CHEMICALECOLOGY Ambrosia Beetle (Coleoptera: Curculionidae) Responses to Volatile Emissions Associated With Ethanol-Injected Magnolia virginiana CHRISTOPHERM.RANGER,1,2,3MICHAELE.REDING,1,2PETERB.SCHULTZ,4 ANDJASONB.OLIVER5 Environ.Entomol.41(3):636Ð647(2012);DOI:http://dx.doi.org/10.1603/EN11299 ABSTRACT Xylosandrusgermanus(Blandford)andotherspeciesofambrosiabeetlesarekeypests ofornamentalnurserytrees.Avarietyoflaboratory-andÞeld-basedexperimentswereconductedin pursuitofimprovedmonitoringstrategiesandtodevelopatraptreestrategyforambrosiabeetles. TrapsbaitedwithboltspreparedfromMagnoliavirginianaL.injectedwithethanolcaughtÞvetimes moreX.germanusthanethanol-baitedtraps.BasalsteminjectionsofethanolintoM.virginianainduced more ambrosia beetle attacks than irrigating or baiting with ethanol, and no attacks occurred on water-injected trees. A positive correlation was also detected between concentration of injected ethanolandcumulativeattacks.Solidphasemicroextraction-gaschromatography-massspectrometry characterizedbarkemissionsfromethanol-andwater-injectedM.virginianaat1,2,10,and16dafter treatment.Ethanolemissionfrominjectedtreessteadilydeclinedfrom1to16daftertreatment,but was not emitted from water-injected trees. A variety of monoterpenes were also emitted in trace amounts from the ethanol- and water-injected trees. Antennal responses of X. germanus via gas chromatography-electroantennographic detection to volatiles from ethanol-injected M. virginiana occurredforethanol,butnotthevariousmonoterpenes.X.germanusandotherambrosiabeetleswere alsoequallyattractedtotrapsbaitedwithethanolalonecomparedwithasyntheticmixtureofethanol plus various monoterpenes formulated to mimic ethanol-injected M. virginiana. Injecting concen- tratedsolutionsofethanolintotreesmaybeusefulforestablishingodor-basedtraptrees,whichcould aidwithmonitoringprogramsand/orpotentiallydeßectambrosiabeetlesawayfromvaluablenursery stock. KEYWORDS ambrosiabeetles,Xylosandrusgermanus,ethanol,solidphasemicroextraction Exoticambrosiabeetles(Coleoptera:Curculionidae: germanushassincebecomeestablishedinthenorth- Scolytinae) are increasingly being recognized as eastern,southern,midwestern,anduppernorthwest- emerging pests of ornamental nursery stock (Oliver ernUnitedStates(Mudgeetal.2001,Rabagliaetal. and Mannion 2001, Reding et al. 2010). Symptoms 2006).Itisknowntoattack(cid:2)200species,butdecid- associated with colonization by these fungivorous uoushostsarepreferredoverconiferousspecies(We- wood-boringbeetlescanincludedieback,wiltingfo- berandMcPherson1983).Nurserystockcommonly liage,profusebasalsprouts,andestheticdamagetothe attacked in Ohio include dogwood (Cornus spp.), bark. Xylosandrus germanus (Blandford) is the most Magnolia spp., redbud (Cercis spp.), and Styrax spp. commonspeciesofambrosiabeetleattackingnursery (C.M.Ranger,personalobservation). stockinOhio(Rangeretal.2010,Redingetal.2010). AnefÞcientolfactorymechanismaidsX.germanus Since Þrst being detected in New York in 1932, X. in distinguishing among host qualities, with physio- logically stressed trees being preferentially attacked Mentionofproprietaryproductsorcompaniesdoesnotconstitute (WeberandMcPherson1984,Solomon1995,Ranger anendorsementorrecommendationbytheUSDA-AgriculturalRe- etal.2010).Ethanolisemittedfromstressed,dying, searchService,TheOhioStateUniversity,TennesseeStateUniver- anddecayinghosts(KimmererandKozlowski1982, sity,orVirginiaTech. Joseph and Kelsey 1997, Kelsey and Joseph 2001), 1USDA-Agricultural Research Service, Application Technology ResearchUnit,HorticulturalInsectsResearchLaboratory,1680Mad- and represents the most attractive semiochemical isonAve.,Wooster,OH44691. known for X. germanus (Montgomery and Wargo 2Department of Entomology, The Ohio State University, Ohio 1983; Ranger et al. 2010, 2011a). As such, ethanol- AgriculturalResearchandDevelopmentCenter,1680MadisonAve., baited traps are used for detecting X. germanus and Wooster,OH44691. 3Correspondingauthor,e-mail:[email protected]. other ambrosia beetles and monitoring their ßight 4Hampton Roads Agricultural Research and Extension Center, activity(Gandhietal.2010,Redingetal.2010,Ranger VirginiaTech.,VirginiaBeach,VA23455. etal.2011a). 5OtisL.FloydNurseryResearchCenter,CollegeofAgriculture, Buchanan (1941) induced attacks by X. germanus HumanandNaturalSciences,TennesseeStateUniversity,McMin- nville,TN37110. underlaboratoryconditionsbyinjecting50%ethanol 0046-225X/12/0636Ð0647$04.00/0(cid:2)2012EntomologicalSocietyofAmerica June2012 RANGERETAL.:AMBROSIABEETLERESPONSESTOVOLATILEEMISSIONS 637 intoboltsofelm(Ulmussp.).Basalsteminjectionsof MA)wasusedtoinjectM.virginianawith75mlof90% ethanolintolivingtreesalsoinducedambrosiabeetle ethanolorwater.Treeswere(cid:3)4yrold,1mtall,and attacks under Þeld conditions, and X. germanus was growingin13litercontainerswithamixtureofaged themostpredominantspeciesemergingfromethanol- pine bark, peat, and coarse sand (60:30:10 vol:vol). injectedtreesinOhio(Rangeretal.2010).Injecting Injection sites were initiated by drilling a single 9.5 ethanolintoM.virginianaalsoinducedmoreattacks mm hole (cid:3)16 mm deep into the base of the trees, thanotherlowmolecularweightvolatilesknowntobe whichhadabasecaliperof40Ð50mm.Theholewas emitted in response to physiological stress, namely, immediatelypluggedwithanArborjetinjectionport acetaldehyde, acetone, ethyl acetate, and methanol (9.5mmdiameter)and75mlof90%aqueousethanol (KimmererandMacDonald1987,KimmererandKoz- solutionswereinjectedatadeliverypressureof4.14 lowski 1982, Ranger et al. 2010). Using the ethanol- bar(60psi). injection technique to ensure ambrosia beetle pres- Stemsectionsof10cminlengthweresubsequently sure on experimental trees subsequently made it taken24hafterinjectionat5cmabovetheinjection possibletoassesstheefÞcacyofbotanicalinsecticides portfromtheethanol-orwater-injectedtrees.Asingle underÞeldconditionsinOhio(Rangeretal.2011b). boltfromeitherethanol-orwater-injectedtreeswas ThetechniquealsoallowedfordeterminingtheefÞ- thenpositionedandsecuredverticallywithinbottle cacyofconventionalinsecticidesagainstXylosandrus trapspreparedaccordingtoRangeretal.(2010)and crassiusculus(Motschulsky)andotherambrosiabee- picturedinRedingetal.(2011).Inshort,aTornado tles in North Carolina, along with providing insight Tube(SteveSpanglerScience,CO)wasusedtocon- intosecondarypestoutbreaksresultingfromthepre- nectthemouthsofa1literplasticbottleanda0.5liter ventative insecticide applications (Frank and Sadof plastic bottle. Two rectangular openings (cid:3)12.5 cm 2011).Field-basedefÞcacydataforambrosiabeetles long(cid:4)6cmwidewerecutintothesidesofthe1liter was previously difÞcult to obtain because of the in- bottletoallowtheentranceofambrosiabeetles.In- abilitytoensurepressureontreatedandcontroltrees dividualboltswerehungverticallywithinthe1liter (MizellandRiddle2004). bottle.Additionaltrapswerealsobaitedwithanin- InducingambrosiabeetleattacksonspeciÞctrees dividual heat-sealed, permeable membrane pouch couldaidwithmonitoringßightandcolonizationac- Þlled with 10 ml of 95% ethanol (65 mg/d at 30(cid:5)C; tivity for properly timing insecticide applications AgBio, Westminster, CO). Empty traps served as a withinornamentalnurseries.Attacksbywood-boring blankcontrol.The0.5litercollectingbottlewasÞlled beetlesotherthantheScolytinaehavenotbeenob- withpropyleneglycolasakillingandpreservingagent. served to occur as a result of ethanol-injection into Traps were positioned 0.6 m above ground level by living trees (Ranger et al. 2010). In addition, unin- attaching the inverted end of the 1 liter bottle to a jectedtreesadjacenttoethanol-injectedtreesarenot metalrod.Trapswerearrangedinarandomizedcom- attacked by X. germanus or other ambrosia beetles pleteblockdesignalongtheedgeofawoodlotatthe (Ranger et al. 2010). Thus, strategic placement of OhioAgriculturalResearchandDevelopmentCenter ethanol-injected trees may also be useful for inter- (OARDC),Wooster,OH(WayneCo.),with6mbe- cepting ambrosia beetles and deßecting them away tweentrapsand15mbetweenblocks.Intotal,eight fromvaluablenurserystock,particularlyaspartofa completeblockswereused,thuseightreplicatesfor Ôpush-pullÕ management strategy (Pyke et al. 1987, each treatment. Traps were held under Þeld condi- MillerandCowles1990). tionsfrom4May2009through18May2009. Aspartofourcurrentstudy,avarietyoflaboratory- Inducing Attacks on Specific Trees. To aid in de- andÞeld-basedstudieswereconductedtoaidinmoni- velopinganodor-basedtraptreefordetecting,mon- toringanddevelopingatraptreestrategyforambrosia itoring, and potentially mass trapping purposes, the beetles.Ourobjectiveswereto:1)assesstheattractive- effectiveness of injecting, irrigating, or baiting with nessoftrapsbaitedwithboltsfromethanol-injectedM. ethanolforinducingambrosiabeetleattacksonspe- virginiana;2)compareinjecting,irrigating,orbaitingM. ciÞctreeswascompared.Theaforementionedtech- virginianawithethanolforinducingattacksonspeciÞc niqueswereusedtoinjectpottedM.virginianawith trees;3)examinetherelationshipbetweenconcentra- 75mlof90%ethanolor75mlofdeionized/distilled tionofinjectedethanolandattacks;4)characterizevol- water. Trees were also irrigated with 75 ml of 90% atileemissionsfromethanol-injectedtreesandthecor- ethanol,orbaitedwithoneofthepreviouslydescribed responding antennal response by X. germanus; and 5) ethanolluresat40Ð50cmabovethetreebase. determine the attractiveness of a complex mixture of Immediately after injection, experimental trees ethanolandmonoterpenesbasedonemissionsfrometh- werearrangedinrandomizedcompleteblocksalong anol-injectedtrees. theedgeofaserviceroadpassingthroughawoodlot at the OARDC. Trees within each block were 3 m apartandreplicatedblockswereseparatedby6m.In MaterialsandMethods total,Þvecompleteblockswereused,thusÞverepli- Bolt Attractiveness. To aid with developing im- cates for each treatment. Trees were injected, irri- proved detection and monitoring tactics, the attrac- gated,orbaitedon21July2009andmaintainedunder tivenessofboltsfromethanol-injectedM.virginiana Þeldconditionsuntil6August2009duringwhichtime werecomparedwithanethanollure.BasedonRanger theywerethoroughlyexaminedfornewgalleriesat1, etal.(2010),anArborjetTreeI.V.system(Woburn, 4,7,10,13,and16daftertreatment(DAT).Gallery 638 ENVIRONMENTALENTOMOLOGY Vol.41,no.3 croboretubing(0.568mminnerdiameter(cid:4)1.07mm outerdiameter,ColeParmer)wasalsoÞttedtopass throughoneofthesepta,whichwouldlaterallowfor aSPMEsyringetobeinsertedintothechamber(Fig. 1A). The free end of the microbore tubing that ex- tendedoutsideofthechamberwastemporarilysealed by folding multiple times and compressing with a microcabletietopreventthelossofvolatilesduring equilibration.Cablestieswereusedtosnuglysecure the PTFE chamber against the stem in parallel, therebyconÞning6cm2ofbarktissue.Theparticu- larly smooth bark associated with M. virginiana al- lowedforclosecontactbetweenthetissueandsam- plingchamber,whicheffectivelysealedthechamber frompassiveairßow.Thelowerendofthechambers werepositioned(cid:3)12Ð15cmaboveandin-linewiththe Fig.1. (A)Volatilesamplingchamber(1)detailingmi- injectionport. croboretubing(2)passingthroughasemicircularseptum. Chamberswereheldinplacefor30mintoallowfor (B)ThemicroboretubingallowedforaSPMEsyringetobe volatile equilibration. After sufÞcient equilibration, positionedwithinthechamberduringsampling. thesealedmicroboretubingextendingoutsideofthe chamberwascutwithin0.5cmoftheseptumanda entrances were circled with a waterproof marker syringecontainingaretractedSPMEÞberwasimme- (Sharpie,OakBrook,IL)toquantifyattacksateach diately inserted through the microbore tubing and timepointandsubsequentlytotaledtocalculatecu- intothesealedchamber.Cabletieswereusedtose- mulativeattacks. cure the syringe holder against the stem in parallel, Concentration Response. To optimize the attrac- andthentheSPMEÞberwasextrudedfromthesy- tivenessofethanol-injectedtrees,theassociationbe- ringetipandexposedfor10minwithinthechamber tweenconcentrationofinjectedethanolandambrosia (Fig.1B).TheÞberwasretractedintothesyringeafter beetle attacks was examined. Potted M. virginiana samplingandimmediatelycappedwithasealedsec- wereinjectedwith75mlof90,45,22.5,11.25,or5.6% tion of PTFE microbore tubing to prevent contami- solutions of ethanol based on the aforementioned nation.FiberswerethenwrappedinaTeßonbagand techniques.Controltreeswereinjectedwith75mlof brießy held at (cid:6)40(cid:5)C until analysis. A Þber coating water. Immediately after injection, trees were ar- of divinylbenzene-carboxen-polydimethylsiloxane rangedinrandomizedcompleteblocksalongtheedge (DVB/CAR/PDMS; 50/30 (cid:2)m coating; Sigma- of a service road passing through a woodlot at the Aldrich,St.Louis,MO)wasused,whichisidealfora OARDC.Treeswithineachblockwere3mapartand range of volatile and semivolatile compounds (MW replicatedblockswereseparatedby6m.Intotal,Þve 40Ð275)(Sigma-Aldrich2011). complete blocks were used, thus Þve replicates for Volatileswerethermallydesorbedbyexposingthe each treatment. Trees were injected on 7 May 2009 Þberwithintheinjectionportofagaschromatograph and maintained under Þeld conditions until 28 May (VarianCP-3800)equippedwithaMerlinMicroseal 2009duringwhichtimetheywerethoroughlyexam- septum system (Sigma-Aldrich). The injection port inedfornewgalleriesat1,3,7,14,and21DAT. consistedofadeactivatedglasslinerwitha0.75mmID Volatile Emissions. The time-course emission of and a single tapered end speciÞc for SPME applica- volatiles from M. virginiana at 1, 2, 10, and 16 DAT tions.Fiberswereheldintheinjectionportfor2min wereassessedusingtreesinjectedwith75mlof90% at250(cid:5)C,whichwasoperatedinsplitlessmodefrom0 ethanol or water. Four ethanol-injected and water- to 2.5 min and then split at a ratio of 1:20 for the injectedtreeswereexaminedwhilebeingmaintained remainderoftherun.AcapillarynonpolarDB-5col- inagreenhouseundernaturallightconditions.Solid umn(0.25mm(cid:4)30m(cid:4)0.25(cid:2)m;cross-linked/surface phase microextraction (SPME) was used to sample bonded5%phenyl,95%methylpolysiloxane;Agilent volatilesemanatingfromlowerwoodystemregions, J&W,SantaClara,CA)wasusedforanalysisaccording whichtypicallysustainsthelargestnumberofambro- to the following program: 40Ð150(cid:5)C at 3(cid:5)C/min and sia beetle attacks (C. M. Ranger, personal observa- 150Ð246(cid:5)Cat15(cid:5)C/min.Arampof15(cid:5)C/minwasused tion).Volatilesamplingchambers(6(cid:4)1(cid:4)7cm;l(cid:4) afterreaching150(cid:5)Cbecauseoftheconsistentabsence w(cid:4)h)withaninternalvolumeof3cm3(Fig.1A,B) ofhost-derivedvolatilesdetectedabovethistemper- wereconstructedbyÞrstusingarazorbladetolon- ature.Heliumwasusedasacarriergasat1ml/min.A gitudinallysliceasectionofpolytetraßuoroethylene Varian 2200 mass spectral detector was operated in (PTFE)tubinginhalf(10mminternaldiameter;2mm electron impact mode with a scan range of 14Ð415 tubingthickness;ColeParmer,VernonHills,IL).An m/z. System control was accomplished with Star 11 mm diameter circular septum (Molded Ther- ChromatographyWorkstationsoftware(StarToolbar, mogreenLB-2Septa;Supelco,Bellefonte,PA),cutin version6.8;Varian,PaloAlto,CA).Fiberswerecon- halftoformasemicircle,wasthennestledwithineach ditionedbeforeeachanalysisbyexposurewithinthe endofthePTFEtubing.A6cmpieceofPTFEmi- injectionportfor20minat250(cid:5)C. June2012 RANGERETAL.:AMBROSIABEETLERESPONSESTOVOLATILEEMISSIONS 639 All identiÞcations were conÞrmed by comparing moistpapertowels.Volatileswerecollectedfromthe mass spectral fragmentation patterns and retention bark of M. virginiana using SPME according to the timeswithauthenticstandards,alongwithreferencing aforementioned procedures. The GC-EAD system Adams(2007)andtheNationalInstituteofStandards wascomprisedofaVarianCP-3800gaschromatograph andTechnology(NIST)MSdatabase.Fordetermin- equippedwithaßameionizationdetector(FID)and ing relative quantities, serial dilutions of ethanol an electroantennographic detector (EAD) system (99.5%purity,AcrosOrganics,Geel,Belgium)ranging (Syntech,Hilversum,TheNetherlands).TheGCwas from 100 to 0.0001 g/L were made in water. Serial operated in splitless mode with the aforementioned dilutions(100to0.0001g/L)ofthefollowingmono- columnandprogram.Efßuentfromthecolumnwas terpene standards were also prepared: (-)-(cid:3)-pinene split1:1betweentheFIDandEAD.Nitrogenwasused ((cid:4)99.0%; Sigma-Aldrich), ((cid:7))-(cid:3)-pinene ((cid:4)99.0%; asamakeupgas(30ml/min)atthejunctionofthe Sigma-Aldrich), ((cid:7))-camphene ((cid:4)99.0%; Sigma- splitter(SGEAnalyticalScience,Austin,TX).Deac- Aldrich), (-)-(cid:5)-pinene ((cid:4)99.0%; Sigma-Aldrich), tivated,fusedsilicatubing(0.32mmdiameter)deliv- ((cid:7))-(cid:5)-pinene ((cid:4)98.5%; Sigma-Aldrich), myrcene eredhalfoftheefßuenttotheFIDwhiletheotherhalf ((cid:4)95.0%;Sigma-Aldrich),(cid:6)-cymene((cid:4)99.5%;Sigma- passed through a heated transfer line maintained at Aldrich),R-((cid:7))-limonene((cid:4)99.0%;Sigma-Aldrich), 246(cid:5)C. The terminal column end for the EAD ex- and eucalyptol ((cid:4)99.0%; Sigma-Aldrich). Monoter- tended0.5mmintoastainlesssteelodordeliverytube penestandardswereÞrstdilutedinethanolbecauseof thatwaspositioned11cmupwindfromtheantennal theirinsolubilityinwater,butsubsequentserialdilu- preparation.HumidiÞed,charcoalÞlteredairpassed tionsweremadeinwater.Standardsofvariouscon- throughtheodordeliverytubeat150ml/minandover centrationswereanalyzedbyÞrstusingcabletiesto theantennalpreparationat(cid:3)2.5cm/s.Antennalprep- looselysecurethepreviouslydescribedvolatilesam- arationsconsistedofaglasspipettewithanAg/AgCl plingchamberinparallelwithaglasstesttube(2.5cm indifferent electrode containing Beadle-Ephrussi sa- diameter). A 20 (cid:2)l aliquot containing a known con- linethatwasinsertedintotheforamenofX.germanus centration of an individual compound was then ap- Õhead.Thesaline-ÞlledAg/AgClrecordingelectrode plied to a piece of Þlter paper (2 (cid:4) 1 cm; l (cid:4) w) was micromanipulated to superÞcially puncture the positionedwithinthevolatilesamplingchamber.The centeroftheleftantennalclubasitwasbracedagainst cable ties were then immediately pulled tight to ef- thehead. fectivelysealthechamber.SPMEÞberswereexposed Recording electrode signals were ampliÞed by a for10minwithinthesamplingchamberaccordingto highimpedanceprobeandfurtherampliÞed,Þltered, the previously described methods and analyzed im- and optimized using a two-channel data acquisition mediatelyafterwards. controller (IDAC-2; Syntech). Data were processed Peak areas associated with standard compounds usingGC-EAD2010software(Syntech).Amplitudes weremeasuredusingtheStarChromatographyWork- were calculated for all EAD peaks that occurred stationsoftware.Standardconcentrationcurveswere withina15minwindowthatencompassedallofthe then calculated and used to determine the relative compounds identiÞed from ethanol-injected M. vir- quantities of individual compounds associated with giniana. Spikes were only characterized as antennal volatile emissions from M. virginiana. Under the responsesiftheyoccurredinatleast4ofthe10runs. properconditions,SPMEcanbeusedforcomparing LureFormulation.Amountsofthefollowingstan- therelativequantitiesofanindividualcompoundin dards at the aforementioned purities were used to differentsamples(Bartelt1997,Romeo2009).How- prepare a synthetic mixture of ethanol and selected ever,becauseofdifferencesinafÞnitiesofSPMEÞ- monoterpenes approximating ratios associated with bersfordifferentcompounds,relativequantitationby ethanol-injected M. virginiana at 2 DAT: ethanol SPMEdoesnotallowonetocomparethequantitiesof (118.35 g), (-)-(cid:3)-pinene (22.31 mg), ((cid:7))-(cid:3)-pinene differentcompoundswithinthesamesample(Bartelt (22.31mg),((cid:7))-camphene(43.78mg),(-)-(cid:5)-pinene 1997,Romeo2009).Absolutequantitationofdifferent (22.67mg),((cid:7))-(cid:5)-pinene(22.67mg),myrcene(15.88 compoundswithinthesamesamplecanbeachieved mg),(cid:6)-cymene(44.56mg),limonene(43.74mg),and usingSPME(Bartelt1997,Romeo2009),butwasnot eucalyptol(239.85mg).AvolumeofparafÞnoilcom- conductedaspartofourcurrentstudybecauseofthe parable to the total volume of monoterpenes was lack of an internal standard during initial sampling. addedtoethanolasacontrolformulation.Testmix- Thus,therelativequantitiesofindividualcompounds tureswerethenloadedintoseparatePher-Emitdis- emittedfromM.virginianaoverseveralpointsintime pensers(15mlvolume;Med-E-Cell,SanDiego,CA) wereonlycomparedwithin(i.e.,ethanol-injectedor manufacturedwithaproprietaryreleasemechanism water-injected) and between (e.g., ethanol-injected of394mg/dat23(cid:5)Cforethanol. versuswater-injected)samples. AttractivenessofthetestmixturesinthePher-Emit Electrophysiological Response. Gas chromatogra- dispensers was assessed using the aforementioned phy-electroantennographicdetection(GC-EAD)was traps.Trapswerearrangedincompletelyrandomized usedtoassesstheantennalresponseof10adultfemale blocksalongtheedgeofawoodlotinWayneCo.,OH, X. germanus to volatile emissions from ethanol-in- with6mbetweentrapsand15mbetweenblocks.In jected M. virginiana at 2 DAT. Adult females were total,eightblockswereused,thuseightreplicatesfor reared from maple bolts previously infested with X. eachtreatment.Fieldtrappingwasconductedfrom12 germanusthatwereconÞnedtoplasticcontainerswith May2011through2June2011. 640 ENVIRONMENTALENTOMOLOGY Vol.41,no.3 Statistics.One-wayanalysisofvariance(ANOVA) and Duncan multiple range test (MRT) at (cid:3)(cid:8) 0.05 wereusedtocomparetotalambrosiabeetlecountsin Þeldtrappingstudies(SASInstitute2001).Datasets involving cumulative ambrosia beetle attacks over time were Þrst analyzed by repeated measures ANOVAtotestforwithin-subjectandbetween-sub- ject treatment (cid:4) time effects (SAS Institute 2001). One-wayANOVAandDuncanÕsMRTat(cid:3)(cid:8)0.05were subsequentlyusedtocomparemeansatspeciÞctime pointswhensigniÞcant(P(cid:9)0.05)within-subjector between-subject treatment (cid:4) time effects were de- tected.PearsonÕscorrelationcoefÞcientanalysiswas alsousedtodeterminethedegreeofcorrelationbe- Fig. 2. Cumulative mean ((cid:10)SE) number of ambrosia beetleattacksassociatedwithinjectingorirrigatingM.vir- tween cumulative ambrosia beetle attacks and DAT ginianawithethanol,orbaitingwithanethanollure.Control (SAS Institute 2001). PearsonÕs correlation coefÞ- trees were injected with water. Different letters indicate cientscharacterizetherelationshipbetweentwoin- signiÞcantdifferences16DAT(DuncanÕsMRT;(cid:3)(cid:8)0.05;see dependentvariablesandrangefromanabsoluteneg- Resultssectionforstatisticalanalyses). ative correlation of (cid:6)1 to an absolute positive correlation of 1 (SAS Institute 2001). The general linearmodelsprocedure(SASInstitute2001)wasalso or baiting M. virginiana with ethanol was compared used to Þrst compare the overall equality of slopes underÞeldconditions(Fig.2).SigniÞcantdifferences associatedwithcumulativeattacksandDAT.Thegen- weredetectedamongallfourtreatmentsat16DAT erallinearmodelsprocedureandpredeterminedcon- withamean((cid:10)SE)of116(cid:10)19.7cumulativeattacks traststatementswerethenusedtomakespeciÞccom- onethanol-injectedtrees,followedby22.5(cid:10)7.9at- parisons among and between slopes (SAS Institute tacksontreesirrigatedwithethanol,6.25(cid:10)1.46at- 2001). tacksontreesbaitedwithethanol,and0.0(cid:10)0.0attacks The time-course emission of an individual com- ontreesinjectedwithwater(F(cid:8)77.79;df(cid:8)3,16;P(cid:9) pound within and between treatments was also ex- 0.0001)(Fig.2).SigniÞcantdifferenceswerealsode- amined using repeated measures ANOVA. One-way tectedintheoverallequalityofslopesassociatedwith ANOVAandDuncanÕsMRTweresubsequentlyused cumulativeattacksandDATfortreesinjected(0.49), tocomparetherelativeconcentrationsofanindivid- irrigated(0.16),orbaitedwithethanol(0.17),orin- ualvolatilewithinaparticulartreatmentwhenasig- jectedwithwater(0.0)(F(cid:8)23.35;df(cid:8)3;P(cid:9)0.0001). niÞcant within-subject treatment (cid:4) time effect was Subsequent speciÞc contrasts determined the slope detected. PearsonÕs correlation coefÞcient analysis associated with trees injected with ethanol was sig- was also used to examine the correlation between niÞcantlylargerthantheremainingtreatments(F(cid:8) emissionofanindividualvolatilecompoundandDAT. 61.77;df(cid:8)1;P(cid:9)0.0001). WhensigniÞcantbetween-subjecttreatment(cid:4)time Repeated measures ANOVA indicated signiÞcant effects were detected for an individual compound, within-subject treatment (cid:4) time effects (F (cid:8) 43.55; relative concentrations associated with ethanol-in- df(cid:8)15;P(cid:9)0.0001).SigniÞcantdifferencesinmean jected and water-injected trees were compared at ((cid:10)SE) cumulative attacks on ethanol-injected trees eachtimepointusinganunpairedt-test((cid:3)(cid:8)0.05;SAS weredetectedbetween1DAT(7.3(cid:10)1.7)and4DAT Institute 2001). In all cases, data were square root (48.0 (cid:10) 11.4), which were both signiÞcantly lower transformedbeforeanalysis,butuntransformeddata than the remaining dates, but differences were not arepresented. detectedamong7DAT(85.5(cid:10)12.6),10DAT(103.0(cid:10) 15.7),13DAT(106.8(cid:10)17.0),and16DAT(116(cid:10)19.7) (F(cid:8)23.18;df(cid:8)5,24;P(cid:9)0.0001)(Fig.2).PearsonÕs Results correlation coefÞcient analysis detected a positive BoltAttractiveness.Amean((cid:10)SE)of23.88(cid:10)3.28 correlation between cumulative ambrosia beetle at- X. germanus were collected in traps baited with an tacks and DAT for trees injected with ethanol (r (cid:8) individual bolt from ethanol-injected M. virginiana, 0.81;P(cid:9)0.0001). whichwassigniÞcantlyhighercomparedwith4.75(cid:10) SigniÞcantlyfewermean((cid:10)SE)cumulativeattacks 1.16 specimens collected from traps baited with an occurred on trees irrigated with ethanol at 1 DAT ethanollure,0.13(cid:10)0.13fromtrapsbaitedaboltfrom (3.0(cid:10)0.41)comparedwiththeremainingdates,but awater-injectedtree,and0.0(cid:10)0.0fortheblanktrap differenceswerenotdetectedamong4DAT(15.3(cid:10) (F(cid:8)80.98;df(cid:8)3,28;P(cid:9)0.0001).Theethanollure 4.8),7DAT(20.8(cid:10)7.5),10DAT(22.3(cid:10)7.7),13DAT was more attractive to X. germanus than the water- (22.3(cid:10)7.7),and16DAT(22.5(cid:10)7.9)(F(cid:8)4.30;df(cid:8) injectedboltandblankcontrol,butsigniÞcantdiffer- 5,24;P(cid:8)0.006)(Fig.2).Apositivecorrelationwas ences did not occur between these latter two treat- detected between cumulative attacks and DAT for ments. treesirrigatedwithethanol(r(cid:8)0.53;P(cid:8)0.0024). InducingAttacksonSpecificTrees.Theabilityto SigniÞcantdifferencesinmean((cid:10)SE)cumulative induceambrosiabeetleattacksbyinjecting,irrigating, attacks on trees baited with ethanol were detected June2012 RANGERETAL.:AMBROSIABEETLERESPONSESTOVOLATILEEMISSIONS 641 tween14DATand21DAT(82.8(cid:10)11.0)(F(cid:8)43.12; df(cid:8)4,20;P(cid:9)0.0001)(Fig.3).PearsonÕscorrelation coefÞcientanalysisdetectedapositivecorrelationbe- tween cumulative ambrosia beetle attacks and DAT for trees injected with 90% ethanol (r (cid:8) 0.87; P (cid:9) 0.0001). The mean ((cid:10)SE) cumulative number of attacks occurringontreesinjectedwith45%ethanolwerenot signiÞcantlydifferentbetween1DAT(2.0(cid:10)0.7)and 3DAT(6.8(cid:10)2.4),buttheyweresigniÞcantlylower comparedwith7DAT(25.8(cid:10)5.3),14DAT(44.0(cid:10) 11.4),and21DAT(50.8(cid:10)11.6)(F(cid:8)12.27;df(cid:8)4,20; P (cid:9) 0.0001). However, no signiÞcant difference in cumulativeattacksweredetectedamong7,14,and21 Fig.3. Relationshipbetweenconcentrationofethanol DAT. PearsonÕs correlation coefÞcient analysis de- injectedintoM.virginianaandcumulativeambrosiabeetle tectedapositivecorrelationbetweencumulativeam- attacks.DifferentlettersindicatesigniÞcantdifferences21 DAT (DuncanÕs MRT; (cid:3)(cid:8) 0.05; see Results section for brosiabeetleattacksandDATfortreesinjectedwith statisticalanalyses). 45%ethanol(r(cid:8)0.78;P(cid:9)0.0001). NosigniÞcantdifferenceincumulativeattacksoc- curredfortreesinjectedwith22.5%ethanolbetween between1DAT(0.0(cid:10)0.0)and4DAT(1.8(cid:10)1.0), 1DAT(3.4(cid:10)0.8)and3DAT(8.2(cid:10)0.9)(F(cid:8)6.65; whichwerebothsigniÞcantlylowerthantheremain- df(cid:8)4,20;P(cid:8)0.0014)(Fig.3).AsigniÞcantdifference ingdates,butdifferenceswerenotdetectedamong7 was also not detected between 3 DAT and 7 DAT DAT(4.3(cid:10)1.4),10DAT(5.3(cid:10)1.3),13DAT(5.5(cid:10) (26.0(cid:10)5.9),oramong7DAT,14DAT(39.6(cid:10)12.5), 1.4),and16DAT(6.3(cid:10)1.9)(F(cid:8)11.76;df(cid:8)5,24;P(cid:9) and 21 DAT (46.8 (cid:10) 15.5) PearsonÕs correlation co- 0.0001)(Fig.2).Apositivecorrelationwasdetected efÞcient analysis detected a positive correlation be- betweencumulativeattacksandDATfortreesbaited tween cumulative ambrosia beetle attacks and DAT withethanol(r(cid:8)0.76;P(cid:9)0.0001).Water-injected fortreesinjectedwith22.5%ethanol(r(cid:8)0.70;P(cid:8) treeswerenotattackedthroughoutthedurationofthe 0.0001). experiment(Fig.2). NosigniÞcantdifferenceincumulativeattacksoc- Concentration Response. An association between curredfortreesinjectedwith11.25%between1DAT concentration of injected ethanol ranging from 0 to (2.6(cid:10)0.9)and3DAT(6.4(cid:10)0.9),oramong3DAT, 90% and cumulative ambrosia beetle attacks was as- 7DAT(15.0(cid:10)4.9),14DAT(18.6(cid:10)7.6),and21DAT sessedunderÞeldconditions(Fig.3).Amean(cid:10)SEof (19.4(cid:10)8.2)(F(cid:8)3.23;df(cid:8)4,20;P(cid:8)0.034)(Fig.3). 82.8(cid:10)11.0cumulativeattackswereassociatedwith Apositivecorrelationbetweencumulativeambrosia treesinjectedwith90%ethanolat21DAT,whichwas beetle attacks and DAT was also detected for trees signiÞcantlyhighercomparedwith11.2(cid:10)5.5attacks injectedwith11.25%ethanol(r(cid:8)0.53;P(cid:8)0.007). ontreesinjectedwith5.6%ethanol,19.4(cid:10)8.2attacks NosigniÞcantdifferenceincumulativeattacksoc- ontreesinjectedwith11.25%,46.8(cid:10)15.52attackson curredfortreesinjectedwith5.6%ethanolamong1 treesinjectedwith22.5%,and50.8(cid:10)14.6attackson DAT(1.6(cid:10)0.7),3DAT(4.2(cid:10)1.2),7DAT(8.6(cid:10)3.6), trees injected with 45% (F (cid:8) 8.40; df (cid:8) 5, 24; P (cid:9) 14DAT(10.0(cid:10)4.5),and21DAT(11.2(cid:10)5.5)(F(cid:8) 0.0001)(Fig.3).SigniÞcantdifferenceswerealsode- 1.52;df(cid:8)4,20;P(cid:8)0.234)(Fig.3).Apositivecor- tectedintheoverallequalityofslopesassociatedwith relationbetweencumulativeambrosiabeetleattacks cumulativeattacksandDATfortreesinjectedwitha and DAT was detected for trees injected with 5.6% range of 0 to 90% ethanol (F (cid:8) 11.44; df (cid:8) 5; P (cid:9) ethanol(r(cid:8)0.40;P(cid:8)0.045).Noattacksoccurredon 0.0001).SubsequentspeciÞccontrastsdeterminedthe treesinjectedwithwaterthroughoutthedurationof slopeassociatedwithcumulativeattacksandDATfor theexperiment(Fig.3). trees injected with 90% ethanol (0.34) was signiÞ- VolatileEmissions.SPME-GC-MSwasusedtochar- cantlylargercomparedwithtreesinjectedwith45% acterize the time-course emission of volatiles from (0.28),22.5%(0.22),11.25%(0.12),5.6%(0.07),and ethanol-injectedandwater-injectedM.virginianaat1, 0% (0.0) (F (cid:8) 23.02; df (cid:8) 1; P (cid:9) 0.0001). PearsonÕs 2, 10, and 16 DAT (Fig. 4; Table 1). Ethanol was correlationcoefÞcientanalysisalsodetectedapositive detectedinemissionsfromethanol-injectedtreesat correlationbetweenconcentrationofinjectedetha- each time point, but was not associated with water- nolandcorrespondingcumulativeattacksat21DAT injectedtrees(Table1;Fig.4).Avarietyofmonoter- (r(cid:8)0.76;P(cid:9)0.0001). peneswerealsoassociatedwiththeethanol-injected RepeatedmeasuresANOVAdetectedasigniÞcant andwater-injectedtrees,namely,(cid:3)-pinene,((cid:7))-cam- within-subjecttreatment(cid:4)timeeffect(F(cid:8)7.44;df(cid:8) phene, (-)-(cid:5)-pinene, ((cid:7))-(cid:5)-pinene, myrcene, (cid:6)-cy- 20;P(cid:9)0.0001).Inparticular,signiÞcantdifferencesin mene, limonene, and eucalyptol (Fig. 4; Table 1). mean((cid:10)SE)cumulativeattacksweredetectedamong RepeatedmeasuresANOVAdetectedsigniÞcantbe- treesinjectedwith90%ethanolat1DAT(4.8(cid:10)1.2), tween-subjecttime(cid:4)volatileeffectsbetweenetha- 3DAT(15.2(cid:10)2.8),7DAT(46.4(cid:10)2.8),and14DAT nol-injectedandwater-injectedtreesforethanol(F(cid:8) (73.6 (cid:10) 8.9), but differences were not detected be- 56.94;df(cid:8)1,6;P(cid:8)0.0003),(cid:3)-pinene(F(cid:8)23.64;df(cid:8) 642 ENVIRONMENTALENTOMOLOGY Vol.41,no.3 1 1 1 1 1 F,P 0,0.0001Ñ4,0.042(cid:9)0,0.0008,0.082,0.0072,0.88(cid:9)1,0.0007,0.12(cid:9)7,0.0003,0.024,0.00020,0.297,0.0026,0.17(cid:9)3,0.0009,0.36(cid:9)7,0.000 1 7485263800449911 7. 3.3.2.6.0.5.2.8.5.6.1.9.1.6.1.0. 1 1 2 1 1 1 3 b 20 1 (cid:4) 5baa 9aa7aab aa6aa5aa 2 146 23216 224450 16(cid:10)7.0Ñ(cid:10)10.(cid:10)0.0(cid:10)0.6Ñ(cid:10)39.(cid:10)0.5(cid:10)27.(cid:10)0.3(cid:10)0.4Ñ(cid:10)8.5(cid:10)0.4(cid:10)15.(cid:10)0.4(cid:10)58.(cid:10)0.8 (cid:4)310 22.900.042.36 59.640.8453.480.521.07 42.251.1028.351.2880.172.31 1 2 0 1. a) b amber (cid:4)310 4bbab0ab1abbb8ab1ab36ab vequantities(ng/ch DAT 10(cid:4)(cid:10)39.26103.64Ñ(cid:10)68.1910.3(cid:10)7.750.90(cid:10)21.084.44(cid:10)1.000.35(cid:10)88.9156.1(cid:10)23.544.27(cid:10)114.2254.4(cid:10)11.111.56(cid:10)9.982.18(cid:10)3.040.65(cid:10)151.9920.5(cid:10)7.291.59(cid:10)120.7128.6(cid:10)11.771.12(cid:10)521.76170.(cid:10)14.360.48 (cid:8)RT;df3,12). ati M rel nÕs (cid:10)Mean(SE) 2(cid:10)(cid:4)52.3710aÑ(cid:10)260.93a(cid:10)0.99b(cid:10)36.51aÑ(cid:10)10.99a(cid:10)4.10b(cid:10)116.82a(cid:10)1.56b(cid:10)87.31a(cid:10)0.65b(cid:10)81.71a(cid:10)1.37b(cid:10)67.41a(cid:10)1.34b(cid:10)220.53a(cid:10)0.55b erent(Dunca M.virginiana (cid:4)56.7110 481.337.6564.06 67.7123.20266.3910.69160.733.49180.998.18144.4812.40460.7116.23 aresigniÞcantlydiff ndWI (cid:4)410a 66aaaaaa5aa4aa11aa65aa1aa letters oundsfromEIa 1(cid:4)(cid:10)52.96107.2Ñ(cid:10)276.48109.(cid:10)0.330.16(cid:10)25.738.89(cid:10)0.120.07(cid:10)42.359.02(cid:10)0.990.06(cid:10)89.8717.6(cid:10)2.331.29(cid:10)143.6250.0(cid:10)1.020.37(cid:10)225.87114.(cid:10)2.161.03(cid:10)238.63128.(cid:10)5.011.44(cid:10)175.6580.2(cid:10)3.461.54 wedbydifferent omp follo c ) olatile EIWIEIWIEIWIEIWIEIWIEIWIEIWIEIWIEIWI orWI ofv (EI 4. (asMr(cid:6)ien4-o.cs)dFnpyvismoi2(grfn)-.ger)4.dion-n.(cid:5)mteioa-,Rp:en((it8aenh1)pe)aarlntneeimeo1sth,el,o-na2i(nnnt,5eajo)1netl0ic,ev(,(t,e(cid:7)ea2andc)n)hdd-((cid:3)r(cid:5)E-1o(-pI6m9p)i)niDanaeetenAonundgeTcer,wa.,a(lPmay3(tep)6seat)(rook-(cid:7)flimnnv()ujosy-eemclrcaecattbemeiTelndeparesbh(e,lWemce(nosi7Iers1))--, 1.Time-courseemission Compound Ethanol (cid:3)-pinene (cid:7)()-camphene (cid:5)-pinene(-)- (cid:5)(cid:7)-pinene()- Myrcene (cid:6)-cymene Limonene Eucalyptol withinarowandtreatmentetected(Ñ).numberscorrespondtoFig. Table beak 1 2 3 4 5 6 7 8 9 MeansaNotdbPeak P June2012 RANGERETAL.:AMBROSIABEETLERESPONSESTOVOLATILEEMISSIONS 643 Table 2. t-test statistics comparing time-course emission of individualvolatilecompoundsfromEIvsWIM.virginiana(see Table1) DAT Peaka Compound 1 2 10 16 1 Ethanol t 11.26 6.64 5.15 2.52 P (cid:9)0.0001 0.0006 0.002 0.04 2 (cid:3)-pinene t 3.77 2.80 8.43 3.96 P 0.009 0.031 0.0002 0.008 3 ((cid:7))-camphene t 3.64 3.42 7.41 9.80 P 0.011 0.014 0.0003 (cid:9)0.0001 4 (-)-(cid:5)-pinene t 3.53 4.03 0.96 1.81 P 0.012 0.007 0.37 0.12 5 ((cid:7))-(cid:5)-pinene t 7.23 3.47 2.63 3.01 P 0.0004 0.013 0.039 0.024 6 Myrcene t 3.60 2.55 3.16 7.70 P 0.011 0.043 0.02 0.0003 7 (cid:6)-cymene t 2.80 3.04 10.36 7.33 P 0.031 0.023 (cid:9)0.0001 0.0003 8 Limonene t 2.62 2.76 5.83 2.43 P 0.04 0.033 0.001 0.052 Fig.5. SPME-GC-EADresponseofX.germanustovola- 9 Eucalyptol t 2.81 2.63 3.66 3.68 tilescollectedfromethanol-injectedM.virginianaat2DAT. P 0.031 0.039 0.012 0.01 FigureincludeschromatogramassociatedwiththeFIDand correspondingresponsebytheEAD.A0.5spuffofethanol Unpairedt-testcomparedrelativequantitiesofindividualcom- poundsbetweenEIandWItreesateachtimepoint(df(cid:8)6). wasprovidedattheendoftheruntoconÞrmviabilityofthe aPeaknumberscorrespondtoFig.4. antennalpreparation,asindicatedbytheverticalbarinthe digital(DIG)trace.Peaknumberscorrespondto:(1)etha- nol,(2)(cid:3)-pinene,(3)((cid:7))-camphene,(4)(-)-(cid:5)-pinene,(5) 1,6;P(cid:8)0.003),((cid:7))-camphene(F(cid:8)19.97;df(cid:8)1,6; ((cid:7))-(cid:5)-pinene,(6)myrcene,(7)(cid:6)-cymene,(8)limonene, P (cid:8) 0.004), (-)-(cid:5)-pinene (F (cid:8) 7.15; df (cid:8) 1, 6; P (cid:8) and(9)eucalyptol. 0.037),((cid:7))-(cid:5)-pinene(F(cid:8)98.28;df(cid:8)1,6;P(cid:9)0.0001), myrcene(F(cid:8)22.54;df(cid:8)1,6;P(cid:8)0.0032),(cid:6)-cymene 87.31ngofmyrcenepersamplingchamberwereas- (F(cid:8)26.01;df(cid:8)1,6;P(cid:8)0.0022),limonene(F(cid:8)28.03; sociatedwithethanol-injectedtreesat1and2DAT, df(cid:8)1,6;P(cid:8)0.002),andeucalyptol(F(cid:8)10.30;df(cid:8) whichweresigniÞcantlyhighercomparedwith9.98(cid:10) 1,6;P(cid:8)0.018).Emissionsofallofthemonoterpenes 2.18and1.07(cid:10)0.46ngat10and16DAT,respectively weresigniÞcantlyhigherfromethanol-injectedtrees (F(cid:8)5.03;df(cid:8)3,12;P(cid:8)0.02)(Table1).Anegative comparedwiththewater-injectedtreesateachtime correlationwasdetectedbetweenmyrceneemission point,exceptfor(-)-(cid:5)-pineneat10and16DAT(Ta- andDAT(r(cid:8)(cid:6)0.75;P(cid:8)0.001).SigniÞcantcorrela- bles1and2). tions between the emission of individual monoter- For ethanol-injected trees, repeated measures penesandDATwerenotdetectedfortheremaining ANOVArevealedasigniÞcantwithin-subjecttime(cid:4) compounds(P(cid:2)0.05). volatileeffectassociatedwithethanol(F(cid:8)18.77;df(cid:8) For water-injected trees, repeated measures 3;P(cid:8)0.0003)(Fig.4;Table1).Amean(cid:10)SEof2.96(cid:4) ANOVArevealedasigniÞcantwithin-subjecttime(cid:4) 105 (cid:10) 7.2 (cid:4) 104 and 6.71 (cid:4) 105 (cid:10) 2.37 (cid:4) 105 ng of volatile effect for (cid:3)-pinene (F (cid:8) 69.26; df (cid:8) 3; P (cid:9) ethanolpersamplingchamberwereassociatedwith 0.0001),camphene(F(cid:8)5.56;df(cid:8)3;P(cid:8)0.02),(-)- ethanol-injected trees at 1 and 2 DAT, which were (cid:5)-pinene(F(cid:8)6.50;df(cid:8)3;P(cid:8)0.013),((cid:7))-(cid:5)-pinene signiÞcantlyhighercomparedwith9.26(cid:4)103(cid:10)3.64(cid:4) (F(cid:8)5.15;df(cid:8)3;P(cid:8)0.024),myrcene(F(cid:8)4.87;df(cid:8) 103and1.02(cid:4)103(cid:10)7.02(cid:4)102ngat10and16DAT, 3;P(cid:8)0.03),(cid:6)-cymene(F(cid:8)8.21;df(cid:8)3;P(cid:8)0.006), respectively(F(cid:8)17.10;df(cid:8)3,12;P(cid:8)0.0001)(Table limonene(F(cid:8)4.4;df(cid:8)3;P(cid:8)0.04),andeucalyptol 1).PearsonÕscorrelationcoefÞcientanalysisdetected (F(cid:8)5.51;df(cid:8)3;P(cid:8)0.02),whichresultedinsignif- anegativecorrelationbetweenethanolemissionand icantdifferencesdetectedamongvarioustimepoints DAT(r(cid:8)(cid:6)0.62;P(cid:8)0.011). from 1 to 16 DAT (Table 1). However, signiÞcant A signiÞcant within-subject time (cid:4) volatile effect correlationsbetweentheemissionofindividualmono- for ethanol-injected trees was also associated with terpenesandDATforwater-injectedtreeswerenot (cid:3)-pinene(F(cid:8)4.45;df(cid:8)3;P(cid:8)0.035)andmyrcene detected(P(cid:2)0.05). (F(cid:8)5.57;df(cid:8)3;P(cid:8)0.019).Amean(cid:10)SEof276.48(cid:10) Electrophysiological Responses. The antennal re- 109.66 and 481.33 (cid:10) 260.93 ng of (cid:3)-pinene per sam- sponseofX.germanustoemissionsfromethanol-in- plingchamberwereassociatedwithethanol-injected jectedM.virginianaat2DATwassuccessfullychar- treesat1and2DAT,whichweresigniÞcantlyhigher acterizedusingSPME-GC-EAD(Fig.5).Aconsistent comparedwith68.19(cid:10)10.34and22.90(cid:10)10.15ngat antennalresponseoccurredtoethanol,withamean 10and16DAT,respectively(F(cid:8)3.74;df(cid:8)3,12;P(cid:8) ((cid:10)SE) depolarization of 0.95 (cid:10) 0.18 mV. Antennal 0.042) (Table 1). PearsonÕs correlation coefÞcient responseswerenotobservedtotheaforementioned analysis detected a negative correlation between monoterpenes. (cid:3)-pineneemissionandDAT(r(cid:8)(cid:6)0.66;P(cid:8)0.006). Lure Formulation. An ethanol plus monoterpene Similarly,amean(cid:10)SEof143.62(cid:10)50.04and160.73(cid:10) mixturewaspreparedtomimicratiosassociatedwith 644 ENVIRONMENTALENTOMOLOGY Vol.41,no.3 Table3. Ambrosiabeetlecapturesassociatedwithtrapsbaitedwithethanolalonecomparedwithsyntheticmixtureofethanolplus variousmonoterpenesformulatedtomimicethanol-injectedM.virginiana Mean((cid:10)SE)totaltrapcounts Species F P Ethanol(cid:7)monoterpenesa Ethanol Blank X.germanus 95.8(cid:10)19.9a 94.4(cid:10)15.9a 0.0(cid:10)0.0b 58.97 (cid:9)0.0001 E.validus 5.1(cid:10)2.8a 4.0(cid:10)1.4a 0.0(cid:10)0.0b 5.64 0.011 A.sayi 2.0(cid:10)0.5a 3.0(cid:10)1.1a 0.0(cid:10)0.0b 7.51 0.004 X.saxeseni 1.5(cid:10)0.5a 0.6(cid:10)0.4b 0.0(cid:10)0.0b 5.93 0.009 M.mali 0.3(cid:10)0.2a 0.1(cid:10)0.1a 0.0(cid:10)0.0a 1.11 0.35 H.eruditus 0.3(cid:10)0.3a 1.8(cid:10)1.2a 0.0(cid:10)0.0a 2.18 0.14 X.crassiusculus 0.1(cid:10)0.1a 0.3(cid:10)0.2a 0.0(cid:10)0.0a 1.11 0.35 aSeeMaterialsandMethodsforconcentrationsofindividualcomponents. DifferentletterswithinarowindicatesigniÞcantdifferences(ANOVA;DuncanÕsMRT;(cid:3)(cid:8)0.05;df(cid:8)2,21). ethanol-injected M. virginiana at 2 DAT (Fig. 4). A centration response to ethanol-baited traps (Kli- signiÞcant difference in total trap captures was not metzek et al. 1986, Ranger et al. 2011a). This detected between the ethanol plus monoterpene phenomenon may help to explain why traps baited mixture and ethanol alone for X. germanus, X. cras- with bolts from ethanol-injected M. virginiana were siusculus, Monarthrum mali (Fitch), Anisandrus sayi moreattractivetoX.germanusthantheethanollure (Hopkins), Euwallacea validus (Eichhoff), and Hy- usedaspartofourstudy,whichhadareleaserateof pothenemuseruditusWestwood(Table3).However,a 65mg/dat30(cid:5)C.Additionalstudiesarewarrantedto mean((cid:10)SE)of1.5(cid:10)0.5Xyleborinussaxesenii(Rat- quantifythetime-coursereleaseratesofethanolfrom zeburg) were collected from traps baited with the injectedbolts,butpreliminaryGC-MSanalysesindi- ethanol plus monoterpene mixture, which differed catedthatmoreethanolwasemittedfromtheboltsat signiÞcantly from the 0.6 (cid:10) 0.4 specimens collected 1 DAT compared with the lure (C. M. Ranger, per- fromtrapsbaitedwithethanolalone(F(cid:8)5.93;df(cid:8) sonalobservation).Higheramountsofethanolemis- 2,21;P(cid:8)0.009)(Table3). sionmayalsoexplainwhybasalinjectionsofethanol X.germanusrepresented91.2%oftotalcapturesfor inducedmoreattacksthanirrigatingwithacompara- trapsbaitedwithethanolplusthemonoterpenemix- blevolumeofethanolorbaitingwithanethanollure. ture,followedbyE.validus(4.9%),A.sayi(1.9%),X. Conceivably, more ethanol would have been deliv- saxesenii(1.4%),M.mali(0.3%),H.eruditus(0.3%), ered into the vascular system through pressurized and X. crassiusculus (0.1%). Similarly, X. germanus injection compared with uptake by the roots after represented 90.6% of total captures for traps baited irrigation.Ourcurrentstudyandpreviousstudieshave withethanolalone,followedbyE.validus(3.8%),A. demonstratedthatethanolcanbeemittedfromstem sayi(2.9%),H.eruditus(1.7%),X.saxesenii(0.6%),M. and leaf tissue (Ranger et al. 2010). However, the mali(0.1%),andX.crassiusculus(0.3%). amountofethanolemittedfromanethanol-injected or-irrigatedM.virginianatreewasnotcalculatedas partofourcurrentstudyforcomparisontotheethanol Discussion lure.Perhapsethanolbeingemittedoveralargersur- Collectively,theseresultssupporttheroleofeth- face area also contributed to the ethanol-injected anolasaprimaryvolatilecuethatattractsandinduces treesinducingmoreattacksthanthosebaitedwithan attacksbyX.germanus.Trapsbaitedwithboltsfrom ethanollure.Itshouldbenotedthatattacksoneth- M.virginianatreesinjectedwithethanolweremore anol-injected trees were vertically distributed along attractivetoX.germanusthananethanollureunder thewoodystemtissueofM.virginiana,butattackson thetestedconditions.Inaddition,basalinjectionsof ethanol-baited trees almost exclusively occurred in ethanol into M. virginiana induced more ambrosia theregionwheretheethanollurerestedagainstthe beetleattacksthanirrigatingwithacomparablevol- barktissue(C.M.Ranger,personalobservation). ume of ethanol or baiting with an ethanol lure. A ThepositiveconcentrationresponsebyX.germanus positive correlation was also demonstrated between toethanolshouldbeconsideredtooptimizeandmake theconcentrationofinjectedethanolandcorrespond- odor-basedtraptreesasattractiveaspossible.How- ing ambrosia beetle attacks. Such information will ever,toohighofanethanolreleaseratecouldhavea assistwithpursuinganodor-basedtraptreestrategy repellenteffectonambrosiabeetleorientation(Salom formonitoringandpotentiallymasstrappingambrosia and McLean 1990). For instance, Montgomery and beetles.Strategicdeploymentofodor-basedtraptrees Wargo(1983)founda2g/dethanolreleaseratewas in ornamental nurseries and potentially integrating moreattractivetoScolytinaethanhigherreleaserates. themwithrepellentsaspartofaÔpush-pullÕstrategy Additionalconcentrationshigherthanthosetestedas mayalsobeeffectiveforambrosiabeetlemanagement partourcurrentstudyarerequiredtodeterminethe purposes. upperconcentrationthresholdofethanolforattract- Inadditiontothepositiveconcentrationresponse ing and inducing attacks by X. germanus and other exhibitedtoethanol-injectedtreesaspartofourcur- selected ambrosia beetles. Understanding the dura- rentstudy,X.germanusalsoexhibitedapositivecon- tion such trap trees will remain attractive is also of June2012 RANGERETAL.:AMBROSIABEETLERESPONSESTOVOLATILEEMISSIONS 645 importance.Time-courseanalysisbySPME-GC-MSof 2009,Gandhietal.2010,Rangeretal.2011a).Itshould emissionsfromethanol-injectedM.virginianadeter- also be considered that the various monoterpenes mined ethanol emission was negatively correlated wereemittedfromwater-injectedM.virginiana,but withtime,suchthatethanolsteadilydeclinedoverthe attacksdidnotoccuronthesetrees.BecausemoreX. courseof16DAT.Temperature,lightlevels,andad- saxensiwereattractedtotrapsbaitedwiththeethanol ditionalabioticfactorscanaffecttherateofvolatile plus monoterpene mixture compared with ethanol emissions(Nielsenetal.1995,StaudtandBertin1998). alone, additional Þeld-trapping studies over a larger Notably, 90% of cumulative ambrosia beetle attacks geographicdistributionarewarranted.X.saxesenihas occurred on ethanol-injected M. virginiana by 10 been recovered from naturally infested ornamental DAT.Similarly,aspartoftheconcentrationresponse Þeldstock(Redingetal.2010)andethanol-injected experiment, 90% of cumulative ambrosia beetle at- trees(Rangeretal.2010). tacksoccurredontreesinjectedwith90%ethanolby X. germanus is the most abundant species of am- 14 DAT. In each case, attacks presumably began to brosia beetle emerging from infested nursery stock subside as ethanol emission decreased. Ethanol was (Reding et al. 2010) and ethanol-injected trees notemittedfromwater-injectedtrees,whichwerenot (Rangeretal.2010)inOhio.Ithastraditionallybeen attacked by ambrosia beetles during these experi- considered a pest of physiologically stressed trees mentsandothers(Rangeretal.2010). (Hoffman1941,Solomon1995),presumablybecause Inadditiontoethanol,atotalofeightacyclic(i.e., oftheassociationofethanolwithsuchhosts(Byers myrcene) and cyclic (i.e., (cid:3)-pinene, (cid:5)-pinene, cam- 1995,Kelsey2001,Rangeretal.2010).Notably,attacks phene, (cid:6)-cymene, limonene, and eucalyptol) mono- havenotoccurredonneighboringwater-injectedor terpenes were emitted in relatively trace amounts uninjectedtreesaspartofourcurrentstudyandpre- from ethanol-injected M. virginiana. Monoterpenes viousones(Rangeretal.2010).AttacksbyX.germanus belongtotheC classofisoprenoidsandprovidethe 10 havebeensuspectedtooccuronÔapparentlyhealthyÕ characteristicaromasofessentialoils,ßoralscents,and trees (Weber and McPherson 1984, Gre´goire 2001), certain defensive resins (Mahmoud and Croteau but the possibility of such trees being Ôinapparently 2002).Theserelativelycommonterpenoidsareasso- stressedÕatthetimeofattackcannotberuledout.In ciatedwiththebarkofM.virginiana(Shaetal.2004), somecases,physiologicallystressedtreescanappear particularly tissue that has been mechanically dam- visuallyhealthy,butstillemitstress-relatedvolatiles aged(Azumaetal.1997).Consideringthattheafore- thatsignifytheirsuitabilitytocolonizationbyX.ger- mentionedmonoterpenesweregenerallyemittedin manus(C.M.Ranger,personalobservation).Forin- higheramountsfromthebarkofethanol-injectedver- stance,blackwalnut(JuglansnigraL.)treesthatwere suswater-injectedtrees,ethanol-injectionmayhave colonized by X. germanus exhibited slower growth inßuenced monoterpene biosynthesis or increased rates in the season before attack than uncolonized theirvolatilizationfromthebarktissue. trees,yettheywerereferredtoasapparentlyhealthy The various monoterpenes emitted from ethanol- (WeberandMcPherson1984).Ratherthanrandomly injectedM.virginianadidnotappeartoactadditively attackingapparentlyhealthytrees,resultsfromthese orsynergisticallywithethanolinattractingorinduc- experimentsandothers(Rangeretal.2010)indicate ing attacks by X. germanus. For instance, antennal thatX.germanusspeciÞcallytargetshostsbasedonthe responsesbyX.germanusviaSPME-GC-EADtovol- emissionofethanol.Indeed,WeberandMcPherson atile emissions from ethanol-injected M. virginiana (1984)concludedthatX.germanuscoulddifferentiate onlyoccurredtoethanolandnotthevariousmono- betweenevenslightdifferencesintreevigor. terpenes.Toourknowledge,theseresultsrepresent Becauseoftheimplicationsofethanolbeingasso- theÞrstknownSPME-GC-EADresponsesmeasured forX.germanus.DoseÐresponseelectroantennogram ciated with physiologically stressed hosts (Kelsey (EAG)studiesarewarrantedtodetermineifX.ger- 2001),theimportanceofmaintaininghostvigorand manus Õ antennae do in fact recognize the various minimizing stressors should be considered the pri- monoterpenes identiÞed in emissions from ethanol- maryfoundationofamanagementplanforX.germa- injected M. virginiana. Such information could then nusandotherselectedambrosiabeetlesinornamental leadtoadditionaltrappingstudiesaimedatdeveloping nurseries. For instance, water-logging and ßooding, animprovedlurebytestingmixturescontainingan- whichareknowntoinducetheproductionandemis- tennallyactivemonoterpenesinhigheramountsthan sionofethanol(KimmererandKozlowski1982,Liao thosenaturallyassociatedwithethanol-injectedtrees. andLin2001),havecoincidedwithtargetedambrosia Becauseresultsfromelectroantennographicexper- beetleattacksonsuchtreesinornamentalnurseries iments should be compared with behavioral and/or (C. M. Ranger, personal observation). Additional Þeldresponses,theattractivenessofasyntheticmix- stressorsthatcanoccurwithinornamentalnurseries, tureofethanolandmonoterpenesthatmimickedeth- includingpathogens,waterdeÞcits,heat,freezing,gir- anol-injectedM.virginianawasalsoexamined.How- dling,andpollutantscanalsoleadtotheproduction ever,theethanolandmonoterpenemixturewasnot and emission of ethanol (Kimmerer and Kozlowski more attractive to X. germanus than ethanol alone. 1982, Kimmerer and MacDonald 1987, Sjo¨din et al. Previousstudiesfound(-)-(cid:3)-pinenegenerallyhada 1989, Joseph and Kelsey 1997, Kelsey and Joseph negligible effect on increasing the attraction of X. 1998).Maintaininghostvigorisparticularlyimportant germanustoethanol-baitedtraps(MillerandRabaglia becausepreventativeapplicationsofconventionalin-
Description: