Amber fossils demonstrate deep-time stability of Caribbean lizard communities EmmaSherratta,b,1,MaríadelRosarioCastañedab,2,Russell J.Garwoodc,D.LukeMahlerd,3,ThomasJ.Sangere, AnthonyHerrelf,g,KevindeQueirozh,4,andJonathanB.Lososb,4 aSchoolofEnvironmentalandRuralScience,UniversityofNewEngland,Armidale,NSW2351,Australia;bDepartmentofOrganismicandEvolutionary BiologyandMuseumofComparativeZoology,HarvardUniversity,Cambridge,MA02138;cSchoolofEarth,AtmosphericandEnvironmentalSciences, UniversityofManchester,ManchesterM139PL,UnitedKingdom;dCenterforPopulationBiology,UniversityofCalifornia,Davis,CA95616;eDepartmentof MolecularGeneticsandMicrobiology,UniversityofFlorida,Gainesville,FL32610;fDépartementd’EcologieetdeGestiondelaBiodiversité,UMR7179, MuséumNationald’HistoireNaturelle,Paris,France;gEvolutionaryMorphologyofVertebrates,GhentUniversity,B-9000Gent,Belgium;andhDepartment ofVertebrateZoology,NationalMuseumofNaturalHistory,SmithsonianInstitution,Washington,DC20560 EditedbyDavidM.Hillis,TheUniversityofTexasatAustin,Austin,TX,andapprovedJune19,2015(receivedforreviewApril1,2015) Whether the structure of ecological communities can exhibit Amber, which is fossilized tree resin, provides a unique op- stabilityovermacroevolutionarytimescaleshaslongbeendebated. portunitytoexamineancientecosystemsbyofferingunparalleled ThesimilarityofindependentlyevolvedAnolislizardcommunitieson preservation of biological material. In the Greater Antilles, environmentallysimilarGreaterAntilleanislandssupportsthenotion amber has been found on a few islands in small quantities, but that community evolution is deterministic. However, a dearth of amber from the Dominican Republic stands out due to its CaribbeanAnolisfossils—onlythreehavebeendescribedtodate— quantityandqualityoffossilinclusions(10–12).Todate,amber fossils have been recovered for a variety of vertebrate groups hasprecludeddirectinvestigationofthestabilityofanolecommu- (13–16), but most are presently known from only one or a few nitiesthroughtime.Herewereportonanadditional17fossilanoles inDominicanamberdatingto15–20Mybeforethepresent.Using scpluesciiomnesnasb,owuhtitchheleimvoitlsuttihoenpoofttehnetsiealgfroorupdsr.awing general con- ON datacollectedprimarilybyX-raymicrocomputedtomography(X-ray The pre-Pleistocene fossil record for anoles consists solely of UTI micro-CT), we demonstrate that the main elements of Hispaniolan amber fossils (15, 17–19). Previous authors have reported three OL anoleecomorphologicaldiversitywereinplaceintheMiocene.Phy- anole fossils from Dominican amber, all dated within the Mio- EV logeneticanalysisyieldsresultsconsistentwiththehypothesisthat cene,15–20Mya(20)andpotentiallymembersofthesamespecies the ecomorphs that evolved in the Miocene are members of the (15, 18, 19). We vastly expanded this sample by examining an same ecomorph clades extant today. The primary axes of ecomor- additional 35 fossils (as well as reexamining the original 3), in- phologicaldiversityintheHispaniolananolefaunaappeartohave cluding all but one specimen known to us. Of these, we present changed little between the Miocene and the present, providing dataon20fossilsthatpreservesubstantialskeletalmaterialorsoft evidence for the stability of ecological communities over macro- tissue to provide information on ecomorphological variation evolutionarytimescales. (Table S1). The fossils vary in state of preservation and com- pletenessoftheskeleton,fromfullskeletonstoisolatedlimbsand adaptiveradiation|ecomorph|Hispaniola|Miocene|Anolis heads (Fig. 1 A–D and Movie S1). Extraordinarydetail of the Ecologists and evolutionary biologists have long debated the Significance temporal stability of community structure. In recent years, many comparisons of glacial and postglacial communities have Anunresolvedquestioninecologyiswhetherthestructureof shown great dissimilarities—species have responded to environ- ecologicalcommunitiescanbestableoververylongtimescales. mental change individualistically, indicating that the structure Herewedescribeawealthofnewamberfossilsforanancient and function of assemblages can change substantially over even radiationofHispaniolanlizardsthat,untilnow,hashadavery short geological timescales (e.g., several thousand to a few mil- poorfossil record. These fossilsprovideanimportantand pre- lionyears)(1–3).Conversely,someresearchershavearguedfor viously unavailable perspectiveonan ecologically well-studied stabilityincommunitystructure(4),leadingtocommunitiesthat groupandindicatethatanolelizard communitiesoccurringon may be composed of stable sets of ecological specialists for Hispaniola20Myaweremadeupofthesametypesofhabitat millionsofyears(5,6). specialistspresentinthisgrouptoday.Thesedataindicatethat CaribbeanAnolislizardsareacontemporarymodelofsimilarity theecologicalprocessesimportantinextantanolecommunities in community structure. Replicated adaptive radiations have oc- havebeenoperativeoverlongperiodsoftime. curredindependentlyoneachislandintheGreaterAntilles,pro- ducing a similar set of habitat specialists, termed ecomorphs, on Authorcontributions:E.S.,K.d.Q.,andJ.B.L.designedresearch;E.S.,M.d.R.C.,R.J.G.,D.L.M., each island (7, 8). This similarity in community structure across K.d.Q.,andJ.B.L.performedresearch;T.J.S.andA.H.contributednewreagents/analytic islandssuggeststhatanolecommunitiesaremorethanephemeral tools;E.S.,M.d.R.C.,R.J.G.,andD.L.M.analyzeddata;andE.S.,M.d.R.C.,R.J.G.,D.L.M., and haphazard sets of species that happen to occupy the same T.J.S.,K.d.Q.,andJ.B.L.wrotethepaper. placeatthesametime(9).However,intheabsenceofasubstantial Theauthorsdeclarenoconflictofinterest. fossilrecord, it hasnot previouslybeenpossibleto directly assess ThisarticleisaPNASDirectSubmission. whether similarly structured communities are a recent phenome- Datadeposition:Rawmorphometricandphylogeneticdataandhigh-resolutionim- non or whether ecological stability has been a longstanding char- agesofthefossilshavebeenarchivedinZenodo,https://zenodo.org/record/17442 acteristicoftheseislandanolefaunas. (doi:10.5281/zenodo.17442). Here we report on 20 remarkableAnolis fossils in amber from 1Towhomcorrespondenceshouldbeaddressed.Email:[email protected]. theislandofHispaniola.Using3DreconstructionsbasedonX-ray 2Presentaddress:SecciónGenética,DepartamentodeBiología,UniversidaddelValle,A.A. microcomputed tomography (X-ray micro-CT) and detailed 25360Cali,ValledelCauca,Colombia. morphometricanalysisofthesefossils,weshowthatthemainele- 3Presentaddress:DepartmentofEcology&EvolutionaryBiology,UniversityofToronto, ments of Hispaniolan anole ecomorphological diversity were in Toronto,ON,M5S3B2,Canada. place in the Miocene, confirming the antiquity of the island radi- 4K.d.Q.andJ.B.L.contributedequallytothiswork. ation. This continuity emphasizes the stability of ecology speciali- Thisarticlecontainssupportinginformationonlineatwww.pnas.org/lookup/suppl/doi:10. zationsubsequenttoinitialadaptivediversification. 1073/pnas.1506516112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1506516112 PNASEarlyEdition | 1of6 squamation is preserved in many fossils (Fig. 1D), revealing intermediate-length forelimbs, and narrow toepads with few to thesubdigitallamellae(transverselywidenedscalescomprising intermediate numbers of lamellae (on toes of the fore- and thetoepad),acharacterthatinformsonthearborealbehavior hindfeet, respectively). Two fossils are assigned with high prob- of these lizards (21) (Fig. 1E and Fig. S1). abilitytothetrunk-groundecomorph:onerelativelylong-limbed WeusedX-raymicro-CT,lightmicroscopy,andphotographsto partial skeleton with an intermediate number of lamellae (M) examinetheamberfossils(TableS1)andpreservedspecimensof (Fig.2BandCandFigs.S1andS4),andasecond(O)composed extantHispaniolanspeciesrepresentingdifferentecomorphs.We ofabroadskullassociatedwithanintermediate-lengthforelimb recorded linear measurements of the cranial and postcranial (Fig.2CandFigs.S2–S4). skeletonandcountsofthenumberoftoepadlamellae(TableS2), Members of the trunk ecomorph are found on broad tree which are known to correlate with microhabitat use in extant trunksandhavebroad,shortheads,longhindlimbsandforelimbs, anoles (21), to test the hypothesis that Miocene Hispaniolan and hindfoot toepads with intermediate lamella numbers. Two anoles filled the same ecological niches as their extant counter- fossils (E and L) have similarly long hindlimbs (with femur and parts. Discriminant function analysis (DFA) was used to assign tibia proportionally longer than metatarsal length) and in- fossils to ecomorph category using body size-corrected morphom- termediatenumbersoflamellae(Fig.2BandCandFigs.S1and etricdataandlamellanumberforextanttaxa,withfossilsassigneda S4)andareassignedwithhighprobabilitytothetrunkecomorph. posteriori. Then we used the reconstructions and direct observa- Last, the fossil with the smallest body size, a headless skeleton tions to score the amber fossils for morphological characters tra- with preserved lamellae (D), is assigned to the twig ecomorph. ditionallyusedinanolephylogenetics;thesecharactersdifferfrom Twiganoleshaveveryshortlimbsanduseverynarrowbranches. thoseusedinecomorphologicalanalysesanddonotindicatethat Theyalsohavetoepadswithfewlamellae.FossilDhassimilarly members of the same ecomorph class form a clade (22). We shortlimbsandfewlamellae(Fig.2BandCandFigs.S1andS4). inferred the phylogenetic relationships of the fossils to extant Theremainingsixfossilsthatpreservesubstantialskeletalmaterial species to test whether the fossils are members of clades repre- orsofttissuearenotassignedtoanyecomorphwithhighprobability sentingthe sameecomorphspresentonHispaniolatoday. (Table S3). Two isolated skulls are assigned with probabilities between 0.80 and 0.90 to the trunk-crown (N) and trunk (K) ResultsandDiscussion ecomorphs,respectively,andacompleteskeletonwithpreserved Thefossilsvarysubstantiallyinnumberoflamellaeandbodypro- lamellae(G)isassignedtothetrunk-crownecomorph,butwith portionsandrepresentalargeportionofmodernecomorphological only an intermediate probability (0.69). In these three cases, as diversity(Fig. 2 and Figs. S1–S4). Fourteen fossils are assigned to with fossils with higher DFA probabilities, the individual mor- anecomorphclasswithhighprobability(greaterthan0.90;Fig.2A phologicalcharactersareconsistentwiththeirecomorphassign- and Table S3). Of these, nine are assigned to the trunk-crown ments(Fig.2andFigs.S3andS4).Threeadditionalfossilsrep- ecomorph: seven complete skeletons, five with preserved la- resented by isolated fragments of forelimbs with toepads (P, Q, mellae (A, C, F, H, I) and two without (B and J); one headless and S) are assigned to ecomorph classes with low probability. body(T);andafragmentaryfossilwithforelimblamellaepreserved Giventhatoverlapexistsamongtheecomorphsinlamellanumber (R).Aswithmodern-daytrunk-crownspecies,whicharefoundhigh (Fig.2B),ourinabilitytoassignthesefossilstoasingleecomorphis ontreetrunksandinthecanopy,thesefossilshaverelativelyshort not surprising, although the observed variation in lamella number limbs and long, narrow heads. Extant Hispaniolan trunk-crown indicatesthatmembersofmorethanoneecomorphclassmaybe anoles exhibit considerable variation in toepad lamella number presentinthistrio. (23), with smaller-bodied species having fewer lamellae than In summary, morphometric analysis places fossils in four eco- larger-bodiedspecies(Fig.2B).Ourresultssuggestthatspeciesof morphswithhighprobability.Completenessofmanyofthetrunk- bothsizeclassesarepresentintheamberfossilrecord,thesmaller crownandthetwotrunk-groundfossilsprovidesconfidenceintheir beingmorecommoninoursample(e.g.,A,F,H,I,andR). ecomorphassignments.Thepresenceofkeyskeletalelementsand Moderntrunk-groundspeciesaregenerallyfoundaroundthe thedistinctivemorphologyoftwiganolesalsorendersplausiblethe bases of trees and have broad, short heads, long hindlimbs, assignment of fossil D to that class. By contrast, the two fossils Fig.1. Fossilanolelizardspreservedinamber.Someofthefossilsinthisstudyareexceptionallywellpreserved(A–C).FromX-raymicro-CTscanning,the skeletoncanbereconstructedin3D,revealingcompleteskeletons(B),fullyarticulatedskulls(C),andfragments(D).Theexternalsurfaceofthelizardis sometimesoutlinedintheamberbyair-filledvoids,whichwhenreconstructedin3Drevealdetailsofthebodyscales(D)andsubdigitallamellae(E,Center). Scaledetailisalsovisiblethroughtheamber(E,LeftandRight).TheamberfossilsarerepresentedbyletterscorrespondingtothoseinFig.2.Animationsof the3DreconstructedfossilsareinMovieS1. 2of6 | www.pnas.org/cgi/doi/10.1073/pnas.1506516112 Sherrattetal. A B Fig. 2. Amber fossils exhibit morphometric and meristic variation, which corresponds to variation among the modern ecomorphs. (A) Results of dis- criminant function analyses (DFA) conducted sepa- rately on each fossil. Columns indicate variables present in each fossil: estimated size (snout-vent length), cranial (Cran.), and postcranial (Postc.) measurements and lamella number (Lam.); addi- tionaldetailsaregiveninTableS2.Asubsetofthe variablesaredisplayedtoillustratevariationamong the fossils and how it corresponds with variation amongtheecomorphs(BandC).Amberfossilsare colored according to the DFA results (if assigned withgreaterthan0.90probability).(B)Variationin thenumberofsubdigitallamellaeonthefore-and hindfeetoftheamberfossilsisshownalongsidethe C range (bars) for each ecomorph. Large and small trunk-crown species also differ in lamella number (Fig.S1).(C)Size-correctedresidualsofulnaandfe- murlengthandheadwidth.TheDFAresultscanbe understood by examining character variation. For example, for amber fossil C, the trunk-crown eco- morphistheonlyoneforwhichallmeasurements N O fallwithintherangeforthepresent-dayspecies.All TI cranial and postcranial variables are illustrated in LU O Figs.S3andS4,whichshouldbeconsultedtounderstand V E fullytheDFAclassificationofsomeofthefossils. assignedtothetrunkecomorpharefragmentary,comprisingonly placementsoftwoofthesetrunk-crownfossils(BandT)included hindquarters,andthustheirassignmentislesscertain.Giventhat closerelationshipswiththechlorocyanusclade(Fig.S5). someextantHispaniolananolesdonotconformtoanyecomorph Phylogenetic results were inconclusive for fossils identified classandaresimilartotrunkanolesinhindlimbdimensions(21, with high probability as trunk-ground, trunk, and twig anoles. 24),wecannotruleoutthepossibilitythatthesefossils,although However,inallbutonecase(L),Bayesianandparsimonyresults most similar among the ecomorphs to trunk anoles, are not both indicated the possibility of close relationships between members of any ecomorph class. Regardless of whether these fossils and Hispaniolan clades to which their extant ecomorph fossils are trunk anoles, the data indicate that at least four eco- counterpartsbelong.Forthetwotrunk-groundfossils(MandO), morphologically distinct species occurred in Hispaniola in the Bayesian results included membership in the trunk-ground Miocene.Moreover,basedonthenumbersoftoepadlamellae,our cybotesseriesamongpossibleplacements(Fig.4andTableS4),a datasuggesttheexistenceoftwotrunk-crownspecies,likelypar- relationshipthatwasevenmorestronglysupportedinparsimony allelingthelargeandsmallmodern-daymembersofthatecomorph analyses(cybotesseriesmembershipoffossilsMandOin1/3and (23).Insummary,althoughtodateonlyoneanolespecieshasbeen 1/1 most parsimonious trees, respectively; Fig. S5). Likewise, described from Dominican amber (15), our data reveal the exis- trunk ecomorph fossils (E and L) were inferred in the trunk tenceofminimallyfouradditionalspecies. specialist distichus series, and the twig ecomorph fossil (D) was TheexistenceoffourecomorphsinHispaniolaintheMioceneis inferred as sister to the twig specialist insolitus, in some of the consistent with molecular dating analyses, which indicate the exis- many credible phylogenetic trees (Table S4; although fossil L tenceofatleastfourandpossiblysixpresent-dayecomorphsatthat only grouped with the distichus clade in the Bayesian analysis). time(Fig.3).Nonetheless,giventhateachoftheanoleecomorphs The relatively few available morphological characters (n = 91) has evolved multiple times (albeit primarily on different islands), usedinanolephylogeneticsandthepartialnatureofthecharacter their fossil representatives might not be members of the same data for these fragmentary fossils both likely contribute to the ecomorph clades present on Hispaniola today; an alternative pos- uncertain phylogenetic placement of many of these specimens. sibilityisthatthefossilsrepresentadditionalinstancesofevolution Overall,thephylogeneticresultsarecongruentwiththeclosere- oftheseecomorphsincladesthatdidnotpersisttothepresent.We lationships of the fossils to extant species representing the same testedthishypothesisbyusingmorphologicalcharacterstraditionally ecomorphs. These results support the hypothesis that the anole used in anole phylogenetics (22) to infer the relationships of the ecomorphsevolvedearlyintheCaribbeanadaptiveradiationand fossilstoextantspecies. thatanolecommunitystructurehasbeenstableeversince. In Bayesian phylogenetic analyses, all 14 fossils with DFA as- Justasinterestingastheecomorphspresentintheamberfauna signments greater than 0.90 were inferred within crown group arethosethatareabsent.Crown-giantshatchatasizeconsiderably Anolis(Fig.4).Parsimonyanalysesyieldedsimilarresults,although largerthanotheranoles,andthelackoflargefossilswithjuvenile onefossilwithahighDFAassignment(B)wasnotinferredwithin characteristics(18)(Fig.S6B)indicatesthatnocrown-giantanoles crowngroupAnolis(Fig.S5).Fivefossilsidentifiedastrunk-crown werepresentinoursample.Giventhatthesimilarlyarborealtrunk- anoleswith high-probability(A,F,H,I,andJ;Fig.2AandTable crownanoleswerepreservedingreatnumbers,habitatusedoesnot S3),wereplacedwiththechlorocyanusseriesofextanttrunk-crown explain the absence of crown-giants. One possibility, of course, is anoleswithstrongsupportinBayesiananalysesandunambiguously thatcrown-giantsaretoolargetobecometrappedinresin.Inad- inparsimonyanalyses(Fig.4,Fig.S5,andTableS4).Otherfossils dition,crown-giantstendtobelesscommonthanmembersofother identified as trunk-crown anoles (B, C, R, and T) were placed ecomorphs, and thus their absence may be a reflection of their ambiguously in the phylogeny, revealing little about their phylo- abundance. A last possibility, however, is that crown-giant anoles genetic relationships to their extant ecomorph counterparts. maynothaveoccurredonHispaniolawhentheamberfossilswere However,inbothBayesianandparsimonyanalyses,thealternative formed; molecular dating (25) places the stem age of the ricordii Sherrattetal. PNASEarlyEdition | 3of6 Amber horizon However,untilnowtherehasbeenaholeinourunderstandingof this system because of a dearth of fossil evidence of their evolu- tionarypast.OuranalysisofthediversityoftheMiocenefaunaof Hispaniola reveals that anole community structure has remained muchthesameforatleastthelast20My,providingstrongevidence forthestabilityofcommunitiesacrosslongperiodsoftimeduring which substantial environmental change has occurred. Whether theseresultsareparalleledinotherCaribbeangroupsremainstobe Twig seen;emergingfossils(16,31)ofaradiationofgekkonidlizardsmay Trunk proveaninterestingcomparison. Grass-bush Crown-giant Trunk-crown Methods Trunk-ground Specimens.Thefossilsincludedinthisstudyareidentifiedasbelongingtothe Anolis clade by the presence of one or more of the following derived Eocene Oligocene Miocene PO PS character states: coronoid labial blade, slender clavicles, reduction or ab- 50.0 40.0 30.0 20.0 10.0 0.0 senceofthesplenialandangularbones,noribsoncervicalvertebrae3and 4,threesternalribs,noribsonthreeormore(uptoseven)posteriorpre- Fig. 3. Ancient divergence of anole ecomorphs. Six habitat specialists, sacralvertebrae,transverseprocessesofcaudalvertebraelocatedposterior called ecomorphs, occur on islands in the Greater Antilles today: twig, tofractureplanes,andexpandedsubdigitalscalesthatformapadunder(at grass-bush, trunk, trunk-ground, trunk-crown, and crown-giant, named least)theantepenultimatephalangesofdigitsII–V(32). fortheircharacteristicmicrohabitatsanddifferingmorphology,ecology, Thirty-eightamberfossilswereavailableforstudy(3previouslydescribedand andbehavior.AchronogramofAnolislizarddiversification(55)indicates 35new).Toqualifyforinclusionintheecomorphologicalanalysis,thefossil that Hispaniolan ecomorph clades originated long ago and that most hadtohaveatleasttwoofthethreedatatypes(cranial,postcranial,lamella predatetheoriginofHispaniolanamber,whichwasformedatsomepoint number),or,ifonlyonetypewasavailable,atleasttwotoeswithpreserved within the range indicated by the amber horizon. Hispaniolan clades lamellae, or three skeletal elements and an estimated snout-to-vent length (highlighted) are colored according to ecomorph, with wide lines in- (SVL)withwhichtosize-correctthedata.Therefore,20amberfossils(TableS1) dicatingcrowncladesforthosecontainingmorethanonespecies.Clades wereavailabletocomparewith15speciesrepresentingthemaincladesand ofnon-Hispaniolanspecieshavebeencollapsed(forafullsummary,see ecomorphsextantonHispaniola:A.aliniger(trunk-crown,TC),A.chlorocyanus ref. 56). The Hispaniolan crown-giants are closely related to the crown- (TC),A.coelestinus(TC),A.singularis(TC),A.brevirostris(trunk,TR),A.distichus giantsofPuertoRico,aswellassomenon–crown-giants,suggestingthe (TR),A.marcanoi(trunk-ground,TG),A.cybotes(TG),A.sheplani(twig,TW), possibilityofanearlieroriginofthecrown-giantconditionthanindicated A.placidus(TW),A.insolitus(TW),A.bahorucoensis(grass-bush,GB),A.doli- here.Po,Pliocene;Ps,Pleistocene. chocephalus(GB),A.hendersoni(GB),andA.olssoni(GB)(100specimens).For eachextantspecies,malesandfemalesspanningthesizerangefromjuvenileto adultweresampledfromthealcohol-preservedcollectionattheMuseumof speciesgroup,whichcontainsextantHispaniolancrown-giants,at17 ComparativeZoology(Cambridge,MA). My,possiblyyoungerthantheformationofDominicanamber(Fig. 3). By contrast, molecular divergence time estimates indicate that X-Ray Microcomputed Tomography. The amber fossils and modern species the other five ecomorphs clearly evolved substantially earlier than wereexaminedusingX-raymicro-CT.ScansweremadeusingNikon(Metris) the formationof the amberdeposits(Fig.3). In this light, the ab- X-Tek HMXST 225 machines in Harvard University’s Center for Nanoscale sence of grass-bush anoles is somewhat surprising. Small and oc- Systems[amemberoftheNationalNanotechnologyInfrastructureNetwork curring low in the vegetation, we might have expected them to (NNIN), which is supported by the National Science Foundation] and The become entrapped in amber. On the other hand, as their name NaturalHistoryMuseum,London,andsupplementedwithdatafromother implies,theselizardsusuallyarefoundonsurfacesotherthantree systems,detailsofwhicharegiveninTableS1.TheX-raymicro-CTdatawere trunks, and thus habitat use may account for their absence in processedusingVGStudioMAXv2.2(VolumeGraphicsGmbH).Thedifferent oursample. elements in the fossils (i.e., bone, amber, air) and modern specimens (i.e., Evolutionary interpretations from phylogenetic analyses of bone,softtissue)werereconstructedin3Dbyusingdifferentthresholdson extantspeciesarealwayshauntedbythespecterofextinction,but theslicesforgrayvaluesspecifictotheseelements.Insomeamberpieces,air- ourdataprovidelittleevidencefordimensionsofanolediversity filledvoidsoutlinedthebodyofthelizardinclusion(andthesofttissuewas not suggested by analyses onthe contemporary fauna. Quite the mostlydegraded),makingitpossibletoexaminescalepatterns,particularlyof contrary,thefossildataandphylogeneticcomparativeanalysesare thetoepads. entirely congruent in suggesting that the ecomorph radiation is ancientandthattheecomorphsevolvedearlyandhaveremained BodySizeEstimation.SVL,usuallymeasuredasthedistancefromthetipofthe in place ever since (9). This is not to say that no adaptive di- snouttotheanteriorendofthevent,iscommonlyusedasaproxyforbodysizein lizards.Onaskeleton,thedistanceistakenfromtheanterioredgeofthepre- versification has occurred in anoles since the Miocene. Rather, maxillaonthemidlinetothearticulationbetweenthesecondsacralvertebraand there has been considerable subdivision of ecomorph niches as species specialize for different thermal microhabitats (26)— first caudal vertebra. SVL was measured from 3D-rendered skeletons in all modernspecimensandonamberfossilswherepossible,usingthepolylinetoolin unfortunately,thescalationcharactersthattendtocorrelatewith VGStudioMAXv2.2(VolumeGraphics),whichallowsmoreaccuratemeasure- thermalbiology(27)werenotpreservedinmostfossils,preventing mentofdistortedspecimensbyusingcumulativepointspositionedalongaline. inferencesabouttheevolutionofthermalspecialization.Ourdata SVLcouldnotbemeasureddirectlyonamberfossilsthataremissingthe do confirm, however, that the subsequent division of the trunk- skullorpartsoftheaxialskeleton.Therefore,SVLwasestimatedfromthe crown anole niche into small and large species, presumably to lengthofotherbodypartsthatwefoundtohaveminimalvariationamong partitionpreyresources(21),alsohasanancientorigin,againin ecomorphs using a regression model from the 100 modern specimens, agreementwithmoleculardivergenceestimates. summarizedinTableS2.Specifically,weusedfourapproaches: Caribbean islands are a hotspot of biological diversity, and i) Thelength of a lumbar vertebra (Lumbar), calculated asthe average researchontheirfloraandfaunahascontributedimmenselytoour lengthofthelasttwopresacralvertebrae,scalesverystronglywithSVL understanding of evolutionary processes. The abundance of in- (r2=0.96):logLumbar=−1.58223+1.0032746×logSVL. vertebrates preserved in amber from the Caribbean and other ii) Thelengthoftheilium(Ilium),measuredfromtheposteriortipofthe geographical regions has led to macroevolutionary and macro- shaft to the anterior tip of the anterior iliac process, also scales very ecologicalinsightsaboutsomegroups(28–30),butsuchapproaches stronglywithSVL(r2=0.96):logIlium=−1.48835+1.23261×logSVL. have not previously been possible for vertebrates. The Caribbean iii) Bodylength(BL),measuredfromtheanterioredgeoftheatlastothe island Anolis lizards have contributed to our understanding of posterioredgeofthelastsacralvertebramediallyalongtheventralside evolutionaryprocessesasawell-knowncaseofadaptiveradiation. oftheexternalbodyfromthenarrowestpointofneckregiontothe 4of6 | www.pnas.org/cgi/doi/10.1073/pnas.1506516112 Sherrattetal. Outgroups insomeamberfossilsfromreconstructedsofttissueusingX-raymicro-CT;la- 0.50 DDactyloa clade mellaeofotheramberfossilsandalcohol-preservedmodernspecimenswere occultus countedusingstereomicroscopes.Variablesmeasuredforeachamberfossilare darlingtoni given in Table S2. Cranial shape variation was captured using ten linear equestris species group vermiculatus s}pecies group measurements(Fig.S6A):skullwidth,frontalwidth,prefrontalwidth,snout monticola length,premaxillawidth,jugalheight,orbitdiameter,maxillalength,man- hendersoni series coelestinus diblewidth,andmandiblelength.Thesemeasurementsreflectmuchofthe 00..6634JF cranialvariationamongecomorphs(33,34).Postcranialmeasurementsreflect 0.64 G thoseknowntovaryamongecomorphs,theadaptivesignificanceofwhichis 00..5568 HK chlosreorcieysa nus wellunderstood(24,34):lengthsofthehumerus,ulna,femur,tibia,fourth 0.40 N metatarsal, third and fourth toesof the fore- and hindfeet, widths of the 0.68 aIliniger sternum, pelvis and sacrum, and pubis length. Numbers of lamellae were 0.77A countedforthethirdandfourthtoesofthefore-andhindfeet. chlorocyanus etheridgei Cranialandpostcranialmeasurements(TableS2)werecorrectedforbody insolitus sizebyusingtheresidualsfromseparatelinearregressionsoflog-transformed fowleri barbouri cranial and postcranial metrics on log-transformed SVL. We evaluated the semilineatus series probabilityofassignmentofeachfossiltotheecomorphclassesusingDFA. 0.52 M 0.46 O Becauseofvariationinwhichelementswerepreservedinthefossils,DFAs 0.50 P wereperformedseparatelyforeachfossil(TableS3).Ineachcase,aDFAwas lucius species group christophei performedusingvariablesfromthemodernspecimens,whichincludedonly cuvieri thevariablesthatwerealsoavailableforthefossil,andtheassignmentofa roosevelti Chamaeleolis clade fossiltoanecomorphwasdeterminedbasedonthissubsetofvariablesfrom ricordii spec}ies group modernspecimens.DFAwasperformedusingacommon(within-)covariance 0.49 B marcanoi matrixforallgroups(linearDA)inJMPProv.10(SASInstituteInc.). strahmi wlohnigteitmibaianliis csyebroietes s PhylogeneticAnalysis.Wescoredthe20amberfossilsforthemorphological cybotes charactersusedbyPoe(22)toinferanolephylogeny,usingX-raymicro-CT N armouri O shrevei scans,photographs,anddirectobservations.Morphometricmeasurements TI 0.38 E (characters1–9inref.22)werenotincludedinthedatamatrixbecausethe LU 0.46 Cbimaculatus series absence of minimum and maximum values in Poe’s (22) character de- EVO distichus series scriptions precluded the addition of new information. Data for 13 mor- 0.46 cQristatellus series phologicalcharacters(characters12,55–57,59,65–66,71,74–75,78–79,and Twig 0.51 S 90inref.22)werenotincludedforfossils,exceptC,theonlylikelyadult, Trunk 0.53 T Grass-bush sahluetapclaenui ss eserieriess banecdatuhsuesawtoleualsdtnoontehoafvtehebesteantepsrefosernthtefoserfcohsasrilascotethrsedrethvealnopCs.Tlahteesiendoanttaowgeenrey Crown-giant angusticeps subgroup Trunk-crown carolinensis subgroup combinedwithmorphological(22)andmoleculardata[ND2,COI,andRAG1 Trunk-ground 0.57 Largillaceus species group genes,5transferRNAs,andtheoriginforlight-strandreplication(35–45)]for 0.35 R extantspecies.MoleculardatawerealignedusingClustalX(46)andtranslated Norops clade intoaminoacidsusingMacCladev.4.07(47)toconfirmthecorrecttranslation frame. Sequence coding for transfer RNAs was aligned manually following Fig.4. Summarytreeshowingthephylogeneticrelationshipsoftheamber KumazawaandNishida’s(48)modeloftRNAsecondarystructure.Onehundred fossilsinferredbyBayesiananalyses.NamesofAnolissubcladesaregivenon basescorrespondingtosectionsofthe tRNAsandtheoriginoflight-strand the right. The amber fossils are represented by letters corresponding to replicationwereexcludedfromtheanalysesduetoambiguousalignment.The those in Fig. 2, and their relationships are indicated by yellow-orange finalmatrixanalyzedincluded4,873bases,91morphologicalcharacters,and branches(seeMethodsfordetails).Bayesianposteriorprobabilitiesforfossil 181extanttaxa(174Anolisand7outgroupspecies).All181specieswerescored placementsareshownabovebranches.DFAclassificationsforthefossilsare formorphologicalcharacters;140alsohadmoleculardata.Theresultingdata indicatedbypiecharts,coloredbyecomorph(onlyprobabilitiesgreaterthan matrixwasanalyzedusingparsimonyandBayesianmethods. 0.1areshown). To reduce the computational time that results from large amounts of missingdataintheamberfossils,weinferredatopologyfortheextantspecies vent,scalesthemoststronglywithSVL(r2=0.99):logBL=−0.299015+ andthenusedthattopologyasabackbonetopologicalconstraint(whichallows 1.0836932×logSVL. speciesnotincludedintheconstrainttreetobeplacedfreelyinthetopology)to iv) Mandiblelength(MandL),measuredfromtheposteriormostpointon inferthephylogeneticpositionoftheamberfossils.Thetopologyforthe theretroarticularprocesstotheanteriormostpartofthedentaryat extantspecieswasinferredwithPAUP*v.4.0b10(49)usingparsimonyonthe the symphysis, scales very strongly with SVL (r2 = 0.96): logMandL = combined dataset (181 species: 91 morphological characters and 4,873 DNA −0.521892+1.0051243×logSVL. bases).Weusedequalcostsforstatetransformations,exceptformultistateor- deredmorphologicalcharacters,whichwereweightedsuchthattherangeof Formanyofthefossils,SVLwasmeasuredorestimatedbyseveraldifferent each character equals 1. We performed 2,000 replicates of random stepwise methods(TableS2).TheestimatedSVLusedforsizecorrectionwasassessed addition,withdefaultsettingsforallotheroptions. on a fossil-by-fossil basis, using the most reliable measurement given the Wethenperformedaseparateparsimonyanalysisforeachamberfossilby stateofpreservationofthespecimen.Forthemorefragmentaryfossils(K,N, includingeachfossilinthecombinedmatrixfortheextantspecies,imposing O,P,andS),forwhichapproachesi–iiiabovecouldnotbeused,wealsoprovide thetopologicalconstraint,andusingasinglereplicateofrandomstepwise a range of SVL estimates (Table S2). The ranges were estimated from the addition(otheroptionsleftondefaultsettings).Wecombinedtheresultsfor distribution of ecomorph-specific slopes constituting various body measure- allofthefossilsinasinglesummarytree(Fig.S5).Forfossilsforwhichasingle ments.Forexample,infossilswithisolatedheads(K,N,andO),therangeof most parsimonious tree (MPT) was inferred, the fossil was placed in that possibleSVLswastakenfromtheecomorphslopeswiththelowestandhighest positioninthesummarytree.ForfossilsforwhichmorethanoneMPTwas interceptinregressionsofmandiblelength,mandiblewidth,and/orskullwidth. inferred,weusedapruneandregraftconsensusmethod(50),placingeach ForfossilsPandS,therangeofSVLswerepredictedusingulnalength(r2=0.84; fossilatthebasalnodeoftheleastinclusivecladeinthebackboneconstraint logUlna=−1.195832+1.205887×logSVL).FossilPhasawell-defineddewlap, treethatincludedallofthealternativeplacementsofthefossil. indicatingmaturity,andwouldsuggestalargeranimalofanecomorphmadeup ToperformBayesiananalyses,wefirstrescoredthemorphologicalcharacters predominantlyofspeciesofsmallbodysize,suchastwiganoles(44.7mmusing inthecombinedmatrixintoorderedorunorderedcharactersconsistingof6or10 twig-specificslope).FossilShasunfusedepiphyses,suggestingajuvenile. character states, respectively [following Poe’s (22) character descriptions]. We thenfollowedasimilarapproachtothatusedintheparsimonyanalyses.First, Morphometric Analysis. To compare the morphology of extant and fossil weestimatedatopologyofextantspecies(tobeusedastheequivalentofa anoles,wecollectedcranialandpostcranialmeasurementsfromreconstructed backboneconstraint),byanalyzingtheextantcombinedmatrixinMrBayes skeletonsusingX-raymicro-CT.Wecountedthenumberofsubdigitallamellae v.3.2.3(51).Weexecutedfourindependentrunsof50milliongenerations Sherrattetal. PNASEarlyEdition | 5of6 witharandomstartingtree,asamplingfrequencyof1,000generations,and contype=allcompatcommand).Wecombinedthemajorityruletreeresultsof remainingparametersleftatdefaultvalues.Wepartitioneddatabymor- allfossilsinasinglesummarytree(Fig.4). phology,codonposition,andtRNAs(11partitions)andestimatedthemodel We used Bayesian topology tests (54) to evaluate support for the foreachpartitionusingjModeltestv.2.1.4(52).Toconfirmanappropriate placement of individual fossils within extant clades that correspond to sampling interval and that stationarity was achieved after discarding the thesameecomorph.Topologiesrepresentingeachofthehypothesesof first25%ofthesampledtrees,weexaminedeffectivesamplesizevalues interest,e.g.,fossilDplacedassistertoinsolitus,wereusedasfiltersin usingTRACERv1.5(53),comparedtheaverageSDofsplitfrequenciesbe- PAUP*toexaminetopologiescontainedinthe95%crediblesetoftrees tweenchains,andexaminedthepotentialscalereductionfactor(PSRF)ofall resultingfromtheBayesiananalysis. of the estimated parameters for the four runs combined. We estimated a maximumcladecredibility(MCC)treeandcreatedaseriesofpartialconstraints ACKNOWLEDGMENTS. We thank those who allowed us access to amber sothatwecouldenforcetheMCCtopologyofextantspeciesasastrictconstraint fossilsforstudy:G.Bechly,J.Calbeto,L.Costeur,M.Cusanovich,G.Greco, M. Greco, D. Grimaldi, M. Halonen, and J. Work. We especially thank indownstreamanalysesthatincludedfossiltaxa.Weconductedanindependent E.Moroneforprovidingaccesstomorethanhalfofthefossilsexaminedfor Bayesiananalysisforeachfossil,usingthesameprotocolandsettingsasthe thisstudy.WethankJ.Klaczko,andG.Gartnerforprovidingsupportand extanttopologyanalysis,butwithadurationof15milliongenerations.After discussionsandJ.Casartforassistingwithdatacollection.Scandatawere discardingthefirst25%ofsampledtrees,weestimatedamajorityrulecon- alsoprovidedbyR.Boistel,M.Polcyn,L.Jacobs,M.Colbert,andR.Ketcham. sensustreeforeachfossilspecimenincludingallcompatiblegroups(usingthe WethanktheNationalScienceFoundationforsupport. 1. WilliamsJW,ShumanBN,WebbT,III,BartleinPJ,LeducPL(2004)Late-Quaternary 30.RustJ,etal.(2010)Biogeographicandevolutionaryimplicationsofadiversepaleobiotain vegetationdynamicsinNorthAmerica:Scalingfromtaxatobiomes.EcolMonogr amberfromtheearlyEoceneofIndia.ProcNatlAcadSciUSA107(43):18360–18365. 74(2):309–334. 31.DazaJD,BauerAM,WagnerP,BöhmeW(2013)AreconsiderationofSphaerodactylus 2. LyonsSK(2005)AquantitativemodelforassessingcommunitydynamicsofPleisto- dommeliBöhme,1984(Squamata:Gekkota:Sphaerodactylidae),aMiocenelizardin cenemammals.AmNat165(6):E168–E185. amber.JZoologicalSystEvolRes51(1):55–63. 3. WilliamsJW,JacksonST(2007)Novelclimates,no-analogcommunities,andecological 32.EtheridgeR,deQueirozK(1988)AphylogenyofIguanidae.PhylogeneticRelationshipsof surprises.PaleoecolRev5(9):475–482. theLizardFamilies,edsEstesR,PregillG(StanfordUnivPress,Stanford,CA),pp283–367. 4. BloisJL,HadlyEA(2009)MammalianresponsetoCenozoicclimaticchange.AnnuRev 33.SangerTJ,MahlerDL,AbzhanovA,LososJB(2012)Rolesformodularityandconstraintin EarthPlanetSci37(8):8.1–8.28. theevolutionofcranialdiversityamongAnolislizards.Evolution66(5):1525–1542. 5. OlszewskiTD(2012)Persistenceofhighdiversityinnon-equilibriumecologicalcom- 34.HarmonLJ,KolbeJJ,CheverudJM,LososJB(2005)Convergenceandthemultidi- munities:Implicationsformodernandfossilecosystems.ProceedingsoftheRoyal mensionalniche.Evolution59(2):409–421. SocietyofLondonB:BiologicalSciences279(1727):230–236. 35.MaceyJR,LarsonA,AnanjevaNB,PapenfussTJ(1997)Evolutionaryshiftsinthree 6. BrettCE(2012)Coordinatedstasisreconsidered:Aperspectiveatfifteenyears.Earth majorstructuralfeaturesofthemitochondrialgenomeamongiguanianlizards.JMol andLife,edTalentJA(Springer,NewYork),pp23–36. Evol44(6):660–674. 7. WilliamsEE(1983)Ecomorphs,faunas,islandsize,anddiverseendpointsinisland 36.JackmanTR,IrschickDJ,deQueirozK,LososJB,LarsonA(2002)Molecularphylo- radiationsofAnolis.LizardEcology:StudiesofaModelOrganism,edsHueyRB, geneticperspectiveonevolutionoflizardsoftheAnolisgrahamiseries.JExpZool PiankaER,SchoenerTW(HarvardUniversityPress,Cambridge,MA),pp326–370. 294(1):1–16. 8. LososJB,JackmanTR,LarsonA,deQueirozK,Rodríguez-SchettinoL(1998)Contingency 37.JackmanTR,LarsonA,deQueirozK,LososJB(1999)Phylogeneticrelationshipsand anddeterminisminreplicatedadaptiveradiationsofislandlizards.Science279(5359): tempoofearlydiversificationinAnolislizards.SystBiol48(2):254–285. 2115–2118. 38.CreerDA,deQueirozK,JackmanTR,LososJB,LarsonA(2001)Systematicsofthe 9. Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the AnolisroquetseriesofthesouthernLesserAntilles.JHerpetol35(3):428–441. macroevolutionarylandscapeinislandlizardradiations.Science341(6143):292–295. 39.GlorRE,KolbeJJ,PowellR,LarsonA,LososJ(2003)Phylogeneticanalysisofecological 10.PoinarGO(2010)PalaeoecologicalperspectivesinDominicanamber.AnnSocEn- andmorphologicaldiversificationinHispaniolantrunk-groundanoles(Anoliscybotes tomolFr46(1-2):23–52. group).Evolution57(10):2383–2397. 11.PenneyD(2002)PaleoecologyofDominicanamberpreservation:Spider(Araneae)in- 40.HarmonLJ,SchulteJA,2nd,LarsonA,LososJB(2003)Tempoandmodeofevolu- clusionsdemonstrateabiasforactive,trunk-dwellingfaunas.Paleobiology28(3):389–398. tionaryradiationiniguanianlizards.Science301(5635):961–964. 12.GrimaldiD(2000)StudiesonFossilsinAmber,WithParticularReferencetoCreta- 41.SchulteJA,ValladaresJP,LarsonA(2003)PhylogeneticrelationshipswithinIguanidae ceousofNewJersey(BackhuysPublishers,Leiden). inferredusingmolecularandmorphologicaldataandaphylogenetictaxonomyof 13.MacPhee RDE, Grimaldi DA (1996) Mammal bones in Dominican amber. Nature iguanianlizards.Herpetologica59(3):399–419. 380(6574):489–490. 42.NicholsonKE,etal.(2005)Mainlandcolonizationbyislandlizards.JBiogeogr32(6): 14.PoinarGO,Jr,CannatellaDC(1987)AnUpperEocenefrogfromtheDominicanRe- 929–938. publicanditsimplicationforCaribbeanbiogeography.Science237(4819):1215–1216. 43.Nicholson KE, Mijares-Urrutia A, Larson A (2006) Molecular phylogenetics ofthe 15.RieppelO(1980)GreenanoleinDominicanamber.Nature286(5772):486–487. Anolisoncaseries:Acasehistoryinretrogradeevolutionrevisited.JExpZoologBMol 16.DazaJD,BauerAM(2012)Anewamber-embeddedsphaerodactylgeckofromHis- DevEvol306(5):450–459. paniola,withcommentsonmorphologicalsynapomorphiesoftheSphaerodactylidae. 44.CastigliaR,AnnesiF,BezerraA,GarciaA,Flores-VillelaO(2010)Cytotaxonomyand Breviora529:1–28. DNA taxonomy of lizards (Squamata, Sauria) from a tropical dry forest in the 17.LazellJD,Jr(1965)AnAnolis(Sauria,Iguanidae)inamber.JPaleontol39(3):379–382. Chamela-Cuixmala Biosphere Reserve on the coast of Jalisco, Mexico. Zootaxa 18.deQueirozK,ChuLR,LososJB(1998)AsecondAnolislizardinDominicanamberand 2508:1–29. thesystematicsandecologicalmorphologyofDominicanamberanoles.AmMus 45.CastañedaMdR,deQueirozK(2011)PhylogeneticrelationshipsoftheDactyloaclade Novit3249:1–23. ofAnolislizardsbasedonnuclearandmitochondrialDNAsequencedata.MolPhy- 19.PolcynMJ,RogersJV,II,KobayashiY,JacobsLL(2002)Computedtomographyofan logenetEvol61(3):784–800. AnolislizardinDominicanamber:systematic,taphonomic,biogeographic,andevo- 46.ThompsonJD,GibsonTJ,PlewniakF,JeanmouginF,HigginsDG(1997)TheCLUSTAL_X lutionaryimplications.Paleontol.Electron.5(1):1–13. windowsinterface:Flexiblestrategiesformultiplesequencealignmentaidedby 20.Iturralde-VinentMA(2001)Geologyoftheamber-bearingdepositsoftheGreater qualityanalysistools.NucleicAcidsRes25(24):4876–4882. Antilles.CaribbJSci37(3/4):141–167. 47.MaddisonDR,MaddisonWP(2001)MacClade:AnalysisofPhylogenyandCharacter 21.LososJB(2009)LizardsinanEvolutionaryTree:EcologyandAdaptiveRadiationof Evolution(SinauerAssociates,Sunderland,MA). Anoles(UnivofCaliforniaPress,Berkeley,CA). 48.KumazawaY,NishidaM(1993)SequenceevolutionofmitochondrialtRNAgenesand 22.PoeS(2004)Phylogenyofanoles.HerpetologicalMonogr18(1):37–89. deep-branchanimalphylogenetics.JMolEvol37(4):380–398. 23.WilliamsEE(1965)ThespeciesofHispaniolangreenanoles(Sauria,Iguanidae).Bre- 49.Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other viora227:1–16. Methods)(SinauerAssociates,Sunderland,MA). 24.BeuttellK,LososJB(1999)EcologicalmorphologyofCaribbeananoles.Herpetolog 50.FindenC,GordonA(1985)Obtainingcommonprunedtrees.JClassif2(1):255–276. Monogr13:1–28. 51.RonquistF,etal.(2012)MrBayes3.2:EfficientBayesianphylogeneticinferenceand 25.BurbrinkFT,PyronRA(2010)Howdoesecologicalopportunityinfluenceratesof modelchoiceacrossalargemodelspace.SystBiol61(3):539–542. speciation, extinction, and morphological diversification in New World ratsnakes 52.DarribaD,TaboadaGL,DoalloR,PosadaD(2012)jModelTest2:Moremodels,new (tribeLampropeltini)?Evolution64(4):934–943. heuristicsandparallelcomputing.NatMethods9(8):772. 26.HertzPE,etal.(2013)Asynchronousevolutionofphysiologyandmorphologyin 53.RambautA,DrummondAJ(2007)Tracerv1.4.Availableattree.bio.ed.ac.uk/software/ Anolislizards.Evolution67(7):2101–2113. tracer/.AccessedJuly8,2015. 27.WegenerJE,GartnerGEA,LososJB(2014)Lizardscalesinanadaptiveradiation: 54.BrandleyMC,SchmitzA,ReederTW(2005)PartitionedBayesiananalyses,partition VariationinscalenumberfollowsclimaticandstructuralhabitatdiversityinAnolis choice,andthephylogeneticrelationshipsofscincidlizards.SystBiol54(3):373–390. lizards.BiolJLinnSocLond113(2):570–579. 55.Pyron RA, Burbrink FT, Wiens JJ (2013) A phylogeny and revised classification 28.WilsonEO(1985)InvasionandextinctionintheWestIndianantfauna:Evidencefrom ofSquamata,including4161speciesoflizardsandsnakes.BMCEvolBiol13(1):93. theDominicanamber.Science229(4710):265–267. 56.MahlerDL,RevellLJ,GlorRE,LososJB(2010)Ecologicalopportunityandtherateof 29.PenneyD,LanganAM(2006)ComparingamberfossilassemblagesacrosstheCeno- morphologicalevolutioninthediversificationofGreaterAntilleananoles.Evolution zoic.BiolLett2(2):266–270. 64(9):2731–2745. 6of6 | www.pnas.org/cgi/doi/10.1073/pnas.1506516112 Sherrattetal. Supporting Information Sherratt et al. 10.1073/pnas.1506516112 Fig.S1. Toepadmorphologyoffore-andhindfeetamongrecent(representingfiveecomorphs)andfossilanoles.Lamellanumbersforthemodernspeciesare givenbesidedigitsIIIandIV.TheamberfossilsarecoloredbyecomorphaccordingtoDFAresultsifassignedwithaprobabilitygreaterthan0.90(TableS3). ModernspecimensfromMuseumofComparativeZoologyReptilecollection,HarvardUniversity(prefixMCZR). Sherrattetal.www.pnas.org/cgi/content/short/1506516112 1of12 ) s n nu wa oy rc co k-or unhl TrA. c ( T-0845 MCZ R-59788 ) s u h al F sh up be -c so sc raoli Gd A. MCZ R-74865 MCZ R-124846 ( d ) ns ue oot grb J -y kc unA. Tr( T-0339 MCZ R-186752 ) s u olit g s Twis in oli O n A ( MCZ R-107016 MCZ R-107014 ) s ri st k o unvir Trre b A. ( K MCZ R-155836 MCZ R-69274 Fig.S2. Cranialshapeoffiverecentanolesrepresentingfiveecomorphscomparedwithfouramberfossils.Craniaofmodernjuveniles(Left)andadults (Center),aswellasamberfossilskulls(Right)areshowninlateralanddorsalviews.Theamberfossilsarecoloredbyecomorphifassignedwithaprobability greaterthan0.90(TableS3).ModernspecimensfromMuseumofComparativeZoologyReptilecollection,HarvardUniversity(prefixMCZR),orFieldTagfor T.J.Sanger(prefixT). Sherrattetal.www.pnas.org/cgi/content/short/1506516112 2of12 Fig.S3. Variationamongthefossilsandhowitcorrespondswithvariationamongtheecomorphsforall10cranialmeasurements.Size-correctedresidualsare plottedfortheamberfossilslabeledbyletters(A–T)andmodernspecimens(coloreddotsbyecomorph).AmberfossilsarecoloredaccordingtotheDFAresults (detailedinTableS3)whenassignedwithaprobabilitygreaterthan0.90.AplotofthefirsttwocanonicalvariablesoftheDFAusingall10variables(Lower Right)illustrateshowwellthecranialmeasurementsdiscriminatetheecomorphs(modernspecimensonly). Sherrattetal.www.pnas.org/cgi/content/short/1506516112 3of12 Pelvis width Sacrum width Pubis length 0.15 0.1 0.1 uals)0.00.51 0.05 L 0.050 A esid 0 A 0 A E -0.05 HJMR Length (r--00-..010.551 BJ M -0-.00.51 H MR -0--.001..521 -0.2 -0.25 GB TRTCTGTW GB TRTCTGTW GB TRTCTGTW Amber Ecomorph Amber Ecomorph Amber Ecomorph Sternum width Humerus Ulna 0.2 0.15 0.15 0.1 0.1 ngth (residuals)--000-..0.1000.55.1510 A J -00-.0.00.5150 A C O J -00-.0.00.5150 ACFGHIJOR Le -0.2 -0.15 -0.15 -0.25 -0.2 GB TRTCTGTW GB TRTCTGTW GB TRTCTGTW Amber Ecomorph Amber Ecomorph Amber Ecomorph Femur Tibia Metatarsal IV 0.1 0.1 h (residuals)-00..00550 ABCDEFGHIJLM --000-..0.100.55150 ABDCEFGHIJLMT -00..110 ABCDEFGHIJLMT ngt -0.1 -0.2 -0.2 Le-0.15 -0.25 -0.3 -0.3 -0.2 GB TRTCTGTW GB TRTCTGTW GB TRTCTGTW Amber Ecomorph Amber Ecomorph Amber Ecomorph Hindtoe IV Hindtoe III Foretoe III 0.1 0.15 0.15 0.05 E M 0.1 0.1 esiduals)-0-.00.510 ABCDFGHIJ T -00..00550 ACDEFHIJLM -00..00550 C HJ O h (r-0.15 -0.1 -0.1 gt -0.2 -0.15 -0.15 en-0.25 -0.2 -0.2 L -0.3 -0.25 -0.25 GB TRTCTGTW GB TRTCTGTW GB TRTCTGTW Amber Ecomorph Amber Ecomorph Amber Ecomorph 6 Foretoe IV DFA, All postcranial variables, 0.1 4 modern only als) 0.050 CHGJ O 2 gth (residu--00-..010.551 Canonical 2--420 en -0.2 L -6 -0.25 GB TRTCTGTW -8 Amber Ecomorph -10 -10 -5 0 5 10 Canonical 1 Fig.S4. Variationamongthefossilsandhowitcorrespondswithvariationamongtheecomorphsforall13postcranialmeasurements.Size-correctedresiduals areplottedfortheamber(A–T)andmodernspecimens.Amberfossilsarecoloredaccordingtothediscriminantfunctionanalysis(DFA)results(TableS3)when assignedwithaprobabilitygreaterthan0.90.AplotofthefirsttwocanonicalvariablesoftheDFAusingall13variables(LowerRight)illustrateshowwellthe postcranialmeasurementsdiscriminatetheecomorphs(modernspecimensonly). Sherrattetal.www.pnas.org/cgi/content/short/1506516112 4of12
Description: