ebook img

American Mathematical Monthly, volume 117, number 4, April 2010 PDF

99 Pages·2010·1.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview American Mathematical Monthly, volume 117, number 4, April 2010

M THE AMERICAN MATHEMATICAL ONTHLY ® Volume117,Number4 April2010 Adrian Rice “To a Factor pre`s”: Cayley’s Partial 291 Anticipation of the Weierstrass ℘-Function Geoffrey Pearce Transitive Decompositions of Graphs and Their 303 Links with Geometry and Origami Warren P. Johnson Trigonometric Identities a` la Hermite 311 David Burton Quasi-Cauchy Sequences 328 John Coleman Grahame Bennett p-Free (cid:3)pInequalities 334 NOTES Timothy Marshall A Short Proof of ζ(2) = π2/6 352 So Eun Park The Group of Symmetries of the Tower of 353 Hanoi Graph Li Zhou Recurrent Proofs of the Irrationality of Certain 360 Lubomir Markov Trigonometric Values M. John Curran Groups of Cube-Free Odd Order 363 Mark Kozek An Asymptotic Formula for Goldbach’s Conjecture 365 with Monic Polynomials in Z[x] PROBLEMS AND 370 SOLUTIONS REVIEWS Sanford L. Segal Plato’s Ghost: The Modernist Transformation of 378 Mathematics. By Jeremy Gray ANOFFICIALPUBLICATIONOFTHEMATHEMATICALASSOCIATIONOFAMERICA New from the MAA Voltaire’s Riddle: Micromégas and the Measure of All Things Andrew Simoson (cid:39)(cid:76)(cid:71)(cid:3)(cid:92)(cid:82)(cid:88)(cid:3)(cid:78)(cid:81)(cid:82)(cid:90)(cid:3)(cid:87)(cid:75)(cid:68)(cid:87)(cid:3)(cid:57)(cid:82)(cid:79)(cid:87)(cid:68)(cid:76)(cid:85)(cid:72)(cid:3)(cid:90)(cid:68)(cid:86)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:192)(cid:85)(cid:86)(cid:87)(cid:3)(cid:87)(cid:82)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:86)(cid:75)(cid:3) the legend of Isaac Newton discovering gravity (cid:88)(cid:83)(cid:82)(cid:81)(cid:3)(cid:86)(cid:72)(cid:72)(cid:76)(cid:81)(cid:74)(cid:3)(cid:68)(cid:81)(cid:3)(cid:68)(cid:83)(cid:83)(cid:79)(cid:72)(cid:3)(cid:73)(cid:68)(cid:79)(cid:79)(cid:34)(cid:3)(cid:55)(cid:75)(cid:68)(cid:87)(cid:3)(cid:75)(cid:72)(cid:3)(cid:87)(cid:85)(cid:76)(cid:72)(cid:71)(cid:3)(cid:73)(cid:82)(cid:85)(cid:3)(cid:68)(cid:69)(cid:82)(cid:88)(cid:87)(cid:3) (cid:72)(cid:76)(cid:74)(cid:75)(cid:87)(cid:3)(cid:92)(cid:72)(cid:68)(cid:85)(cid:86)(cid:3)(cid:87)(cid:82)(cid:3)(cid:69)(cid:72)(cid:3)(cid:68)(cid:3)(cid:80)(cid:68)(cid:87)(cid:75)(cid:72)(cid:80)(cid:68)(cid:87)(cid:76)(cid:70)(cid:76)(cid:68)(cid:81)(cid:34)(cid:3)(cid:55)(cid:75)(cid:68)(cid:87)(cid:3)(cid:76)(cid:81)(cid:3)(cid:20)(cid:26)(cid:24)(cid:21)(cid:3)(cid:75)(cid:72)(cid:3) wrote Micromégas(cid:15)(cid:3)(cid:68)(cid:3)(cid:86)(cid:87)(cid:82)(cid:85)(cid:92)(cid:3)(cid:68)(cid:69)(cid:82)(cid:88)(cid:87)(cid:3)(cid:68)(cid:3)(cid:41)(cid:85)(cid:72)(cid:81)(cid:70)(cid:75)(cid:3)(cid:72)(cid:91)(cid:83)(cid:72)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3) (cid:87)(cid:82)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:68)(cid:85)(cid:70)(cid:87)(cid:76)(cid:70)(cid:3)(cid:11)(cid:20)(cid:26)(cid:22)(cid:25)(cid:179)(cid:26)(cid:12)(cid:3)(cid:90)(cid:75)(cid:82)(cid:86)(cid:72)(cid:3)(cid:83)(cid:88)(cid:85)(cid:83)(cid:82)(cid:86)(cid:72)(cid:3)(cid:90)(cid:68)(cid:86)(cid:3)(cid:87)(cid:82)(cid:3)(cid:87)(cid:72)(cid:86)(cid:87)(cid:3) (cid:49)(cid:72)(cid:90)(cid:87)(cid:82)(cid:81)(cid:183)(cid:86)(cid:3)(cid:70)(cid:82)(cid:81)(cid:87)(cid:85)(cid:82)(cid:89)(cid:72)(cid:85)(cid:86)(cid:76)(cid:68)(cid:79)(cid:3)(cid:87)(cid:75)(cid:72)(cid:82)(cid:85)(cid:76)(cid:72)(cid:86)(cid:3)(cid:68)(cid:69)(cid:82)(cid:88)(cid:87)(cid:3)(cid:74)(cid:85)(cid:68)(cid:89)(cid:76)(cid:87)(cid:92)(cid:34) (cid:55)(cid:75)(cid:76)(cid:86)(cid:3)(cid:69)(cid:82)(cid:82)(cid:78)(cid:3)(cid:76)(cid:86)(cid:3)(cid:68)(cid:69)(cid:82)(cid:88)(cid:87)(cid:3)(cid:87)(cid:75)(cid:68)(cid:87)(cid:3)(cid:86)(cid:87)(cid:82)(cid:85)(cid:92)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:76)(cid:87)(cid:86)(cid:3)(cid:88)(cid:81)(cid:71)(cid:72)(cid:85)(cid:79)(cid:92)(cid:76)(cid:81)(cid:74)(cid:3) (cid:80)(cid:68)(cid:87)(cid:75)(cid:72)(cid:80)(cid:68)(cid:87)(cid:76)(cid:70)(cid:86)(cid:17)(cid:3)(cid:37)(cid:85)(cid:76)(cid:72)(cid:193)(cid:92)(cid:15)(cid:3)(cid:68)(cid:81)(cid:3)(cid:68)(cid:79)(cid:76)(cid:72)(cid:81)(cid:3)(cid:74)(cid:76)(cid:68)(cid:81)(cid:87)(cid:3)(cid:89)(cid:76)(cid:86)(cid:76)(cid:87)(cid:86)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:72)(cid:68)(cid:85)(cid:87)(cid:75)(cid:3) (cid:68)(cid:81)(cid:71)(cid:3)(cid:72)(cid:81)(cid:70)(cid:82)(cid:88)(cid:81)(cid:87)(cid:72)(cid:85)(cid:86)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:72)(cid:91)(cid:83)(cid:72)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:85)(cid:72)(cid:87)(cid:88)(cid:85)(cid:81)(cid:76)(cid:81)(cid:74)(cid:3)(cid:73)(cid:85)(cid:82)(cid:80)(cid:3)(cid:81)(cid:82)(cid:85)(cid:87)(cid:75)(cid:3) (cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:37)(cid:68)(cid:79)(cid:87)(cid:76)(cid:70)(cid:3)(cid:54)(cid:72)(cid:68)(cid:17)(cid:3)(cid:55)(cid:75)(cid:72)(cid:76)(cid:85)(cid:3)(cid:72)(cid:81)(cid:86)(cid:88)(cid:76)(cid:81)(cid:74)(cid:3)(cid:71)(cid:76)(cid:68)(cid:79)(cid:82)(cid:74)(cid:88)(cid:72)(cid:3)(cid:85)(cid:68)(cid:81)(cid:74)(cid:72)(cid:86)(cid:3)(cid:73)(cid:85)(cid:82)(cid:80)(cid:3) measurements of the very small to the very large, (cid:73)(cid:85)(cid:82)(cid:80)(cid:3)(cid:74)(cid:81)(cid:68)(cid:87)(cid:86)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:80)(cid:76)(cid:70)(cid:85)(cid:82)(cid:16)(cid:82)(cid:85)(cid:74)(cid:68)(cid:81)(cid:76)(cid:86)(cid:80)(cid:86)(cid:3)(cid:87)(cid:82)(cid:3)(cid:83)(cid:79)(cid:68)(cid:81)(cid:72)(cid:87)(cid:86)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:86)(cid:87)(cid:68)(cid:85)(cid:86)(cid:15)(cid:3)(cid:73)(cid:85)(cid:82)(cid:80)(cid:3)(cid:80)(cid:68)(cid:81)(cid:183)(cid:86)(cid:3)(cid:87)(cid:72)(cid:81)(cid:71)(cid:72)(cid:81)(cid:70)(cid:92)(cid:3) (cid:87)(cid:82)(cid:3)(cid:80)(cid:68)(cid:78)(cid:72)(cid:3)(cid:90)(cid:68)(cid:85)(cid:3)(cid:87)(cid:82)(cid:3)(cid:71)(cid:85)(cid:72)(cid:68)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:88)(cid:81)(cid:71)(cid:72)(cid:85)(cid:86)(cid:87)(cid:68)(cid:81)(cid:71)(cid:76)(cid:81)(cid:74)(cid:3)(cid:75)(cid:76)(cid:86)(cid:3)(cid:82)(cid:90)(cid:81)(cid:3)(cid:86)(cid:83)(cid:76)(cid:85)(cid:76)(cid:87)(cid:17)(cid:3)(cid:36)(cid:87)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:72)(cid:81)(cid:71)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:76)(cid:85)(cid:3) (cid:70)(cid:82)(cid:81)(cid:89)(cid:72)(cid:85)(cid:86)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:15)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:74)(cid:76)(cid:68)(cid:81)(cid:87)(cid:3)(cid:74)(cid:76)(cid:89)(cid:72)(cid:86)(cid:3)(cid:80)(cid:68)(cid:81)(cid:3)(cid:68)(cid:3)(cid:69)(cid:82)(cid:82)(cid:78)(cid:3)(cid:90)(cid:76)(cid:87)(cid:75)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:68)(cid:81)(cid:86)(cid:90)(cid:72)(cid:85)(cid:86)(cid:3)(cid:87)(cid:82)(cid:3)(cid:68)(cid:79)(cid:79)(cid:3)(cid:87)(cid:75)(cid:76)(cid:81)(cid:74)(cid:86)(cid:17)(cid:3)(cid:37)(cid:88)(cid:87)(cid:3) (cid:90)(cid:75)(cid:72)(cid:81)(cid:3)(cid:87)(cid:75)(cid:72)(cid:92)(cid:3)(cid:82)(cid:83)(cid:72)(cid:81)(cid:3)(cid:76)(cid:87)(cid:15)(cid:3)(cid:76)(cid:87)(cid:3)(cid:76)(cid:86)(cid:3)(cid:69)(cid:79)(cid:68)(cid:81)(cid:78)(cid:17)(cid:3)(cid:55)(cid:75)(cid:68)(cid:87)(cid:3)(cid:76)(cid:86)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:76)(cid:71)(cid:71)(cid:79)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:76)(cid:86)(cid:3)(cid:69)(cid:82)(cid:82)(cid:78)(cid:17)(cid:3)(cid:58)(cid:75)(cid:68)(cid:87)(cid:3)(cid:71)(cid:82)(cid:72)(cid:86)(cid:3) (cid:86)(cid:88)(cid:70)(cid:75)(cid:3)(cid:68)(cid:81)(cid:3)(cid:72)(cid:81)(cid:71)(cid:76)(cid:81)(cid:74)(cid:3)(cid:80)(cid:72)(cid:68)(cid:81)(cid:34) (cid:36)(cid:86)(cid:3)(cid:68)(cid:3)(cid:86)(cid:72)(cid:85)(cid:76)(cid:72)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:89)(cid:76)(cid:74)(cid:81)(cid:72)(cid:87)(cid:87)(cid:72)(cid:86)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:70)(cid:75)(cid:68)(cid:83)(cid:87)(cid:72)(cid:85)(cid:86)(cid:15)(cid:3)(cid:90)(cid:72)(cid:3)(cid:74)(cid:76)(cid:89)(cid:72)(cid:3)(cid:86)(cid:82)(cid:80)(cid:72)(cid:3)(cid:85)(cid:76)(cid:71)(cid:71)(cid:79)(cid:72)(cid:3)(cid:85)(cid:72)(cid:86)(cid:82)(cid:79)(cid:88)(cid:87)(cid:76)(cid:82)(cid:81)(cid:86)(cid:17)(cid:3)(cid:55)(cid:75)(cid:72)(cid:3) (cid:89)(cid:76)(cid:74)(cid:81)(cid:72)(cid:87)(cid:87)(cid:72)(cid:86)(cid:179)(cid:85)(cid:72)(cid:84)(cid:88)(cid:76)(cid:85)(cid:76)(cid:81)(cid:74)(cid:3)(cid:81)(cid:82)(cid:3)(cid:86)(cid:83)(cid:72)(cid:70)(cid:76)(cid:68)(cid:79)(cid:3)(cid:80)(cid:68)(cid:87)(cid:75)(cid:72)(cid:80)(cid:68)(cid:87)(cid:76)(cid:70)(cid:68)(cid:79)(cid:3)(cid:78)(cid:81)(cid:82)(cid:90)(cid:79)(cid:72)(cid:71)(cid:74)(cid:72)(cid:179)(cid:71)(cid:72)(cid:86)(cid:70)(cid:85)(cid:76)(cid:69)(cid:72)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3) (cid:83)(cid:72)(cid:82)(cid:83)(cid:79)(cid:72)(cid:15)(cid:3)(cid:87)(cid:85)(cid:68)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:86)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:72)(cid:89)(cid:72)(cid:81)(cid:87)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:72)(cid:91)(cid:83)(cid:72)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:86)(cid:87)(cid:82)(cid:85)(cid:92)(cid:17)(cid:3)(cid:55)(cid:75)(cid:72)(cid:3)(cid:70)(cid:75)(cid:68)(cid:83)(cid:87)(cid:72)(cid:85)(cid:86)(cid:179) (cid:68)(cid:70)(cid:70)(cid:72)(cid:86)(cid:86)(cid:76)(cid:69)(cid:79)(cid:72)(cid:3)(cid:87)(cid:82)(cid:3)(cid:68)(cid:81)(cid:92)(cid:82)(cid:81)(cid:72)(cid:3)(cid:90)(cid:76)(cid:87)(cid:75)(cid:3)(cid:68)(cid:3)(cid:69)(cid:68)(cid:70)(cid:78)(cid:74)(cid:85)(cid:82)(cid:88)(cid:81)(cid:71)(cid:3)(cid:76)(cid:81)(cid:3)(cid:88)(cid:81)(cid:71)(cid:72)(cid:85)(cid:74)(cid:85)(cid:68)(cid:71)(cid:88)(cid:68)(cid:87)(cid:72)(cid:3)(cid:79)(cid:76)(cid:81)(cid:72)(cid:68)(cid:85)(cid:3)(cid:68)(cid:79)(cid:74)(cid:72)(cid:69)(cid:85)(cid:68)(cid:15)(cid:3) (cid:89)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85)(cid:3)(cid:70)(cid:68)(cid:79)(cid:70)(cid:88)(cid:79)(cid:88)(cid:86)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:71)(cid:76)(cid:73)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:87)(cid:76)(cid:68)(cid:79)(cid:3)(cid:72)(cid:84)(cid:88)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:86)(cid:179)(cid:86)(cid:75)(cid:82)(cid:90)(cid:3)(cid:90)(cid:75)(cid:92)(cid:3)(cid:68)(cid:3)(cid:85)(cid:82)(cid:87)(cid:68)(cid:87)(cid:76)(cid:81)(cid:74)(cid:3)(cid:72)(cid:68)(cid:85)(cid:87)(cid:75)(cid:3)(cid:80)(cid:88)(cid:86)(cid:87)(cid:3) (cid:69)(cid:72)(cid:3)(cid:193)(cid:68)(cid:87)(cid:87)(cid:72)(cid:81)(cid:72)(cid:71)(cid:3)(cid:68)(cid:87)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:83)(cid:82)(cid:79)(cid:72)(cid:86)(cid:15)(cid:3)(cid:90)(cid:75)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:87)(cid:76)(cid:83)(cid:3)(cid:82)(cid:73)(cid:3)(cid:72)(cid:68)(cid:85)(cid:87)(cid:75)(cid:183)(cid:86)(cid:3)(cid:83)(cid:82)(cid:79)(cid:68)(cid:85)(cid:3)(cid:68)(cid:91)(cid:76)(cid:86)(cid:3)(cid:87)(cid:85)(cid:68)(cid:70)(cid:72)(cid:86)(cid:3)(cid:82)(cid:88)(cid:87)(cid:3)(cid:68)(cid:3)(cid:70)(cid:88)(cid:85)(cid:89)(cid:72)(cid:3) (cid:90)(cid:76)(cid:87)(cid:75)(cid:3)(cid:83)(cid:72)(cid:85)(cid:76)(cid:82)(cid:71)(cid:3)(cid:82)(cid:73)(cid:3)(cid:81)(cid:72)(cid:68)(cid:85)(cid:79)(cid:92)(cid:3)(cid:87)(cid:90)(cid:72)(cid:81)(cid:87)(cid:92)(cid:16)(cid:86)(cid:76)(cid:91)(cid:3)(cid:87)(cid:75)(cid:82)(cid:88)(cid:86)(cid:68)(cid:81)(cid:71)(cid:3)(cid:92)(cid:72)(cid:68)(cid:85)(cid:86)(cid:15)(cid:3)(cid:90)(cid:75)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:83)(cid:68)(cid:87)(cid:75)(cid:3)(cid:82)(cid:73)(cid:3)(cid:68)(cid:3)(cid:86)(cid:80)(cid:68)(cid:79)(cid:79)(cid:3) (cid:69)(cid:79)(cid:68)(cid:70)(cid:78)(cid:3)(cid:75)(cid:82)(cid:79)(cid:72)(cid:3)(cid:71)(cid:85)(cid:82)(cid:83)(cid:83)(cid:72)(cid:71)(cid:3)(cid:68)(cid:87)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:72)(cid:68)(cid:85)(cid:87)(cid:75)(cid:183)(cid:86)(cid:3)(cid:72)(cid:84)(cid:88)(cid:68)(cid:87)(cid:82)(cid:85)(cid:3)(cid:80)(cid:88)(cid:86)(cid:87)(cid:3)(cid:69)(cid:72)(cid:3)(cid:68)(cid:3)(cid:75)(cid:92)(cid:83)(cid:82)(cid:70)(cid:92)(cid:70)(cid:79)(cid:82)(cid:76)(cid:71)(cid:15)(cid:3)(cid:90)(cid:75)(cid:92)(cid:3)(cid:68)(cid:81)(cid:3) (cid:82)(cid:79)(cid:71)(cid:3)(cid:83)(cid:85)(cid:82)(cid:69)(cid:79)(cid:72)(cid:80)(cid:3)(cid:86)(cid:87)(cid:88)(cid:71)(cid:76)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:48)(cid:68)(cid:88)(cid:83)(cid:72)(cid:85)(cid:87)(cid:88)(cid:76)(cid:86)(cid:179)(cid:87)(cid:75)(cid:72)(cid:3)(cid:79)(cid:72)(cid:68)(cid:71)(cid:72)(cid:85)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:41)(cid:85)(cid:72)(cid:81)(cid:70)(cid:75)(cid:3)(cid:72)(cid:91)(cid:83)(cid:72)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:179) (cid:76)(cid:86)(cid:3)(cid:68)(cid:3)(cid:83)(cid:88)(cid:85)(cid:86)(cid:88)(cid:76)(cid:87)(cid:3)(cid:70)(cid:88)(cid:85)(cid:89)(cid:72)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:90)(cid:75)(cid:92)(cid:3)(cid:76)(cid:81)(cid:3)(cid:80)(cid:72)(cid:68)(cid:86)(cid:88)(cid:85)(cid:76)(cid:81)(cid:74)(cid:3)(cid:83)(cid:75)(cid:72)(cid:81)(cid:82)(cid:80)(cid:72)(cid:81)(cid:68)(cid:3)(cid:90)(cid:72)(cid:3)(cid:86)(cid:82)(cid:80)(cid:72)(cid:87)(cid:76)(cid:80)(cid:72)(cid:86)(cid:3)(cid:74)(cid:72)(cid:87)(cid:3)(cid:76)(cid:87)(cid:3)(cid:3) (cid:3)(cid:3)(cid:3)(cid:3)(cid:90)(cid:85)(cid:82)(cid:81)(cid:74)(cid:17)(cid:3)(cid:36)(cid:79)(cid:79)(cid:3)(cid:76)(cid:81)(cid:3)(cid:68)(cid:79)(cid:79)(cid:15)(cid:3)(cid:87)(cid:75)(cid:76)(cid:86)(cid:3)(cid:69)(cid:82)(cid:82)(cid:78)(cid:3)(cid:76)(cid:86)(cid:3)(cid:68)(cid:3)(cid:70)(cid:68)(cid:86)(cid:72)(cid:3)(cid:86)(cid:87)(cid:88)(cid:71)(cid:92)(cid:3)(cid:76)(cid:81)(cid:3)(cid:75)(cid:82)(cid:90)(cid:3)(cid:80)(cid:68)(cid:87)(cid:75)(cid:72)(cid:80)(cid:68)(cid:87)(cid:76)(cid:70)(cid:68)(cid:79)(cid:3) (cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:86)(cid:70)(cid:76)(cid:72)(cid:81)(cid:87)(cid:76)(cid:192)(cid:70)(cid:3)(cid:78)(cid:81)(cid:82)(cid:90)(cid:79)(cid:72)(cid:71)(cid:74)(cid:72)(cid:3)(cid:69)(cid:72)(cid:70)(cid:82)(cid:80)(cid:72)(cid:86)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:82)(cid:81)(cid:3)(cid:78)(cid:81)(cid:82)(cid:90)(cid:79)(cid:72)(cid:71)(cid:74)(cid:72)(cid:17) Catalog Code: DOL-39 ISBN: 9780-88385-345-0 Hardbound, 2010 List: $58.95 MAA Member: $47.95 To order visit us online at www.maa.org or call 1-800-331-1622. M THE AMERICAN MATHEMATICAL ONTHLY ® Volume117,Number4 April2010 EDITOR DanielJ.Velleman AmherstCollege ASSOCIATEEDITORS WilliamAdkins JeffreyNunemacher LouisianaStateUniversity OhioWesleyanUniversity DavidAldous BruceP.Palka UniversityofCalifornia,Berkeley NationalScienceFoundation RogerAlperin JoelW.Robbin SanJoseStateUniversity UniversityofWisconsin,Madison AnneBrown RachelRoberts IndianaUniversitySouthBend WashingtonUniversity,St.Louis EdwardB.Burger JudithRoitman WilliamsCollege UniversityofKansas,Lawrence ScottChapman EdwardScheinerman SamHoustonStateUniversity JohnsHopkinsUniversity RicardoCortez AbeShenitzer TulaneUniversity YorkUniversity JosephW.Dauben KarenE.Smith CityUniversityofNewYork UniversityofMichigan,AnnArbor BeverlyDiamond SusanG.Staples CollegeofCharleston TexasChristianUniversity GeraldA.Edgar JohnStillwell TheOhioStateUniversity UniversityofSanFrancisco GeraldB.Folland DennisStowe UniversityofWashington,Seattle IdahoStateUniversity,Pocatello SidneyGraham FrancisEdwardSu CentralMichiganUniversity HarveyMuddCollege DougHensley SergeTabachnikov TexasA&MUniversity PennsylvaniaStateUniversity RogerA.Horn DanielUllman UniversityofUtah GeorgeWashingtonUniversity StevenKrantz GerardVenema WashingtonUniversity,St.Louis CalvinCollege C.DwightLahr DouglasB.West DartmouthCollege UniversityofIllinois,Urbana-Champaign BoLi PurdueUniversity EDITORIALASSISTANT NancyR.Board NOTICE TO AUTHORS Proposedproblemsorsolutionsshouldbesentto: The MONTHLY publishes articles, as well as notes DOUGHENSLEY,MONTHLYProblems andotherfeatures,aboutmathematicsandthepro- DepartmentofMathematics fession.Itsreadersspanabroadspectrumofmath- TexasA&MUniversity ematical interests, and include professional mathe- 3368TAMU maticiansaswellasstudentsofmathematicsatall CollegeStation,TX77843-3368 collegiatelevels.Authorsareinvitedtosubmitarticles In lieu of duplicate hardcopy, authors may submit andnotesthatbringinterestingmathematicalideas [email protected]. toawideaudienceofMONTHLYreaders. The MONTHLY’s readers expect a high standard of exposition;theyexpectarticlestoinform,stimulate, challenge, enlighten, and even entertain. MONTHLY articles are meant to be read, enjoyed, and dis- AdvertisingCorrespondence: cussed, rather than just archived. Articles may be MAAAdvertising expositions of old or new results, historical or bi- 1529EighteenthSt.NW ographical essays, speculations or definitive treat- WashingtonDC20036 ments,broaddevelopments,orexplorationsofasin- Phone:(866)821-1221 gleapplication.Noveltyandgeneralityarefarlessim- Fax:(866)387-1208 portantthanclarityofexpositionandbroadappeal. E-mail:[email protected] Appropriatefigures,diagrams,andphotographsare encouraged. Furtheradvertisinginformationcanbefoundonline Notesareshort,sharplyfocused,andpossiblyinfor- atwww.maa.org mal.Theyareoftengemsthatprovideanewproof ofanoldtheorem,anovelpresentationofafamiliar Change of address, missing issue inquiries, and theme,oralivelydiscussionofasingleissue. othersubscriptioncorrespondence: MAAServiceCenter,[email protected] ArticlesandnotesshouldbesenttotheEditor: Allattheaddress: DANIELJ.VELLEMAN AmericanMathematicalMonthly TheMathematicalAssociationofAmerica AmherstCollege 1529EighteenthStreet,N.W. P.O.Box5000 Washington,DC20036 Amherst,MA01002-5000 [email protected] RecentcopiesoftheMONTHLYareavailableforpur- For an initial submission, please send a pdf file as chasethroughtheMAAServiceCenter. anemailattachmentto:[email protected]. [email protected],1-800-331-1622 (Pdf is the only electronic file format we accept.) Microfilm Editions: University Microfilms Interna- Pleaseput“SubmissiontotheMonthly”inthesub- tional,SerialBidcoordinator,300NorthZeebRoad, ject line, and include the title of the paper and AnnArbor,MI48106. the name and postal address of the corresponding authorinthebodyofyouremail.Ifsubmittingmore than one paper, send each in a separate email. In TheAMERICANMATHEMATICALMONTHLY(ISSN lieu of a pdf, an author may submit a single paper 0002-9890) is published monthly except bimonthly copyofthemanuscript,printedononlyonesideof June-JulyandAugust-SeptemberbytheMathemati- the paper. Manuscript pages should be numbered, calAssociationofAmericaat1529EighteenthStreet, and left and right margins should be at least one N.W., Washington, DC 20036 and Hanover, PA, inchwide. AuthorswhouseLATEXareurgedtouse and copyrighted by the Mathematical Association article.sty, or a similar generic style, and its stan- ofAmerica(Incorporated),2010,including rightsto dard environments with no custom formatting. See this journal issue as a whole and, except where recent articles in the MONTHLY for the style of ci- otherwise noted, rights to each individual contribu- tations for journal articles and books. Follow the tion. Permission to make copies of individual ar- linktoElectronicPublicationInformationforauthors ticles, in paper or electronic form, including post- athttp://www.maa.org/pubs/monthly.htmlforinforma- ing on personal and class web pages, for educa- tionaboutfiguresandfilesaswellasgeneraleditorial tional and scientific use is granted without fee pro- guidelines. vided that copies are not made or distributed for profitorcommercialadvantageandthatcopiesbear LetterstotheEditoronanytopicareinvited.Com- the following copyright notice: [Copyright the Math- ments, criticisms, and suggestions for making the ematicalAssociationofAmerica2010.Allrightsre- MONTHLY more lively, entertaining, and informative served.]Abstracting,withcredit,ispermitted.Tocopy arewelcome. otherwise,ortorepublish, requiresspecificpermis- The online MONTHLY archive at www.jstor.orgis a sionoftheMAA’sDirectorofPublicationsandpos- valuable resource for both authors and readers; it sibly a fee. Periodicals postage paid at Washing- maybesearchedonlineinavarietyofwaysforany ton,DC,andadditionalmailingoffices.Postmaster: specifiedkeyword(s).MAAmemberswhoseinstitu- SendaddresschangestotheAmericanMathemat- tionsdonotprovideJSTORaccessmayobtainindi- icalMonthly,Membership/Subscription Department, vidualaccessforamodestannualfee;call800-331- MAA, 1529 Eighteenth Street, N.W., Washington, 1622. DC,20036-1385. SeetheMONTHLYsectionofMAAOnlineforcurrent informationsuchascontentsofissuesanddescrip- tivesummariesofforthcomingarticles: http://www.maa.org/ “To a Factor pre`s”: Cayley’s Partial Anticipation of the Weierstrass ℘-Function Adrian Rice 1. INTRODUCTION. Today, Arthur Cayley is best remembered for his contribu- tionstomodernalgebra,principallyintheareasofmatricesandgrouptheory.Indeed, therecanbeveryfewmathematicianswhohavenotcomeacrosstheCayley-Hamilton theorem regarding the characteristic equations of square matrices, or investigated the propertiesofgroupsbymeansofaCayleytable.ButCayleywasfarfrombeingsolely an algebraist. His mathematical output included fundamental work in, for example, graphtheory(inparticular,hisinitiationofthestudyoftrees),algebraicgeometry(in- cludingtheCayley-Salmontheorem,whichestablishedtheexistenceof27linesona cubicsurface),andprojectivegeometry(wherehisgeneralizedideasonmetricswere amajorinfluenceonFelixKlein).Althoughhismanyandvariedpublicationsbrought him well-deserved fame, it was not his foundational work on matrices and abstract groups that was considered the most significant in his own lifetime [19, p. xvi]. He wasmostfamousasoneofthefoundersandchiefpractitionersofinvarianttheory,one of the key areas of 19th-century mathematics, to which many mathematicians con- tributed,includingSylvester,Salmon,Hermite,Clebsch,Gordan,and,mostfamously, Hilbert[25]. In a period of just over half a century, Cayley published over 900 research papers andarticles.Butheonlywroteonefull-lengthbook[14],andinterestingly,ithadnoth- ing to dowith the areas for which he is best known. It was actually on the subject of elliptic functions, another dominant area of mathematics at the time and yet another of Cayley’s major fields of interest. But this side of Cayley’s mathematics has been largely overlooked by mathematicians and historians of mathematics alike, a relative neglect not helped by the fact that elliptic functions themselves are studied far less today than in their heyday of the 19th century, when they attracted the likes of Abel, Jacobi,Riemann,andWeierstrass.1 Nevertheless,itwasinthetheoryofellipticfunc- tionsthatCayleymadeanimportantcontribution,whichdoesnotappeartobewidely known,namely,thefirstpublishedderivationofafundamentalformulaforellipticin- tegrals,whichanticipatedafamousidentityofWeierstrassbyseveralyears.Butwhat is particularly pleasing about Cayley’s proof is that it relies totally on his use of in- variant theory, a subject that, on the face of it, seems to have little connection to the theoryofellipticfunctions.Inthispaper,wecompareCayley’sderivationtothestan- dard formula, due to Weierstrass, and discuss reasons for the obscurity of the former comparedtotherelativefameofthelatter. 2. BACKGROUND:ARTHURCAYLEYANDKARLWEIERSTRASS. Bornin Richmond,justoutsideLondon,ArthurCayley(1821–1895) enteredTrinityCollege, Cambridge, in 1838, graduating as senior wrangler (i.e., the first in his class) four years later. Even before his graduation, his research career had already begun with his earliest papers appearing in the Cambridge Mathematical Journal in 1841. After spending four years as a research fellow at Trinity, he moved to London, where he worked as a conveyancing lawyer for well over a decade. During this time, however, doi:10.4169/000298910X480766 1Fordetailedaccountsofthedevelopmentofellipticfunctions,see[21]and[23]. April2010] CAYLEY’SANTICIPATIONOFTHEWEIERSTRASS℘-FUNCTION 291 hecontinuedtoproduceanabundanceofmathematicalresearch,publishingover300 papers in this period, not only in British journals, but also in publications overseas, suchasLiouville’sandCrelle’sjournals. Bytheearly1860s,CayleyhadestablishedareputationasoneofBritain’sforemost mathematicians, both at home and abroad. It was fitting, therefore, when in 1863 he waselectedtotheSadleirianprofessorshipofpuremathematicsatCambridge,aposi- tion he helduntil the endof his life. While he was atCambridge, his research output remained exceptionally high and wide-ranging, covering a huge variety of subjects. Indeed, as his friend James Joseph Sylvester once remarked: “whether the matter he takes in hand be great or small, ‘nihil tetigit quod non ornavit’2” [29, p. 605]. And, whilebestrememberedasapuremathematician,Cayleyalsopublishedwidelyinap- plied mathematics, particularly theoretical dynamics and physical astronomy. But it was in the abstract domain of pure mathematics that he felt most at home. His Cam- bridge colleague James Clerk Maxwell was only partially in jest when he wrote that Cayley’s “soul, too large for vulgar space, in n dimensions flourished unrestricted” [16,p.586]. Karl Theodor Wilhelm Weierstrass (1815–1897) was born in the town of Osten- felde, Westphalia in 1815. Entering the University of Bonn in 1834, he enrolled to study public finance and administration, but found that his love of mathematics increasingly distracted him from his studies. In particular, he developed a lifelong fascination for elliptic functions, a subject that had recently been re-invigorated by the work of Abel and Jacobi.3 However, his neglect of his university studies led to hisleavingBonnin1838withouttakingthefinalexamination.Duringthe1839–1840 academic year, he attended lectures on elliptic functions, given by Christoph Guder- mann in Mu¨nster, and shortly afterwards began his own independent research on the subject[24,pp.351–357]. Beginning in 1841, he was employed as a high school (or Gymnasium) teacher in Prussia,teachingahostofschool-levelsubjectsinadditiontohisbelovedmathemat- ics. Like Cayley, he carried out mathematical research in his spare time, but unlike Cayley, only a small fraction of his work was published. However, a seminal paper published in Crelle’s Journal in 1854 [32] proved so exceptional that it led directly toprofessorialappointments,firstattheIndustryInstitute inBerlinin1856,andsub- sequently at the University of Berlin in 1864. From this point, Weierstrass devoted himself to crafting a series of graduate-level courses, in which he created much of thefundamentaltheorybehindrealandcomplexanalysis,andmanyofthetechniques whicharenowubiquitousinbothsubjects[24],[30]. His lectures attracted students from all over Europe, and even America, as he de- veloped a reputation for lecturing on subjects that were unavailable anywhere else [4, pp. 4–9]. Although he published very little, his major ideas and techniques soon reachedtheoutsideworldviathepublicationsofthosewhohadattendedhislectures, suchasAdolfHurwitz,Go¨staMittag-Leffler,andHermannAmandusSchwarz[2].As a result, by the time of his death in 1897, Weierstrass’s name was synonymous with analyticalrigorandlogicalprecision. Insomeways,thelivesofCayleyandWeierstrasscanbeseentoshareanumberof superficialsimilarities.Theybothlivedatthesametime,hadapproximatelyequivalent lifespans,andbegantheirmathematicalresearchintheearly1840s.Bothworkedout- side the university sector for well over a decade before assuming positions at highly prestigious universities. Finally, both planned and began to oversee the publication 2“Hetouchesnothingthathedoesnotadorn.” 3Foradiscussionoftheearlyhistoryofellipticfunctions,see[27]. 292 (cid:2)c THEMATHEMATICALASSOCIATIONOF AMERICA [Monthly117 of their respective collected works ([15], [33]) near the end of their careers, but died beforetheywerecomplete. But the two men were vastly different in many fundamental respects: Cayley’s mathematicswasoftenrapidlywrittenandhastilypublished,whileWeierstrass’swas more painstakingly produced and logically structured. As has been mentioned, Cay- ley published a huge quantity of his research, often within weeks of its composition, whereas Weierstrass’s innate perfectionism “invariably compelled him to base any analysisonafirmfoundation,startingfromafreshapproachandcontinuallyrevising andexpanding”[3,p.221],withtheconsequencethatmuchofhisbestworkremained unpublished for many years. A consequence of these respective characteristics was thatCayley’sworksometimescontainedmistakes,whichhewasonoccasionobliged to correct in subsequent works, although apparently “the prospect of being in error did not seem to worry him unduly—after all, a mistake could easily be rectified in a subsequent corrective ‘Note’” [19, p. 64]. Weierstrass, on the other hand, was highly criticalandrigorous,withtheresultthathismathematicstendedtobemorethoroughly thoughtoutandpolished. Theircontrastingstyleswerealsoevidentintheirlecturerooms.Cayley,ontheone hand,doesnotappeartohavebeenaparticularly effective lecturer,andrarelyhadan audience of more than a handful of students at a time. Even then, his lectures were oftenallbut impossible tofollow, although he“was likely oblivious thathis listeners found the material unfamiliar or that they found any difficulty in understanding it” [19, p. 359]. Consequently, he did little to encourage any except the most motivated studentstoundertakemathematicalresearch.Thisisperhapsthegreatestcontrastwith Weierstrass,who,atthezenithofhiscareerinBerlin,wasahighlyeffectiveandpop- ularinstructor,who“achievedthegreatesteffectivenessthroughhislectures,”4 which on occasion attracted audiences in excess of two hundred [4, pp. 4–5]. It was via the content of these lectures that Weierstrass was ultimately able to exercise a huge in- fluence on the subsequent generation of mathematicians. Indeed, it is from material deliveredinWeierstrass’slecturesinBerlinthatmuchofthemoderntheoryofelliptic functionsisderived. 3. ELLIPTIC FUNCTIONS. The standard definition of an elliptic function, due largely to Weierstrass, is as follows. A meromorphic function f : C → C∪{∞} is saidtobeellipticiftherearenonzeroω ,ω ∈Csuchthatω /ω ∈/ Rand,forz ∈C, 1 2 1 2 f(z+ω )= f(z), i =1,2. i Inotherwords,ameromorphicfunctionisellipticifithastwodistinctperiodsthatare linearlyindependentoverthereals.Historically,however,theprincipalwayofdefining anellipticfunctionwasastheinverseofanellipticintegral, (cid:2) (cid:3) (cid:4) (cid:5) g(t)= R t, P(t) dt, where R isarationalfunctionand P(t)isacubicorquarticpolynomialwithnomul- tiplefactors.Forexample,if At4+ Bt3+Ct2+ Dt + E issuchapolynomial,and (cid:2) dt z = g(t)= √ , At4+ Bt3+Ct2+ Dt + E thenitsinverse,g−1(z),isanellipticfunction. 4“Gro¨ßteWirksamkeiterreichteWeierstraßdurchseineVorlesungen.” April2010] CAYLEY’SANTICIPATIONOFTHEWEIERSTRASS℘-FUNCTION 293 Althoughmanyexamplesofsuchfunctionsexist,themostfamous(andfundamen- tal) was introduced by Weierstrass in his Berlin lectures, and has been known ever sinceastheWeierstrass℘-function: (cid:7) (cid:8) (cid:6)∞ 1 1 1 ℘(z)= + − , (1) z2 (z−(cid:4))2 (cid:4)2 m,n=−∞ (m,n)(cid:8)=(0,0) where(cid:4)=2mω +2nω andω /ω ∈/ R.Thisfunctionhastwolinearlyindependent 1 2 1 2 periods,namely2ω and2ω ,andisanalyticeverywhereexceptatpointscongruentto 1 2 0modulo2ω and2ω ,whereithasadoublepole.5 Itsderivative 1 2 (cid:6) ℘(cid:9)(z)=−2 (z−(cid:4))−3 (2) m,n isalsoanellipticfunction,withthesameperiods.Subtracting4timesthecubeof(1) fromthesquareof(2)gives (cid:6)∗ (cid:6)∗ ℘(cid:9)2(z)−4℘3(z)=−60 (cid:4)−4z−2−140 (cid:4)−6+O(z2), m,n m,n (cid:9) ∗ where indicates that m and n are never zero simultaneously. The infinite series (cid:9) m,n (cid:9) 60 ∗ (cid:4)−4 and 140 ∗ (cid:4)−6 turn out to be absolutely convergent, so Weierstrass m,n m,n abbreviatedthembytheconstants (cid:6)∗ (cid:6)∗ g =60 (cid:4)−4, g =140 (cid:4)−6. 2 3 m,n m,n Since℘(z)= z−2+O(z2),wethereforeget ℘(cid:9)2(z)−4℘3(z)+g ℘(z)+g = O(z2). 2 3 Now, the left-hand side of this equation is doubly periodic, with periods 2ω and 1 2ω , and it is analytic everywhere except at points congruent to 0 modulo 2ω and 2 1 2ω . But since it equals O(z2), it must approach 0 as z → 0, so the singularity at 0 2 is removable and, by periodicity, all the singularities are removable and the function extendstoaboundedentirefunction.Therefore,byLiouville’stheorem,itmustbethe constant0function,soweobtain ℘(cid:9)2(z)=4℘3(z)−g ℘(z)−g . 2 3 Lettingt =℘(z)inthisdifferentialequationallowsustodeducethefollowingelliptic integral: (cid:2) dt z = (cid:4) . (3) 4t3−g t −g 2 3 5Although it is not immediately obvious from its definition that the ℘-function is doubly periodic, the proofofthisfactisrelativelystraightforwardandmaybefoundinanyintroductorybookonthesubject,e.g., [1,pp.160–161]or[31,pp.253–254]. 294 (cid:2)c THEMATHEMATICALASSOCIATIONOF AMERICA [Monthly117 ThisintegralexpressioniscentraltotheWeierstrassianapproach,sinceitsinverseis theWeierstrass℘-function.Furthermore,byvirtueofthefactthateveryellipticfunc- tion is a rational function of ℘ and its derivative ℘(cid:9),6 it turns out that the Weierstrass ℘-functionisthemostcrucialofallellipticfunctions.ThusWeierstrass’sfundamental ellipticintegral(3)standsattheveryheartofthetheoryofellipticfunctionsitself. The above derivation of Weierstrass’s integral form for the inverse of ℘(z) is typ- ical of the style of analysis we now associate with him: formal, rigorous, with an overridingemphasisonpowerseriesandissuesofconvergenceandanalyticity.Butit is utterly different from anything like the kind of mathematics undertaken by Arthur Cayley, whose approach was far more formulaic and computational. Furthermore, Weierstrass’s theory of the ℘-function would appear to fit entirely within the realm of complex analysis, a field that Cayley rarely entered. How then does this topic in- tersect with Cayley’s work, and in particular, what on earth does it have to do with invarianttheory? 4. CAYLEY’S INVARIANT THEORY. The idea of invariance essentially perme- ates the whole of mathematics. For example, by virtue of its double periodicity, any elliptic function f(z) with linearly independent periods ω and ω is invariant under 1 2 thetransformationsz (cid:11)→ z+ω ,z (cid:11)→ z+ω .Duringthe1840sand1850s,principally 1 2 through the work of Cayley and other British mathematicians such as George Boole, James Joseph Sylvester, and George Salmon, the study of invariant properties in al- gebraandgeometrycrystalizedintoamajorsubdiscipline, knownasinvariant theory (see[17],[18],[25],[34]). Considerthegeneralbinaryform (cid:10) (cid:11) (cid:10) (cid:11) (cid:10) (cid:11) (cid:10) (cid:11) n n n n φ =a xn +a xn−1y+a xn−2y2+···+a yn 0 0 1 1 2 2 n n and a linear transformation T : x (cid:11)→ αX +βY, y (cid:11)→ γX +δY, where (cid:10) = αδ − βγ (cid:8)=0andα,β,γ,δ ∈C.7 SupposeT mapsφ to (cid:10) (cid:11) (cid:10) (cid:11) (cid:10) (cid:11) (cid:10) (cid:11) n n n n φ(cid:9) = A Xn + A Xn−1Y + A Xn−2Y2+···+ A Yn. 0 0 1 1 2 2 n n We say that a homogeneous polynomial K in the coefficients and variables of φ is a covariantif,forsomenonnegativeintegerk, K(A ,A ,...,A ;X,Y)=(cid:10)kK(a ,a ,...,a ;x,y). 0 1 n 0 1 n Ahomogeneouspolynomial K injustthecoefficientsofφ isaninvariantif,forsome nonnegativeintegerk, K(A ,A ,...,A )=(cid:10)kK(a ,a ,...,a ). 0 1 n 0 1 n CayleywouldoftenwritethatthetwoexpressionsforK were“toafactorpre`s”equal,8 or,inotherwords,identicaluptoapowerofthedeterminantofthelineartransforma- tion. 6Foraproofofthisstandardresult,see,forexample,[1,p.189]or[31,pp.254–255]. 7Inotherwords,thetransformationT canbeexpressedasa2×2invertiblematrixwithcomplexentries, i.e.,T ∈GL2(C). 8ThephraseoccursinseveralofhistenMemoirsonQuantics,forexample[5,p.246],[8,p.638],[9, pp.422,423],[10,p.435],[12,p.62],[13,p.291].IamindebtedtoDr.TonyCrillyforthispieceofinforma- tion. April2010] CAYLEY’SANTICIPATIONOFTHEWEIERSTRASS℘-FUNCTION 295 Asanexample,takethegeneralbinaryquadratic φ =ax2+2bxy+cy2 andthelineartransformation T : x (cid:11)→αX +βY, y (cid:11)→γX +δY (where(cid:10)=αδ−βγ (cid:8)=0),whichmapsφ to φ(cid:9) =a(αX +βY)2+2b(αX +βY)(γX +δY)+c(γX +δY)2 =(aα2+2bαγ +cγ2)X2+2(aαβ +b(αδ+βγ)+cγδ)XY +(aβ2+2bβδ+cδ2)Y2 = AX2+2BXY +CY2. Now let K be the homogeneous polynomial K(a,b,c) = ac−b2. Then, by our ex- pressionsfor A, B,andC, AC − B2 =(αδ−βγ)2(ac−b2) or K(A,B,C)=(cid:10)2K(a,b,c). The polynomial K(A,B,C) = AC − B2 is thus “to a factor pre`s” equal to ac−b2. Inotherwords, K isaninvariantofthequadraticφ =ax2+2bxy+cy2. Mattersgetconsiderablymorecomplicatedveryquickly,however,asthedegreeof thebinaryformincreases.Inthecaseofthebinaryquartic X =ax4+4bx3y+6cx2y2+4dxy3+ey4, theinvariantsaremuchhardertofind.In1841,Boolediscoveredthatitsdiscriminant, D,isaninvariantof X,andthreeyearslaterwasabletoshowthat J =ace+2bcd −ad2−b2e−c3 isanotherinvariant.When,in1845,Cayleywasabletoprovenotonlythat I =ae−4bd +3c2 isyetanotherinvariant,butalsothat,inmodernterminology, I and J formaminimum generating set of invariants of X with respect to the group GL (C), Boole quickly 2 followedthisbyproving(“usingabruteforcecalculation”[26,p.24])that D = I3−27J2. This kind of dependence relationship between invariants was later called a syzygy by Sylvester. Indeed, in addition to the terms “invariant,” “covariant,” and “syzygy,” Sylvester further enriched the subject by his introduction of a number of terms and 296 (cid:2)c THEMATHEMATICALASSOCIATIONOF AMERICA [Monthly117

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.