Ambient RF-energy harvesting at 900 MHz Fredrik S Brynhildsvoll Master of Science in Electronics Submission date: July 2016 Supervisor: Morten Olavsbråten, IET Co-supervisor: Torolv Skjølsvik, Nordic Semiconductor Johannes Skaar, IET Norwegian University of Science and Technology Department of Electronics and Telecommunications i Preface and acknowledgments ThisthesisiswrittenasapartofthedegreeofMasterofScience(MSc)attheDepartmentofElec- tronics and Telecommunications, Norwegian University of Science and Technology (NTNU). The work was carried out in the spring of 2016 under the supervision of associate professor Morten Olavsbråten (NTNU) and Torolv Skjølsvik (NordicSemiconductor). The assignment was given by NordicSemiconductor. FirstIwouldliketothankMortenOlavsbråtenforallthehelpintheworkofthisthesis. Many hourshavegoneintodiscussingpossibleapproachesandsimulationresults,andIamverythank- fulforallthetimespentonthis. Second I want to thank Torolv Skjølsvik for giving me the opportunity to work with this RF- harvestingsystem.Yourinsightinotherenergyharvestingsystemshasbeenvaluable.Itisashame thattherewasnotenoughtimetoseethisharvesterrealised,sinceIknowthatyouwouldappreci- ateitasmuchasIwould. IwouldalsoliketothankProfessorJohannesSkaarforthehelpintheworkleadinguptothis thesis. Lastly I would like to thank my cohabitant Martine Lund Andresen for holding the fort in the writingofthisandmynewbornsonBirkforgivingmesomuchjoyandenergyinthesefinalweeks. Trondheim,July2016 FredrikSundtBrynhildsvoll ii Acronyms ADS Advanceddesignsystem FET Field-effecttransistor GSM900 GSMfrequencybandfrom890-960MHz JFET Junctiongatefield-effecttransistor MESFET Metal–semiconductorfield-effecttransistor MOSFET Metal-oxide-semiconductorfield-effecttransistor RBW Resolutionbandwidth RF Radiofrequency RFID Radio-frequencyidentification WLAN Wirelesslocalareanetwork iii Abstract InthisthesisaRF-energyharvestingsystemabletoharvestambientpowerat900MHz(GSMband) issimulated. Especiallytheefficiencyatlowpowerisofinterest(-19to-23dBmrectifierinput). A rectifier and a boost converter is simulated in Advanced Design System (ADS) to determine the efficiency and output voltage. A power managing circuit able to turn the load (nRF52 chip from NordicSemiconductor)onwhensufficientpowerisaccumulatedisalsopresented. Simulations show that a 3-stage rectifier is optimal to maximize efficiency. The efficiency is 32.4%and19.6%atinputpowersof-19dBmand-23dBm. Theoutputvoltagesare435mVand 184mVrespectively. Theboostconverterissimulatedwithinputpowersfrom-24dBmto-30dBm(outputofrecti- fier). Itisabletochargeacapacitorto2.5Vatallsimulatedinputpowers. Theefficiencywith2V outputvoltageis61.7%and52.2%withinputpowersof-24dBmand-30dBm. Sincethelossin theoscillationnetworkisnotincludedtheseefficienciesareoverestimated. Thetotalefficiencyis20.0%and10.2%atinputpowersof-19dBmand-23dBm. Itisshown that the harvester can provide power to the nRF52 chip at input powers down to -21 dBm if the oscillation network consumes less than 733 nW. With this power consumption, estimates of the charge time reveal that the load can broadcast air temperatures at intervals of 84 seconds when the input power is -19 dBm. The interval is 188 seconds and 977 seconds (∼17 minutes) at input powersof-20dBmand-21dBmrespectively.Iftheoscillationlossislessthan367nWtheharvester canoperatedownto-22dBm. iv Sammendrag IdennemasteravhandlingensimuleresetRF-energihøstingssystemsomeristandtilåhøsteom- givende energi ved 900 MHz (GSM bånd). Av spesiell interesse er effektiviteten ved lave effekter (-19dBmtil-23dBmrefererttilinngangenavlikeretteren). Enlikeretterogenspenningsforsterk- endekrets(boostconverter)ersimulertiAdvancedDesignSystem(ADS)foråfastslåeffektivitetog utgangsspenning.Enkretssomgjørenergitilgjengeligforlasten(nRF52mikrokontrollerfraNordic Semiconductor)nårnokenergierakkumulert,presenteresogså. Simuleringer viser at tre steg i likeretteren er optimalt for å maksimere effektiviteten. Da er effektiviteten 32.4 % og 19.6 % ved inngangseffekter på henholdsvis -19 dBm og -23 dBm. Ut- gangsspenningene er henholdsvis 435 mV og 184 mV ved de samme effektene. Den spennings- forsterkendekretsenersimulertmedinngangseffekterfra-24dBmtil-30dBm(tilsvarerutgangen pålikeretterenmedtresteg). Deneristandtilåoppladeenutgangskondensatortil2.5Vvedalle simulerte inngangseffekter. Effektiviteten med 2 V utgangsspenning er 61.7 % og 52.2 % med in- ngangseffekterpåhenholdsvis-24dBmog-30dBm. Sidentapidetoscillerendenettverketikkeer tattmedieffektberegningeneerdetteetoverestimatavdenfaktiskeeffektiviteten. Totalsystemeffektiviteter20.0%og10.2%vedinngangseffekterpå-19dBmog-23dBm. Det er vist at høstesystemet kan forsyne lasten ved inngangseffekter ned til -21 dBm dersom effekt- forbruketidetoscillerendenettverketermindreenn733nW.Meddetteforbruketviserestimater avoppladningstidenatlastenkankringkastelufttemperaturermedintervallerpå84sekunderved eninngangseffektpå-19dBm. Intervalleneer188sekunderog977sekunder(∼17minutter)med inngangseffekterpåhenholdsvis-20dBmog-21dBm. Dersomdetoscillerendenettverketbruker mindreenn367nWkanhøstesystemetforsynelastenmedinngangseffekterstørreenn-22dBm. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 1 Introduction 1 1.1 DevelopmentofRF-harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Wirelessenergytransfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Harvestingsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 SpecificationsforRF-harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 CommerciallyavailableRF-harvestingsystems . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Thesisstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 TheoreticalBackground 5 2.1 Transientanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Transistortypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Theoreticalpowerdensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Matchingandamplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Theharvestingsystem 13 3.1 Rectifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Boostconverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Simpleboostconverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Selfoscillatingboostconverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.3 Commerciallyavailableboostconverters . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Storagecapacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Powermanagingcircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Spectrummeasurements 27 v vi CONTENTS 5 Simulations 33 5.1 Rectifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1.1 Capacitorvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.2 HSMS-2850linearcircuitmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.3 Maximumtheoreticalvoltagegain . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.1.4 Inputimpedanceoftherectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.1.5 Simulationswithsetinputimpedance . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 SimpleDC-DCboostconverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.1 Selectionofcomponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2.2 Boostconvertersimulationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2.3 Lossanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3 Rectifierandboostconverterperformance . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.1 Chargetimewithrectifier,boostconverterandpowermanagingcircuit. . . . . 52 5.4 Numberofrectifierstagestomaximizeefficiency . . . . . . . . . . . . . . . . . . . . . . 55 6 Discussion 57 6.1 Rectifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Simpleboostconverter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3 Rectifierandboostconverterperformance . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.4 Numberofrectifierstagestomaximizeefficiency . . . . . . . . . . . . . . . . . . . . . . 64 7 Conclusion 65 Bibliography 68 A Completecircuitdiagramwithcomponents 73 B Rectifiersimulationstofindinputimpedance 75 C Rectifiersimulationwithinputimpedancesetto1000Ω 77 D Boostconvertersimulationdataandsimulationparameters 81 E Simulationdataofrectifierandboostconverter 83 F Gainoflog-periodicantenna 84 List of Figures 1.1 SystemoverviewoftheRF-harvestingsystem . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 CrosssectionofaN-channelMOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 CrosssectionofaMESFETtransistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 JFETcross-sectionsandsymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Matchingnetworkinsertedbetweentheantennaandtherectifier. . . . . . . . . . . . . 11 3.1 SystemoverviewoftheRF-harvestingsystempresented . . . . . . . . . . . . . . . . . . 13 3.2 FullwaveVillardvoltagedoubler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Simpleboostconvertertopology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Idealcurrentsandvoltagesintheboostconverter . . . . . . . . . . . . . . . . . . . . . . 17 3.5 Boostconverterwithloss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6 Selfoscillatingboostconverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7 Powermanagingcircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 Measuredpowerspectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Locationofspectrummeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1 Rectifiersimulationsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 HSMS-2850equivalentlinearcircuitmodel . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Rectifiermaximumvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4 8-stagerectifierefficiencyandinputimpedanceimpedance . . . . . . . . . . . . . . . 37 5.5 8-stagerectifieroutputvoltageandinputimpedance . . . . . . . . . . . . . . . . . . . . 38 5.6 3-stagerectifierefficiencyandinputimpedanceimpedance . . . . . . . . . . . . . . . 39 5.7 3-stagerectifieroutputvoltageandinputimpedance . . . . . . . . . . . . . . . . . . . . 40 5.8 Theveninequivalentofrectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.9 Efficiencyofn-stagerectifiers(1000Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vii
Description: