strand [55]. Administration of 19 is frequently associated with a significant dose-dependent toxicity, additionally to its short half-time in human plasma which requires frequent administration to maintain therapeutic drug concentrations [56,57]. Efforts have continuously been made to improve some therapeutic characteristics of 19, most of them focused on prodrug design. Turk et al. synthesized six novel amino acid ester prodrugs of 19 (20a–f and 21, Figure 9) using 5′-O-ester substitution strategies and evaluated their anti-HIV activity and cytotoxicity on different cell cultures [58]. Figure 9. Chemical structures of 19 and its amino acid ester prodrug. Molecules 2018, 23, x FOR PEER REVIEW 9 of 60 Figure 8. Structures of cidofovir (16), ciclocidofovir (17) and its dipeptide derivatives 18a–c. 3.1.2. Human Immunodeficiency Virus (HIV) NuMcolleecousleisd20e1 8a,2n3a,2l3o1g8s continue to play an important role as antiviral agents [51]. No9noeft6h1eless, the evaluation of several nucleoside analogues as antiretroviral chemotherapeutic agents has revealed potential drug delivery problems related to its rapid metabolism and low availability [52]. 3.1.2. HumanImmunodeficiencyVirus(HIV) Zidovudine (AZT, 3′-azido-3′-deoxythymidide, 19, Figure 9) was the first Nucleoside analogs continue to play an important role as antiviral agents [51]. Nonetheless, 2′-3′-dideoxy-nucleoside (ddN) approved by US Food and Drug Administration (FDA) for treatment theevaluationofseveralnucleosideanaloguesasantiretroviralchemotherapeuticagentshasrevealed of patiepnottse nstuiaflfedrriunggd efrliovmery AprIoDbSle m[5s3r,e5l4at]e. dTthoeit smraepcihdamneistambo olifs macatniodnlo wof a1v9a ilianbviloitlyv[e5s2 ]i.ts conversion into the correspZoinddovinugdi n5e′-(AOZ-tTr,i3p(cid:48)-hazoisdpo-h3a(cid:48)-tdee,o xwythhiycmhi diindhe,i1b9i,tFs igtuhree 9r)ewpalsicthaetifiornst 2o(cid:48)-f3 (cid:48)t-dhied evoxiryu-nsu cbleyo scidoempetitive (ddN) approved by US Food and Drug Administration (FDA) for treatment of patients suffering inhibition of the viral reverse transcriptase (RT) and by incorporation and subsequent chain from AIDS [53,54]. The mechanism of action of 19 involves its conversion into the corresponding termination of the growing viral strand [55]. Administration of 19 is frequently associated with a 5(cid:48)-O-triphosphate,whichinhibitsthereplicationofthevirusbycompetitiveinhibitionoftheviral significant dose-dependent toxicity, additionally to its short half-time in human plasma which reversetranscriptase(RT)andbyincorporationandsubsequentchainterminationofthegrowingviral requiress trfarneqdu[5e5n].t Aaddmmininisitsratrtiaotnioonf 1t9oi smfreaqinuetanitnly tahsseorcaiapteedutwicit hdarusigg nciofincacnetndtorsaet-idoenpse n[d5e6n,5t7to]x. iEciftyfo, rts have continuaodudsiltiyo nbaelleynt omitasdsheo rttoh iamlf-ptirmoevien hsoummaen tphlaesrmapaewuhtiicch crehqauriarecstferreiqsuteicnst aodfm 1i9n,i smtraotisotn otfo tmhaeimnta finocused on therapeutic drug concentrations [56,57]. Efforts have continuously been made to improve some prodrug design. Turk et al. synthesized six novel amino acid ester prodrugs of 19 (20a–f and 21, therapeuticcharacteristicsof19,mostofthemfocusedonprodrugdesign. Turketal. synthesizedsix Figure 9) using 5′-O-ester substitution strategies and evaluated their anti-HIV activity and novelaminoacidesterprodrugsof19(20a–fand21,Figure9)using5(cid:48)-O-estersubstitutionstrategies cytotoxicity on different cell cultures [58]. andevaluatedtheiranti-HIVactivityandcytotoxicityondifferentcellcultures[58]. Figure9.Chemicalstructuresof19anditsaminoacidesterprodrug. Figure 9. Chemical structures of 19 and its amino acid ester prodrug. Cytotoxicityandinhibitionassayswereperformedintwodifferentcelltypes: peripheralblood mononuclearcells(PBMCs)andMT2. Duringevaluationofcellviability,thecompoundsalsoshowed adose-dependentcytotoxicity. Althoughparametersobtainedwhenusingdifferentmethodologies cannotbedirectlycompared,theircorrelationwassignificant. Inoneorbothcellculturesused,allthe prodrugssynthesizedhaveasimilarorhigherselectivityindexthan19itself,withtheexceptionof 20fwhichshowednoanti-HIVactivityand20dthatshowedadiminishedcapacitytoinhibitHIV replication. Thesefactscouldbedirectlyrelatedtothehighacidityoftheiraminoacidsorhigher volume. However, neither acidity level nor volume explains the activity variation showed by the restofthecompounds. Authorshypothesizedthatitcouldbeduetodifferenttransportmechanisms dependingeitherontheaminoacidsinvolved(forspecialtransport)orlipophilicityofthesubstituent thatmightbeimplicatedineachcase. 20aand20cdemonstratedanimprovedabilitytoinhibitHIV replicationonbothcelltypesstudied. Nonetheless,usingaminoacidstodesign19derivativesresultin increasedactivityofparentdrug[58]. Santosetal. alsodesignednewanaloguesof19using5(cid:48)-O-ester substitution,however,insteadofsingleaminoacid,theyuseddipeptides(22a–h,Figure10)totarget thehumanintestinaloligopeptidetransporterhPEPT1andevaluatedtheirstabilityatpH7.4inbuffer andhumanplasma,cytotoxicityandretroviralactivity[59]. Molecules 2018, 23, x FOR PEER REVIEW 10 of 60 Cytotoxicity and inhibition assays were performed in two different cell types: peripheral blood mononuclear cells (PBMCs) and MT2. During evaluation of cell viability, the compounds also showed a dose-dependent cytotoxicity. Although parameters obtained when using different methodologies cannot be directly compared, their correlation was significant. In one or both cell cultures used, all the prodrugs synthesized have a similar or higher selectivity index than 19 itself, with the exception of 20f which showed no anti-HIV activity and 20d that showed a diminished capacity to inhibit HIV replication. These facts could be directly related to the high acidity of their amino acids or higher volume. However, neither acidity level nor volume explains the activity variation showed by the rest of the compounds. Authors hypothesized that it could be due to different transport mechanisms depending either on the amino acids involved (for special transport) or lipophilicity of the substituent that might be implicated in each case. 20a and 20c demonstrated an improved ability to inhibit HIV replication on both cell types studied. Nonetheless, using amino acids to design 19 derivatives result in increased activity of parent drug [58]. Santos et al. also designed new analogues of 19 using 5′-O-ester substitution, however, instead of single amino acid, they used dipeptides (22a–h, Figure 10) to target the human intestinal oligopeptide transporter hPEPT1 and evaluated their stability at pH 7.4 in buffer and human plasma, cytotoxicity and Molecules2018,23,2318 10of61 retroviral activity [59]. FFiigguurree 1100.. SSttrruuccttuurree ooff 1199 aanndd iittss ddiippeeppttiiddee pprrooddrruuggss 2222aa––hh.. TThhee ddiippeeppttiiddeee esstteerrsso off1 199u unndderegrogoc yccylcizliaztaiotinoinn ibnu bffuefrfe(pr H(p7H.4 7).t4o) rteol eraesleeatshee tphaer epnatrdenrut gdrautga raatt ae trhaatet dtheapte nddepseonndtsh eonsi ztheeo fsitzhee cohf atihnes cohfathinesp oefp ttihdee pceaprrtiiedre. Scaanrrtoiesr.e tSaaln.toobss eetr vaeld. othbasetrtvheedp rthodatr uthges wpreordercuognss wideerrea bcolynsmidoerreasbtlayb mleoirfet hsetabbulel kify thαe-b brualnkcyh αed-barmanicnhoeadc aidmsin(eo.g a.c,iIdles a(en.dg.,V Ialel) a,nwde rVeapl)r,e wseenret, pparertsiecnutl,a prlayr,taicsuCla-trelyrm, aisn aCl-rteersmidiuneasl. rIensifdacute,ss.u Ibns ftaractte, shuablfs-tlriavtees hinalpf-llaivsmesa inw perlaesrmema awrekraeb lryemhiagrhkearbilny thhigehperre sienn ctheeo fphreysdernocpeh oofb ihcyαd-rborpahnochbeicd αa-mbrinanocahceidd s.amIninfaoc ta,ceidstse. rsInw fearcet,a lessotegros owdesrueb astlrsaot egsofoodr hsuPbEsPtrTa1teins fvoirt rhoP,EwPitTh1V inal v-Gitlryo-,A wZiTtha Vnadl-VGally-A-AlaZ-AT ZanTdp Vreasle-nAtlian-gAtZhTe hpirgehseesnttianffig nthitey htoigthheesttr aafnfisnpiotyrt teor. Tthhee ytraalnssopsohrotewr.e dThtheayt ainlscou bsahtoiowneidn thhuamt ainncpulbaastmioan reinv ehaulemdatnh aptlmasomstao rfetvheeadleipde tphtaidt emeostsetr sofo fth19e rdeilpeeapsetidthee epstaerresn otfd 1r9u gretlhearoseu gthhet pwaoreanmt idnroupge tphtrioduasgehs -tmwoed aimatiendoppeapthtiwdaaysess:-(m1)esdtieaptewdi speacthlewavaaygs:e (o1f) esMtaeoclpehcwualeimss e2i0 n1co8le, a2ac3vi, dax gFaeOn Rdo Pf( E2eE)aRdc RihrE eVacmItEcWilne oa vaacgied oafntdhe (d2)ip deiprteicdte cdleruavgaegsete orfb othned d(Sicpheepmtidee2 )d[r5u9g]. ester1 1b oofn 6d0 (Scheme 2) [59]. SScchheemmee 22..P aPtahtwhwayasyosb soebrsveerdvefodr rfeolre arseinlegaosifn1g9 boyf d1i9p ebpyti ddeipesetpertisd2e2 ienstheursm a2n2 pilna shmuam(raenp ropdlauscmeda f(rroempro[5d9u]c).ed from [59]). TThhee sseelleeccttiivviittyy iinnddeexx ooff tthhee pprrooddrruuggss wwaass 22-- ttoo 33--ffoolldd hhiigghheerr tthhaann tthhaatt ooff 1199 ffoorr aallll ccoommppoouunnddss aannaallyyzzeedd,, wwhhicichhi nidnidcaictaetsetsh atthtahte stheeasree paorete nptoiatelndtiipael pdtiidpee-pbtaisdeed-bcaasreride rcsafrorriedresv efolorp dmeevnetloopfemffeenctt ivoef aenffteicvtiirvael danrutigv-idraell idvreuryg-sdyesltievmery[5 s9y].stem [59]. UUssiinngg aa ssiimmiillaarr ddeessiiggnn ssttrraatteeggyy,, ZZhhaanngg eett aall.. ddeevveellooppeedd aa ffooccuusseedd ddiippeeppttiiddee ccoonnjjuuggaatteedd ooff 1199 lliibbrraarriieess aanndds csrcereeneendedin ian PaE PPTE1PTov1e orevxeprreexspsrinegsscinelgl mceoldl emliondoerld ienr toordasesre stos tahsesiresasb itlhiteieirs taobciloitmieps ettoe wcoimthptehtee kwniothw nthleig kanndowcenp lhigaalenxdin c[e6p0h].alTehxein6 1[6d0i]p. eTphteid 6e1c odnipjuegpatitdese ocfo1n9jusgyanttehse osifz e1d9 csoynnsthisetseidzeodf dcoifnfesrisetnetdc oofm dbifinfearteionnt coofmambiinnaotiaocni dosf. aTmhieniro gaecnidesr.a Tlshteriurc gtuerneerisald setpruicctteudrein isF digeupriect1e1d. in Figure 11. Figure 11. The general structure of dipeptide conjugates of 19 designed by Zhang et al. [60]. Not all the 20 natural amino acids were included. The amino acids Asn, Gln, Asp, Met, Cys, His, Trp and Tyr were excluded because they are not very stable in physiological environment. However, authors tried to include most of the amino acid that had been reported to be involved in the PEPT1 activity namely Phe, Val, Leu, Ile, Gly and Ala. To evaluate the bioactivities of the entire library as PEPT1 substrates, authors used adenovirus Ad.RSVhPepT1 transfected HeLa cells that transiently overexpressed PEPT1. After evaluating their cytotoxicity, compounds yielding a cell viability greater than 85% were included in the cephalexin competition study. Several dipeptide sequences as Ser-Glu and Pro-Ile were found to have high affinity to PEPT1 and to mediate significant active transport activity across intestinal epithelia [60].
Description: