Preslia89:1–16,2017 1 AmbrosiaartemisiifoliaintheCzechRepublic:historyofinvasion, currentdistributionandpredictionoffuturespread AmbrosiaartemisiifoliavČeskérepublice–historieinvaze,současnérozšířeníapredikcedalšíhošíření Hana Skálová1,Wen-Yong Guo1,Jan Wild1,2&Petr Pyšek1,3 1Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic, e-mail: [email protected], [email protected], jan.wild@ ibot.cas.cz,[email protected];2FacultyofEnvironmentalSciences,CzechUniversityof Life Sciences Prague, Kamýcká 129, Praha 6 – Suchdol, CZ-165 21, Czech Republic; 3DepartmentofEcology,FacultyofScience,CharlesUniversity,Viničná7,CZ-12844 Prague,CzechRepublic SkálováH.,GuoW.-Y.,WildJ.&PyšekP.(2017):AmbrosiaartemisiifoliaintheCzechRepub- lic:historyofinvasion,currentdistributionandpredictionoffuturespread.–Preslia89:1–16. WeanalysethedynamicsofinvasionofAmbrosiaartemisiifolia(commonragweed),oneofthe mostnoxiousinvasivespeciesinEuropewithagreatimpactonhumanhealth.Weinvestigatethe habitatsandfactorsthatshapeitscurrentdistributionandspecifyareasintheCzechRepublic endangeredbythefurtherspreadofthisspecies.Theanalysisisbasedonatotalof281recordsin 164gridcells,recordedupto2016,ofwhich37harbournaturalizedpopulationsand127casual populations.Themajorityofrecords(49%)wasfromrailwaycorridors,followedbyhumanset- tlements(11%),andtherewasarecentincreaseinrecordsfromroadsides.Aconditionalinfer- encetreerevealedfactorsshapingthespeciesdistributionwiththeeffectoftheproportionalarea ofindustrial,commercialandtransportunitsasthemostimportant,highlysignificantvariable, further fine-tuned by factors related to human-related dispersal and climate, such as density of railway network and temperature, respectively. The prediction model indicated that many suitablegridcellsareunoccupied.Manyofthesegridcellsareintheproximityofcurrentlyoccu- piedonesbuttherearealsosomecellsratherfarfromcurrentpopulations.Furtherspreadof A.artemisiifoliaintheCzechRepublicisthushighlyprobable. Keywords:commonragweed,CzechRepublic,environmentalfactors,plantinvasion,pre- dictedspread,speciesdistributionmodelling(SDM) Introduction Predictingthefuturedistributionofalienplantsandtherolethatspecificpathwaysand drivers are likely to play in this process in the context of the ongoing global climate changeareamongthehighestprioritiesofinvasionbiologistsandmanagers(e.g.Thuiller etal.2005,Gallienetal.2010,Essletal.2015a,Udenetal.2015).Understandingthe drivers that influence the spatiotemporal patterns in plant invasions is a crucial step in limitingtheirspreadandminimizingtheirnegativeimpact(Eweletal.1999,Sakaietal. 2001, Pyšek & Hulme 2005). This is especially true for rapidly spreading species that haveagreatimpactonnativebiodiversityandhumanhealth(Pyšek&Richardson2010, Essletal.2015b,Pergletal.2016).However,therelativeinfluenceofindividualdrivers, suchashuman-mediateddisturbanceandchangingclimate,isunknownformostinvasive doi:10.23855/preslia.2017.001 2 Preslia89:1–16,2017 plantsandhencelimitstheeffectivenessofriskassessmentsandadaptivemanagement (Udenetal.2015). Ambrosia artemisiifolia L. (common ragweed) is an annual herbaceous plant that originatesfromNorthAmericaandisoneofthemostnoxiousinvasivespeciesinEurope (Lambdonetal.2008,DAISIE2009)mainlybecauseitproduceslargequantitiesofaller- genicpollen(Kazinczietal.2008)andcausesupto80%lossintheyieldofcertaincrops (Essletal.2015b).Itisstronglyself-incompatiblewithhighoutcrossingrates(seeEsslet al.2015bandthereferencesherein).Thespeciesonlyreproducesbyseed,withanaver- ageof1213seedsperplantreportedfortheCzechRepublic(Moravcováetal.2010),and between18,000and48,000(withanextremevalueof94,900)forHungary(Essletal. 2015b).Mostseedfallswithin1mofthemotherplant(Essletal.2015b).Seeddispersal bymammalsandbirdsisreportedinitsnativerange(Rosasetal.2008),butthereislittle evidenceofseeddispersalbyanimalsinEurope(Bullocketal.2012).Dispersalofseeds bywaterisuncommon(Fumanaletal.2007).Thelong-distanceseeddispersalisprimar- ilythroughhumanactivities;eitherdirectlybythetransportofcontaminatedlitterorsoil, orindirectlyasacontaminantofagriculturalproducts(e.g.cropsandbirdfeed)oragri- culturalandconstructionmachinerythatistheninadvertentlydistributedalongtransport corridors (see Bullock et al. 2012 and the references herein). Ambrosia artemisiifolia formsapersistentseedbankinsoilandisabletogerminateafter40years(Darlington 1922). Seed dormancy is broken by low (winter) temperatures under wet conditions (Willemsen1975,Baskin&Baskin1987,Fumanaletal.2006). Ambrosia artemisiifolia was originally introduced into Europe in the 18th century through botanical gardens (DAISIE 2009, Bullock et al. 2012), and then repeatedly as acontaminantofagriculturalproductsfromNorthAmerica(Brandes&Nitzsche2006, Chauveletal.2006).ThespeciesbegantospreadandnaturalizewithinEuropefromthe 1930s, these processes accelerated from the 1960s and since the 1990s there has been arapidspreadandincreaseinabundanceoflocalinvasivepopulations(Essletal.2015b). Thelargest,recently-recordedEuropeanpopulationsareonthePannonianPlainsofHun- garyandinCroatia,SerbiaandUkraine(Essletal.2015b).InRussia,naturalizedpopula- tionsarerecordedin10regionsintheGloNAFglobaldatabaseofnaturalizedalienfloras (van Kleunen et al. 2015), ranging from the western part of the country eastwards to Khabarovsk.Aconsiderableincreaseinabundanceisalsorecordedinsouthernandcen- tral France, in particular along the Rhône valley and on the plains of northern Italy (Chauveletal.2006,Essletal.2015b).ItispredictedthatitwillspreadfurtherinEurope, favoured by ongoing global warming; the species is assumed to benefit from warmer summersandabsenceoflateautumnfrosts(Cunzeetal.2013,Richteretal.2013a,Chap- manetal.2014,Storkeyetal.2014,Leiblein-Wildetal.2016).Incontrast,someregions, especially in the south, are predicted to become unsuitable due to the increase in the incidenceofsummerdroughtsandtemperature(Jacobetal.2013). Aslocalscalevariationinsoilcharacteristicsandanthropogenicfactorsarethoughtto interact with the effect of climate change on the distributions of plant species (Stratonovitchetal.2012,Guoetal.2013),notonlyclimateneedstobetakenintoaccount whenpredictingthefuturespreadofA.artemisiifolia.However,factorsotherthanclimate areinvestigatedonlyoccasionallyandoveralimitedareainanalysesofA.artemisiifolia distribution.Besidesclimaticfactors,landscapevariablesexplainthecurrentdistribution Skálováetal.:AmbrosiaartemisiifoliaintheCzechRepublic 3 ofA.artemisiifoliainAustria(Essletal.2009)andsoilcharacteristics,positionwithin afieldandcroptypeandcoverinarablefieldsinHungary(Pinkeetal.2011,2013). ToextendtheknowledgeabouttheoccurrenceanddistributionofA.artemisiifoliain Europe,anddemonstratethatsuchinformationcanbeusedtopredictfuturetrends,we analyserecordsfromtheCzechRepublic.Inthiscountrythespecieswasfirstreportedin 1883(seePyšeketal.2012a,b),withearlyrecordsoriginatingfromagriculturalfieldsin thesouthernandwesternpartofthecountrywhereitwasprobablyintroducedwithcon- taminated seeds. The first record from Moravia, the eastern part of the country, was reported in 1948. The species was sometimes cultivated in botanical gardens (Jehlík 1998).Thenumberofrecords(seePyšeketal.2012aforadetailedaccountofthesitua- tionintheCzechRepublic)hasbeenrapidlyincreasingsincethesecondhalfofthe20th century(Williamsonetal.2005).However,thefactorsthathavefacilitateditsinvasionin theCzechRepublicareunknownandneedtobeunderstoodiffuturerisksaretobeiden- tifiedandeffectivemanagementstrategiesdevelopedtoreducethespreadandimpactof thisspecies. Inthispaperweaddressthefollowingquestions:(i)Whatwerethepathwaysofinva- sion by A. artemisiifolia in the Czech Republic and do the invasion dynamics of this speciesdifferindifferenthabitats?(ii)Whatistheproportionofsiteswithcasualversus naturalizedpopulations,andunderwhatconditionsaretheformerlikelytoprogressinto the latter? (iii) Which climatic and landscape factors shape the current distribution of this species? (iv) Which parts of the Czech Republic are likely to be colonized by A.artemisiifoliainthefuture? Materialsandmethods Studyarea TheCzechRepublic,acentral-Europeancountrywithanareaof78,864km2andpopula- tionof10.6million,ispronetoinvasionsbyplantsduetoitspositiononthecrossroadsof manynaturalandhuman-createdmigrationroutes,whichprovidedispersalopportunities andpathways.Inaddition,aheterogeneouslandscapeandlonghistoryofhumaninflu- enceprovidesavarietyofdisturbedsitesthataresuitableforestablishmentofalienplants (seePyšeketal.2012afordetails).Thesefeatures,togetherwithastrongbotanicaltradi- tion,makethecountryasuitablemodelforstudyingandpredictingregionalpatternsin plantinvasions(Pyšeketal.2002,2012a,b,Chytrýetal.2005,2009). Datacollection Botanicalrecords of A. artemisiifolia in theCzech Republicup to July 2016 werecol- lected from various sources: Czech National Phytosociological Database (Chytrý & Rafajová2003);SpeciesOccurrenceDatabaseheldbytheNatureConservationAgency oftheCzechRepublic(http://www.ochranaprirody.cz);adatabaseofthedistributionof vascular plants in the Czech Republic (FLDOK, Štepánek unpubl.); public and private herbaria;otherliteraturesourcesandunpublishedrecords(e.g.Williamsonetal.2005). Therecords(281intotal)were,basedontheirlocation,assignedtoninetypesofhabitat: arablefields;countryside(unmanagedsitesinopenlandscapewherethespeciesoccurs, 4 Preslia89:1–16,2017 suchaspondsandriverbanks,pedestrianpaths,seminaturalgrasslands);industrialareas; otheragriculturalareas;railways;riverharbours;roads;settlements;andothers)andto5' × 3' grid cells (longitude × latitude, ~32 km2 at 50° northern latitude) of KFME (KartierungderFloraMitteleuropasof2551cellsfortheCzechRepublic;Schönfelder 1999).Cellswerefurthercategorizedaccordingtothestageintheinvasionprocessthat bestrepresentedtheA.artemisiifoliarecord(s)(Richardsonetal.2000,Blackburnetal. 2011): (i) naturalized, for grid cells with a population of more than 50 individuals or recordsforatleast5yearsoratleast5sites,orrecordsfor3–4yearsand3–4sites,(ii) casual,forgridcellsthatdidnotmeettheabovecriteria,orthepopulationsizeandother details are unknown, (iii) absence. Each cell was characterized by climatic data and anthropogenicvariablessuchasdensityoftransportcorridorsandlanduse(Electronic Appendix1). Dataanalysis Analysis of covariance (ANCOVA) was used to test the difference in the cumulative numberofA.artemisiifoliarecordsforparticularhabitats,withyearasacovariate.The datawaslog-transformedtomeettheassumptionsoftheanalysisandthemodelswere furthercheckedandconfirmedbydiagnosticplots. Decision tree models, which are also known as classification and regression trees (Breimanetal.1984,De’ath&Fabricius2000),wereusedtoidentifythemostimportant predictorsforthepresenceofA.artemisiifoliainindividual5'×3'gridcellswithinthe CzechRepublic.Asanon-parametricstatisticalmethod,decisiontreemodelscanhandle datawithanon-normaldistribution,mixedtypesofdataandnon-linearrelationships,and theresultsfromthemodelsareeasytointerpret(Breimanetal.1984,De’ath&Fabricius 2000, Pinke et al. 2011). To compensate for the overfitting of traditional decision tree models,theconditionalinferencetreeimplementsapermutationtestateachsplittosta- tisticallydeterminewhenthemodelshouldstop(Hothornetal.2006,Strobletal.2009). Theconditionalinferencetreewasconstructedwiththectreefunctioninthepartypack- age(Strobletal.2009)inR(version3.2.5,RCoreTeam2016). Speciesdistributionmodelling(SDM)wasusedtoassessthelikelihoodofA.artemisii- foliaoccurringintheCzechRepublicundercurrentconditions.SDMsdevelopstatistical connections between known presence of the species and environmental variables, and they can then map the connections to geographical space (Elith & Leathwick 2009). SDMsarefrequentlyusedinpredictinghotspotsofrareandendangeredspeciesandthe potentialspreadofinvasivespecies(Thuilleretal.2005).Gridcellsharbouringpopula- tionsclassifiedascasualand/ornaturalizedwerecountedaspresence.Weusedpseudo- absencedatarandomlyselectedfromallabsencegridcells.Twopseudo-absencedatasets with200absencesforeachdatasetweregenerated.Weusedanensemblemethodtoover- comethevariabilityinSDMmodelsandmaximizetheusefulnessofthemultiplemodels (Araújo & New 2007). Seven modelling algorithms were used in the ensemble proce- dure: artificial neutral network (ANN), classification tree analysis (CTA), generalized boostingmodel(GBM),generalizedlinearmodel(GLM),maximumentropy(Maxent), multipleadaptiveregressionsplines(MARS)andrandomforest(RF).Allmodelswere calibrated via 10-fold cross-validation by randomly splitting the data into two subsets: trainingdata(70%)andtestdata(30%).Thedefaultsettingsofeachmodelwereused. Skálováetal.:AmbrosiaartemisiifoliaintheCzechRepublic 5 Two evaluate measures, TSS (Allouche et al. 2006) and AUC (Fielding & Bell 1997, Phillips & Dudík 2008), were calculated. Models with TSS greater than 0.5 and ROC largerthan0.8wereincludedintheensemblemodels(Alloucheetal.2006,Phillips& Dudík 2008, Thuiller et al. 2009). All SDMs and ensemble models were constructed usingtheBIOMOD2package(Thuilleretal.2009,2012)inR(RCoreTeam2016).The suitablehabitatmapswerepresentedinArcGIS10.3(EnvironmentalSystemsResearch Institute,Redlands,CA). Results Totalnumberofrecordsandfrequencyindifferenthabitats ThefirsttworecordsofA.artemisiifoliaintheCzechRepublic(bothin1883)werefol- lowedbyalagphase.Itwasnotuntilthe1950sthatarathersharpincreaseinthenumber ofrecordsandoccupiedgridcellsoccurred(Fig.1).Thefirstgridcellwithanaturalized populationwasrecordedin1962,andthenumberofsuchgridsincreaseddramatically after2005.Upto2016therewereatotalof281recordsin164gridcells.Ofthesegrid cells,37harbourednaturalizedpopulationsand127harbouredcasualpopulations. Despitethefirstrecordscomingfromarablefields,thenumberofrecordsinthistype ofhabitatincreasedratherslowly(Fig.2).Abouthalfoftherecordsarefromrailwaycor- ridors, both historically and currently (49% of all records). Human settlements are the secondmostfrequentlycolonizedhabitat(11%ofallrecords).Anothertrendisthevery recentincreaseinthecumulativenumberofrecordsfromroadsides(Fig.2).However, theregressionslopesofthecumulativerecordsbyyearforrailwaycorridors,settlements androadsidesdonotdiffersignificantly(ElectronicAppendix2),indicatingthattherate ofspreadofA.artemisiifoliaovertimeinthesehabitatswassimilar. 300 250 er mb 200 u n e v 150 ati ul m u 100 C 50 0 1875 1900 1925 1950 1975 2000 2025 Year (cid:2) (cid:2)(cid:3) (cid:3) Fig.1.–Cumulativenumberof records, occupiedgridcellsand gridcellswithnaturalizedpopulations (i.e.withpopulationsofmorethan50individualsorrecordsfor5ormoreyears;orrecordsfrom5sitesormore withinthecell;orrecordsfrom3–4yearsandfrom3–4siteswithinacell)ofAmbrosiaartemisiifoliainthe CzechRepublicsincethefirstrecordupto2016. 6 Preslia89:1–16,2017 140 Industrialareas Agriculturalareas Countryside 120 Roads Fields Riverharbours s 100 Railway d r Settlements o c e r of 80 er b m u n 60 e v ati ul m u 40 C 20 0 1875 1900 1925 1950 1975 2000 2025 Year Fig. 2. – Cumulative number of records of Ambrosia artemisiifolia from particular habitats in the Czech Republicupto2016. FactorsshapingthedistributionofAmbrosiaartemisiifolia Aconditionalinferencetreeidentifiedtheproportionofindustrial,commercialandtrans- port areas within cells as the strongest predictor of A. artemisiifolia presence (Fig. 3, Electronic Appendix 3). Ambrosia artemisiifolia is highly likely to be present in grid cellswithmorethan3.1%oftheirareacoveredbythistypeofhabitat.Thepatternisfine- tunedbytherelativeinfluenceofothercovariates;regardlessoftheproportionofindus- trial,commercialandtransportareas,gridcellswithahighdensityofrailwaynetworkare more likely to harbour A. artemisiifolia populations than those with fewer railways. Anotherimportantinfluenceonwhetherpopulationsremainascasualorbecomenatural- izedistheannualtemperature.Populationsingridcellswithameanannualtemperature above9.4°Canddenserailwaynetworks,ormeantemperaturesabove9.1°Candmoder- atelydenserailnetworksinareaswithlessthan30%ofagriculturallandscapes,arelikely tobecomenaturalized.Populationsingridcellsbelowthesethresholdsarelikelytobe casualoccurrence(s)(Fig.3). Withingridcellswheretheproportionalareaofindustrial,commercialandtransport unitsarebelow3.1%andtherailwaynetworkissparse,thereisanextremelylowproba- bility of the occurrence of Ambrosia if the total length of water streams and January Skálováetal.:AmbrosiaartemisiifoliaintheCzechRepublic 7 novalssplitthegridni-correctedsignifi-occurrence,andthe ablesinferrooryof hevarimaBoncategnodes. misiifoliaintheCzechRepublic,identifiedusingaconditionalinterferencetree.T1–casualoccurrence;and2–naturalizedpopulations).P-valueswerederivedfrochterminalnode.Theyaxisistheprobabilityofagridcellbelongingtothegiveindividualoccurrencecategories.Thenumbersinsquaresindicatetheorderof artence;ateanthe –AmbrosiaFig.3.Factorsshapingthedistributionofcellswithdifferentcategoriesofoccurrence(0–absecancetest;thenumbersofobservations(n)aregiveninsidebarsindicatetheproportionsofobservationsi 8 Preslia89:1–16,2017 temperature are low (Fig. 3). Moreover, the proportion of industrial, commercial and transportareabelow10.2%,incombinationwithlowdensityofrailways,resultsinzero probabilityofharbouringnaturalizedpopulations(ElectronicAppendix3).Asaresult, most A. artemisiifolia populations, especially naturalized ones, are recorded along the Laberiver(eastern,northernandcentralBohemia),south-eastofBrno(southernMoravia) andclosetothetownofOstrava(north-easternMoraviaandSilesia)(Fig.4). PotentialdistributionofAmbrosiaartemisiifoliaintheCzechRepublic Thepredictionmodel(Fig.5)revealedmorethanhalfofthecountry(56%ofgridcells; Table1)isofverylowsuitabilityforA.artemisiifolia.However,themodelalsoindicates thatmanygridcellswithsuitableconditionsarecurrentlyunoccupied;morethanhalfof thosewiththemostsuitableconditionsarenotcolonized,andonlyaboutonequarterof thesecellshostnaturalizedpopulations.Manyunoccupiedgridcellsincloseproximityto occupiedcellswereassessedashavingahighsuitability(Fig.5).Thissuitabilityisespe- ciallytrueforcellsinnorthern,centralandeasternBohemiaalongtheLaberiver,ineast- ernMoraviaalongMoravaandOdrarivers,innorthernandcentralBohemiainthesur- roundingsofbigcitiessuchasÚstínadLabemandPrague,respectively,andinnorth- easternandsouthernMoraviainthesurroundingsofOstravaandBrno.However,some highlysuitablecellsareratherfarfromcurrentlyoccurringpopulations,especiallythose inwesternBohemiaalongtheOhřeriverandwestofthecityofPlzeň,andalsoinsouth- ernBohemiaclosetoČeskéBudějovice.Incontrast,suitablecellsthatarefarfromcur- rentlyoccurringpopulationsareratherrareinMoravia. Table1.–PercentageofgridcellsintheCzechRepublicwithinindividualprobabilitycategoriesasrevealedby thepredictionmodel,percentageofcellswithinthecategoriesthatareoccupiedbyAmbrosiaartemisiifolia andpercentageofcellswithnaturalizedpopulations. Occurrence %totalcells %occupied %withanaturalized probabilitycategory population 0.04–0.2 56.3 0.3 0.1 0.2–0.4 17.1 3.9 0.0 0.4–0.6 14.1 8.1 0.6 0.6–0.8 5.0 24.6 6.4 0.8–0.94 7.5 43.5 15.7 Discussion Totalnumberofrecordsandfrequencyinparticularhabitats Ambrosia artemisiifolia was first recorded in the territory of the present-day Czech Republicinthesameyearasitwasintheterritoryofthepresent-dayAustria(Essletal. 2009).However,therateofspreadintheCzechRepublicwasconsiderablyslowerthanin Austria.Despitethecountriesbeingofcomparablesize,thecurrentnumberofrecords and occupied grid cells in the Czech Republic is only about 40% of those recorded in Austria up to 2009 (Essl et al. 2009). Although it is not possible to make a detailed Skálováetal.:AmbrosiaartemisiifoliaintheCzechRepublic 9 Fig.4.–MapshowingthedistributionofAmbrosiaartemisiifoliaintheCzechRepublicdisplayedtogether with(A)distributionofmeanannualtemperaturein5'×3'gridcellsandrivernetworks,and(B)distributionof proportionalareaofindustrial,commercialandtransportunitsin5'×3'gridcellsandrailwaynetworks. 10 Preslia89:1–16,2017 Fig.5.–PotentialdistributionofAmbrosiaartemisiifoliaingridcells(5'×3')intheCzechRepublicbasedon factorsrevealedbytheconditionalinterferencetreeasshapingthespeciesdistributionwithuptonowrecorded occurrencesrepresentedbydots. comparison with other countries due to the absence of detailed data, it is clear that the extentoftheareacolonizedintheCzechRepublicisconsiderablylessthaninHungary, CroatiaandSerbia(Kazinczietal.2008). Thehighnumberofrecordsassociatedwithtransportcorridors,railwaysandroads,is typicaloftheoccurrenceofA.artemisiifoliaintheCzechRepublic,SlovakiaandAustria. TheCzechRepublichasmorerecordsfromrailwaycorridorsandtherewasabouta10- yeardelayinthestartoftherapidspreadalongroads.Theseroutesseemtohavebecome themaintransportpathwayofA.artemisiifoliaintheCzechRepublicjustasinothercen- tral-Europeancountries(Vitalos&Karrer2009,Jollyetal.2011,Medveckáetal.2012, Milakovic et al. 2014, Essl et al. 2015b, Hrabovský et al. 2016, Milakovic & Karrer 2016). The situation may be similar to Slovakia where the number of ragweed records started to increase markedly around 2010, namely along highways and main roads (Hrabovskýetal.2016).ThespatiotemporalpatternintheCzechRepublicalsosupports theviewofreportedlong-distancedispersalasacontaminantofcropsorbirdfeed,direct transportofcontaminatedlitterorsoilorattachedtoconstruction-oragriculturalmachin- ery(Bullocketal.2012).Populationsinarablefieldsarenowratherscarce.Thiscouldbe aresultofratherlowpropagulepressureduetotheexistenceofalimitednumberofreally extensivepopulationsintheCzechRepublic,lowerseedproductioncomparedtoother countries(Moravcováetal.2010,Essletal.2015b)andstilllowabundancealongroads thatmayserveasasteppingstonefortheinvasionoffields.However,thesituationmay soonchangeduetotheongoingspreadofA.artemisiifoliaalongroadsthataremanaged
Description: