Amino Acid Transporters & Amino Acid Metabolism in Trypanosoma brucei brucei Charles E. Ebikeme Division of Infection & Immunity Faculty of Biomedical & Life Sciences Thesis submitted for the degree of Doctor of Philosophy University of Glasgow October 2007 ii 1 Author’s Declaration The results presented in this thesis are my own work, except where stated otherwise. Charles Ebikeme. iii 2 Abstract The development of new drugs against Human African Trypanosomiasis is much needed due to toxicity, efficacy and availability problems with current drug treatments for this resurgent parasitic disease. Delivery of drugs into cells is an important determinant of therapeutic efficacy of drugs. An effective means of selective drug delivery is to use plasma membrane transport systems to mediate the entry of drugs into the cell. Some amino acid transporters fulfil the criteria needed for successful exploitation of nutrient transport systems for drug delivery. The Trypanosoma brucei genomic database was screened to identify the full gene repertoire of amino acid transporters. From this, candidate genes were selected and functional genetic approaches were employed to characterise candidate amino acid transporter genes. Further characterisation of TbAATP1, a RNAi cell line shown to be a transporter of small neutral amino acids (serine, glycine, cysteine, asparagine and alanine), showed a role in threonine uptake. Amino acid analogues were tested for trypanocidal activity. Of the 96 tested, two (Azaserine and Levodopa) were investigated in more detail, paying special attention to the nature of their trypanocidal action and possible route of entry through an amino acid transporter. Azaserine showed a trypanostatic action as well multiple routes of entry into the protozoan interior (as shown by inhibition of glutamine, phenylalanine and tyrosine uptake). The trypanocidal Levodopa showed entry through a tyrosine specific transporter. However, it is possible that Levodopa’s trypanocidal activity may not be as a result of the analogue itself, but secondary products of the analogue. Amino acids are important for protozoa as energy sources as well as forming pools of soluble osmolites. Amino acid usage in trypanosomes was investigated. Upregulation of proline transport and catabolism in response to reduced glucose availability was exhibited by the genome strain of T. brucei. Moreover, this metabolic shift could be mimicked by addition of GlcNAc to the medium, which blocks the hexose transporter limiting glucose entry to the cell. Systems biology approaches were initiated to investigate the undergoing metabolic changes. More specifically, mass spectrometry methodologies were employed to investigate underlying metabolite changes in procyclic form trypanosomes grown in differing medium. iv 3 Table of Contents 1 Author’s Declaration......................................................................................................2 2 Abstract..........................................................................................................................3 3 Table of Contents...........................................................................................................4 4 List of Figures................................................................................................................7 5 List of Tables................................................................................................................10 6 Definitions....................................................................................................................11 7 Acknowledgements......................................................................................................13 1 Introduction....................................................................................................................1 1.1 The Disease............................................................................................................2 1.2 Vector Biology & Control......................................................................................4 1.3 Life Cycle...............................................................................................................6 1.4 Control Strategies...................................................................................................7 1.5 Chemotherapy......................................................................................................10 1.6 The Genome & Genomics....................................................................................12 1.7 Metabolomics.......................................................................................................14 1.8 Trypanosome Molecular Biology........................................................................17 1.9 RNA Interference & Gene Knockout...................................................................19 1.10 Perspectives for Drug Targets..............................................................................22 1.11 Drug Uptake via Nutrient Transporters................................................................24 1.12 Transport Phenomena across Membranes............................................................25 1.13 Amino Acid Transporters.....................................................................................27 1.14 Human Amino Acid Transporters........................................................................30 1.15 Amino Acids & Trypanosomes............................................................................32 1.16 Amino Acid Transporters in Trypanosomes........................................................36 1.17 Genes of the Amino Acid Transporter Family.....................................................38 1.18 Drug Uptake via Amino Acid Transporters.........................................................43 1.19 Trypanosomes & the Blood-Brain Barrier...........................................................44 2 Materials & Methods....................................................................................................48 2.1 Cell Culture..........................................................................................................49 2.1.1 Trypanosomes..............................................................................................49 2.1.2 Mammalian cells..........................................................................................49 2.2 Alamar Blue Assay..............................................................................................50 2.3 Isolation of genomic DNA...................................................................................50 2.4 Total RNA Isolation.............................................................................................51 2.5 Molecular Cloning Techniques............................................................................52 2.5.1 Polymerase Chain Reaction (PCR)..............................................................52 2.5.2 Plasmid Vectors...........................................................................................52 2.5.3 E.coli Transformations.................................................................................53 2.6 Northern Blot Analysis........................................................................................54 2.7 Probe Labelling....................................................................................................55 2.8 RNA Interference in T. brucei.............................................................................55 2.9 Plasmid Construction...........................................................................................56 2.10 Transfection of Trypanosomes.............................................................................57 2.11 Analysis of Growth Rates....................................................................................57 2.12 Radiolabeled Uptake Assays................................................................................58 2.13 Metabolomic Profiling.........................................................................................59 2.14 Bioinformatic Analyses........................................................................................60 3 RNAi Knock-down Approaches to Characterising Candidate Amino Acid Transporter Genes in Trypanosoma brucei.............................................................................................61 3.1 Introduction..........................................................................................................62 3.1.1 Amino Acid Usage in Trypanosomes..........................................................62 v 3.1.2 Genes of the Amino Acid Transporter Family.............................................63 3.2 Results..................................................................................................................67 3.2.1 Identification of Genes.................................................................................67 3.2.2 TbAATP1 & Growth of PCF trypanosomes................................................69 3.2.3 L-threonine Transport in T. brucei...............................................................73 3.2.4 Osmoregulation............................................................................................78 3.2.5 Cloning of TbAATP6 & TbAATP12 RNAi Constructs..............................79 3.2.6 Northern Blot Analysis................................................................................82 3.2.7 Tetracycline Induction and Growth Curves.................................................83 3.2.8 TbAATP6 Transporter Phenotype...............................................................85 3.3 Discussion............................................................................................................86 3.3.1 TbAATP1.....................................................................................................86 3.3.2 TbAATP6 & TbAATP12.............................................................................91 4 Proline Transport Regulation as a Result of a Metabolic Shift Induced by N-Acetyl D- Glucosamine.........................................................................................................................93 4.1 Introduction..........................................................................................................94 4.2 Results..................................................................................................................97 4.2.1 GlcNAc Stimulates Growth of PCF Trypanosomes....................................97 4.2.2 GlcNAc is not Internalised by PCF Trypanosomes...................................100 4.2.3 Presence of GlcNAc Causes a Switch to Proline Metabolism...................102 4.2.4 Oligomycin Sensitivity..............................................................................104 4.2.5 GlcNAc Protects Against Death by 2-Deoxy D-glucose...........................105 4.2.6 Proline Regulation as a Result of the Overall Metabolic Status of the Cell 106 4.3 Discussion..........................................................................................................108 5 Metabolomics.............................................................................................................111 5.1 Introduction........................................................................................................112 5.2 Results................................................................................................................116 5.2.1 Global View of the Metabolome................................................................116 5.2.2 Metabolic Fingerprint.................................................................................123 5.2.3 Metabolic Footprint....................................................................................128 5.2.4 Metabolic Profile........................................................................................130 5.3 Discussion..........................................................................................................133 6 Uptake and Effects of Trypanotoxic Amino Acid Analogues...................................136 6.1 Introduction........................................................................................................137 6.1.1 Azaserine....................................................................................................137 6.1.2 Levodopa....................................................................................................140 6.1.3 Cell Penetrating Peptides...........................................................................143 6.1.4 Eflornithine................................................................................................144 6.2 Results................................................................................................................148 6.2.1 Amino Acid Analogue Screens..................................................................148 6.2.2 Trypanocidal Activities..............................................................................150 6.2.3 Mode of action...........................................................................................151 6.2.4 Azaserine & the L-glutamine Transport System........................................154 6.2.5 Levodopa & the Aromatic Transport System............................................159 6.2.6 Cell Penetrating Peptides...........................................................................163 6.2.7 DFMO Mode of Uptake.............................................................................165 6.3 Discussion..........................................................................................................171 6.3.1 Azaserine & Glutamine Transport.............................................................172 6.3.2 Levodopa & Aromatic Amino Acid Transport..........................................175 6.3.3 Cell Penetrating Peptides...........................................................................177 6.3.4 Eflornithine................................................................................................178 7 Closing Discussion.....................................................................................................182 8 Appendix....................................................................................................................186 vi 8.1 Amino Acids......................................................................................................186 8.2 SDM80...............................................................................................................187 8.3 CBSS Buffer......................................................................................................187 8.4 Cunningham’s Medium......................................................................................188 8.5 TELT Buffer.......................................................................................................188 8.6 TE Buffer...........................................................................................................189 8.7 1X TAE Buffer...................................................................................................189 8.8 LB Medium........................................................................................................189 8.9 20X SSC.............................................................................................................189 8.10 10X MOPS.........................................................................................................189 8.11 ZPFM Buffer......................................................................................................190 8.12 PBS.....................................................................................................................190 8.13 100X Denhardt’s Solution.................................................................................190 8.14 Amino Acid Analogues......................................................................................190 8.15 List of Metabolites.............................................................................................192 8.16 Biochemical Transformations............................................................................195 9 References..................................................................................................................199 vii 4 List of Figures Figure 1-1: Human African trypanosomiasis endemicity in the WHO African Region........2 Figure 1-2: Life cycle of the African trypanosome in the human and tsetse fly....................7 Figure 1-3: General RNAi mechanism (taken from Balaña-Fouce & Reguera, 2007)........20 Figure 1-4: Schematic representation of carbon source metabolism in the procyclic form of T. brucei (taken from Lamour et al., 2005)..........................................................................34 Figure 1-5: Amino acid permeases from L. major, T. brucei and T. cruzi, respectively (taken from Berriman et al., 2005).......................................................................................38 Figure 1-6: Trypanosoma brucei AAT loci (taken from Jackson, 2007).............................41 Figure 2-1: RNAi vector p2T7Ti.........................................................................................56 Figure 3-1: Amino Acid Transporter location (TbAATP6 and TbAATP1)........................64 Figure 3-2: Amino Acid Transporter location (TbAATP12)...............................................65 Figure 3-3: Dendogram of aligned AATP genes.................................................................67 Figure 3-4: Growth of TbAATP1 4E8 RNAi cell lines.......................................................70 Figure 3-5: Growth of PCF trypanosomes (strain 427) in threonine deficient medium......70 Figure 3-6: Growth counts of TbAATP1 4E8 RNAi cell lines............................................71 Figure 3-7: Growth and measure of threonine uptake.........................................................72 Figure 3-8: Threonine uptake...............................................................................................73 Figure 3-9: Threonine inhibition..........................................................................................74 Figure 3-10: Serine inhibition..............................................................................................75 Figure 3-11: Threonine inhibition by AATP1 specific amino acids....................................76 Figure 3-12: Kinetics of threonine uptake in uninduced TbAATP1 RNAi cell lines..........77 Figure 3-13: Kinetics of threonine uptake in tetracycline induced TbAATP1 RNAi cell lines......................................................................................................................................78 Figure 3-14: Ethidium bromide stained gel showing PCR amplification of a segment of TbAATP6.............................................................................................................................80 Figure 3-15: Ethidium bromide stained gel showing excision of p2T7Ti ligated TbAATP6 insert.....................................................................................................................................80 Figure 3-16: Ethidium bromide stained gel showing both fragments of TbAATP12 amplified by PCR.................................................................................................................81 Figure 3-17: Ethidium bromide stained gel showing excision of p2T7Ti ligated TbAATP12a insert...............................................................................................................81 Figure 3-18: Northern blot analysis of RNA from TbAATP6 RNAi cell lines...................82 Figure 3-19: Northern blot analysis of RNA from TbAATP12 RNAi cell lines.................83 Figure 3-20: Growth of TbAATP6 RNAi cell lines.............................................................84 Figure 3-21: Growth of TbAATP12 RNAi cell lines...........................................................84 Figure 3-22: Proline uptake in TbAATP6 RNAi cell lines..................................................86 Figure 3-23: Volume regulation in trypanosomatid parasites under hypotonic shock (taken from Viera et al., 1998)........................................................................................................90 Figure 4-1: Cell counts of PCF trypanosomes (strain TREU 927)......................................97 Figure 4-2: Cell counts of PCF trypanosomes (strain TREU 927) grown in SDM80 medium.................................................................................................................................98 Figure 4-3: Alamar Blue assay using PCF trypanosomes grown in SDM80.......................99 Figure 4-4: Cell counts of PCF trypanosomes (strain TREU 927) grown in SDM80.......100 Figure 4-5: 2-Deoxy-D-glucose inhibition.........................................................................101 Figure 4-6: Uptake of Glucose analogues..........................................................................102 Figure 4-7: Glucose utilisation in presence of GlcNAc.....................................................103 Figure 4-8: L-proline uptake..............................................................................................104 Figure 4-9: Oligomycin sensitivity....................................................................................105 Figure 4-10: 2-Deoxy-D-glucose sensitivity......................................................................106 Figure 4-11: Proline uptake in presence of D-glucose.......................................................107 Figure 4-12: Proline uptake after long term D-glucose exposure......................................108 viii Figure 5-1: Nodes and edges..............................................................................................115 Figure 5-2: KEGG Network of T. brucei metabolites.......................................................116 Figure 5-3: CM state network............................................................................................118 Figure 5-4: GlcNAc state network.....................................................................................119 Figure 5-5: Glucose state network.....................................................................................120 Figure 5-6: Proline state network.......................................................................................121 Figure 5-7: Principal Component Analysis........................................................................122 Figure 5-8: Metabolites unique to proline metabolism (comparing GL and PR states)....124 Figure 5-9: Metabolites unique to GlcNAc supplementation (comparing CM and NA states)..................................................................................................................................125 Figure 5-10: Glucose specific metabolites (comparing PR and GL states).......................126 Figure 5-11: Glucose specific metabolites (comparing NA and CM states).....................127 Figure 5-12: Pyruvate abundance within the cell pellet and supernatant...........................130 Figure 5-13: Targeted amino acid analysis........................................................................132 Figure 6-1: Schematic representation of DNA synthesis showing L-glutamine usage in T. brucei (A) and the specific chemical reaction (B).............................................................138 Figure 6-2: Schematic representation of CTP synthesis showing L-glutamine usage in T. brucei (A) and the specific chemical reaction (B).............................................................139 Figure 6-3: Tyrosine pathway............................................................................................141 Figure 6-4: Schematic representation of L-tryptophan metabolism in mammalian cells..142 Figure 6-5: General scheme for polyamine pathway in trypanosomes..............................147 Figure 6-6: Structures of some of the relevant amino acid analogues used.......................148 Figure 6-7: Trypanocidal cell counts.................................................................................151 Figure 6-8: Amino acid recovery of azaserine action........................................................152 Figure 6-9: Amino acid recovery of L-Dopa action...........................................................152 Figure 6-10: Glutamine uptake in PCF trypanosomes in the presence and absence of azaserine.............................................................................................................................154 Figure 6-11: Phenylalanine uptake in PCF trypanosome in presence and absence of azaserine.............................................................................................................................155 Figure 6-12: Glutamine uptake in BSF trypanosomes in presence and absence of azaserine. ............................................................................................................................................156 Figure 6-13: Tyrosine uptake in BSF trypanosomes in presence and absence of azaserine. ............................................................................................................................................156 Figure 6-14: Glutamine inhibition by 20 amino acids.......................................................157 Figure 6-15: Glutamine inhibition.....................................................................................158 Figure 6-16: Phenylalanine inhibition by amino acid analogues.......................................159 Figure 6-17: Tyrosine uptake in PCF trypanosomes in the presence and absence of L-Dopa. ............................................................................................................................................160 Figure 6-18: Tyrosine uptake in BSF trypanosomes in the presence and absence of L-Dopa. ............................................................................................................................................160 Figure 6-19: Tyrosine inhibition by 20 amino acids..........................................................161 Figure 6-20: Tyrosine inhibition........................................................................................162 Figure 6-21: Phenylalanine inhibition................................................................................163 Figure 6-22: CPP activity against BSF trypanosomes.......................................................164 Figure 6-23: DFMO uptake................................................................................................166 Figure 6-24: DFMO self-inhibition....................................................................................166 Figure 6-25: DFMO inhibition by 20 amino acids. ...........................................................167 Figure 6-26: DFMO inhibition by basic and aromatic amino acids. .................................168 Figure 6-27: Lysine inhibition by DFMO and lysine.........................................................169 Figure 6-28: Tyrosine uptake in BSF trypanosomes in presence and absence of DFMO.170 Figure 6-29: Tyrosine inhibition by DFMO.......................................................................171 Figure 6-30: Schematic representation of a possible L-glutamine transport system in PCF trypanosomes. ....................................................................................................................173 Figure 6-31: Synthesis of CdS-tiopronin-Tat (taken from la Fuente et al., 2005).............178 ix Figure 6-32: Structure of L-lysine and DFMO..................................................................179 x 5 List of Tables Table 1: Amino acid transporter genes from T. brucei........................................................40 Table 2: Amino acid transporter genes from T. brucei........................................................68 Table 3: Calculated IC for the TbAATP1 specific amino acids........................................76 50 Table 4: Calculated IC values for analogue inhibitors....................................................101 50 Table 5: Total nodes and edges across the metabolic states..............................................121 Table 6: Carbon source specific metabolites (pellet).........................................................127 Table 7: Putative formula generated from pellet metabolites............................................128 Table 8: Carbon source specific metabolites (supernatant)...............................................129 Table 9: Putative formula generated from supernatant metabolites...................................129 Table 10: Targeted amino acid analysis.............................................................................131 Table 11: Trypanocidal activities of lead candidate amino acid analogue........................149 Table 12: Trypanocidal activities of metabolic downstream analogues............................153 Table 13: Calculated IC values for inhibitors of L-glutamine uptake.............................158 50 Table 14: CPP amino acid sequence..................................................................................163
Description: