This page intentionally left blank Alternative Methods of Regression This page intentionally left blank Alternative Methods of Regression DAVID BIRKES YADOLAH DODGE Oregon State University University of Neuchätel A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York · Chichester · Brisbane · Toronto · Singapore To my parents. —Dave To Kay. —Yadolah This text is printed on acid-free paper. Copyright © 1993 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012. Library of Congress Cataloging in Publication Data: Birkes, David Alternative methods of regression / David Birkes, Yadolah Dodge. p. cm. "A Wiley-Interscience publication." ' Includes index. ISBN 0-471-56881-3 1. Regression analysis. I. Dodge, Yadolah, 1944- II. Title. QA278.2.D64 1993 519.5'36—dc20 92-31165 10 9 8 7 6 5 43 Contents Preface Acknowledgments 1. Linear Regression Analysis 1.1 Introduction, 1 1.2 Example, 2 1.3 The Linear Regression Model, 3 1.4 Estimating the Regression Coefficients, 5 1.5 Testing the Significance of the Relationship, 6 1.6 The Need for Alternative Methods, 6 1.7 The Origin of the Word "Regression", 8 Notes, 10 References, 11 2. Constructing and Checking the Model 2.1 Introduction, 13 2.2 Checking the Model, 14 2.3 Modifying the Model, 15 2.4 Examples, 16 Notes, 24 References, 27 3. Least-Squares Regression 3.1 Introduction, 29 3.2 An Example of Simple Regression, 29 3.3 Estimating the Regression Line, 31 3.4 Testing ß = 0, 33 3.5 Checking Normality, 37 3.6 An Example of Multiple Regression, 38 3.7 Estimating the Regression Coefficients, 38 3.8 Testing the Regression Coefficients, 42 3.9 Testing ß = ··■ = ß = 0, 45 g + l p 3.10 Testing ß = 0, 45 3 3.11 The Coefficient of Determination, 47 3.12 Computation, 47 Notes, 49 References, 54 4. Least-Absolute-Deviations Regression 4.1 Introduction, 57 4.2 Estimating the Regression Line, 57 4.3 Nonuniqueness and Degeneracy, 61 4.4 Testing ß = 0, 62 4.5 An Example of Multiple Regression, 66 4.6 Estimating the Regression Coefficients, 68 4.7 Testing ß = ··· = ß = 0, 76 q+l p 4.8 Computation, 78 Notes, 78 References, 83 5. M-Regression 5.1 Introduction, 85 5.2 An Example of Simple Regression, 85 5.3 Estimating the Regression Line, 87 5.4 Testing ß = 0, 90 5.5 An Example of Multiple Regression, 91 5.6 Estimating the Regression Coefficients, 93 5.7 Testing ß = ··· = ß = 0, 95 Q+] p 5.8 Computation, 97 Notes, 99 References, 109 6. Nonparametric Regression 6.1 Introduction, 111 6.2 An Example of Simple Regression, 111 6.3 Estimating the Regression Line, 113 CONTENTS 6.4 Testing ß = 0, 118 6.5 An Example of Multiple Regression, 121 6.6 Estimating the Regression Coefficients, 122 6.7 Testing ß = ··■ = ß = 0, 126 q + x p 6.8 Computation, 130 Notes, 130 References, 140 7. Bayesian Regression 7.1 Introduction, 143 7.2 The Bayesian Approach, 143 7.3 An Example of Simple Regression, 144 7.4 Estimating the Regression Line, 145 7.5 Testing ß = 0, 149 7.6 An Example of Multiple Regression, 153 7.7 Estimating the Regression Coefficients, 154 7.8 Testing ß = ··· = ß = 0, 157 9 + l p 7.9 Computation, 160 Notes, 161 References, 170 8. Ridge Regression 8.1 Introduction, 173 8.2 An Example of Simple Regression, 173 8.3 Estimating the Regression Line, 173 8.4 An Example of Multiple Regression, 176 8.5 Standardization, 177 8.6 Estimating the Regression Coefficients, 178 8.7 Collinearity, 180 Notes, 183 References, 187 9. Comparisons 9.1 Introduction, 189 9.2 Comparison of Properties, 189 9.3 Comparisons on Three Data Sets, 196 Notes, 199 References, 203 viii CONTENTS 10. Other Methods 205 10.1 Introduction, 205 10.2 Other Methods of Linear Regression, 205 10.3 More General Methods of Regression, 209 References, 212 Appendix 215 Student's i-Distribution, 215 /"■-Distribution, 216 Chi-squared Distribution, 222 Index 223
Description: