ebook img

Alternative approaches to rapid acceleration of ion beams PDF

210 Pages·2014·19.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Alternative approaches to rapid acceleration of ion beams

Alternative approaches to rapid acceleration of ion beams − harmonic ratcheting for fast RF acceleration and laser driven acceleration of gas jet targets A Dissertation Presented by Nathan Michael Cook to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics Stony Brook University December 2014 Copyright by Nathan Michael Cook 2014 Stony Brook University The Graduate School Nathan Michael Cook We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation Axel Drees - Dissertation Advisor Professor, Department of Physics and Astronomy Peter W. Stephens - Chairperson of Defense Professor, Department of Physics and Astronomy Steve Peggs - Committee Member Professor, Department of Physics and Astronomy Michael Zingale - Committee Member Professor, Department of Physics and Astronomy Brian D. Sheehy - External Member Physicist, Brookhaven National Laboratory Igor Pogorelsky - External Member Physicist, Brookhaven National Laboratory This dissertation is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Abstract of the Dissertation Alternative approaches to rapid acceleration of ion beams − harmonic ratcheting for fast RF acceleration and laser driven acceleration of gas jet targets by Nathan Michael Cook Doctor of Philosophy in Physics Stony Brook University 2014 Energetic ion beams have vast potential in medicine, energy, and basic science, providing significant advantages in applications of radiation therapy, nuclear energy, and high energy physics. Con- ventional acceleration means are inefficient and costly, imposing stringent requirements on space, power, and speed of the ma- chines designed to address these applications. This thesis considers two contrasting approaches to improving ion beam acceleration: fast acceleration using radio-frequency (RF) technology and laser driven acceleration of ion beams from over-dense plasma. We first consider fast acceleration in a synchrotron using conven- tional RF cavities. We introduce a ferrite based RF scheme for a rapid cycling synchrotron known as “harmonic ratcheting.” By systematically decreasing the harmonic number in steps during the acceleration cycle, a reduction in the required frequency range is iii achieved. Two cavities alternately provide the accelerating voltage toallowtuning. Aratchetingapproachallowsforadoublingofgap voltage for fixed cavity length and input power. Simulations per- formedusinga 65msynchrotrondesign demonstrate thefeasibility of the scheme for acceleration of C6+ ions to 400 MeV/nucleon at a 15 Hz repetition rate. Next, we investigate the acceleration of ions through the interac- tion of an intense CO laser and over-dense plasma. Brookhaven 2 National Laboratory's Accelerator Test Facility possesses a TW- class CO laser, with the unique capability to produce a single 2 intense 5 ps pulse at 10 µm. This allows for the use of high pu- rity gas jet targets at densities which exceed the critical density of the laser light. We demonstrate the repeatable acceleration of ions using a two pulse technique. A pre-pulse containing a few % of the main pulse energy arrives 25 ns prior to the main pulse, driving a hydrodynamic blast wave into the gas target. The main pulse then drives an electrostatic shock into the shaped plasma, producing ion beams with higher peak energies than predicted by other approaches. We observe accelerated beams only for a narrow range of pre-pulse energies, indicating the importance of the target density profile in enabling the acceleration. iv To my parents and to my grandparents. Contents List of Figures ix List of Tables xx Acknowledgements xxi 1 Introduction 1 1.1 High precision applications for ion beams in medicine . . . . . 4 1.2 Applications with high current and high energy . . . . . . . . 5 1.3 Motivating alternative acceleration methods . . . . . . . . . . 6 2 Periodic Accelerators 9 2.1 Transverse Dynamics . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Equations of Motion . . . . . . . . . . . . . . . . . . . 12 2.1.2 Emittance . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.4 Lattice Design . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Longitudinal Dynamics . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Energy gain in a synchrotron . . . . . . . . . . . . . . 22 2.2.2 Small amplitude longitudinal oscillations . . . . . . . . 23 2.2.3 Large Amplitude Oscillations and the Separatrix . . . . 25 3 Harmonic Ratcheting for Rapid Acceleration of Ions 30 3.1 Ferrite-loaded RF cavities . . . . . . . . . . . . . . . . . . . . 31 3.1.1 RF cavity basics . . . . . . . . . . . . . . . . . . . . . 31 3.1.2 Ferrites . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.3 Ferrite-Loaded RF cavities . . . . . . . . . . . . . . . . 37 3.1.4 Cavity parameters and performance . . . . . . . . . . . 40 3.2 Harmonic ratcheting . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 Designing a ratcheting ramp . . . . . . . . . . . . . . . 46 3.2.2 Emittance growth at ratcheting transition . . . . . . . 46 vi 3.3 Cavity performance with harmonic ratcheting . . . . . . . . . 48 3.4 Example: a rapid cycling medical synchrotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Ratcheting challenges . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.1 Anomalous effects . . . . . . . . . . . . . . . . . . . . . 54 3.5.2 Magnetic alloy cavities . . . . . . . . . . . . . . . . . . 55 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 A Laser Plasma Primer 57 4.1 A plasma primer . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.1 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.2 Describing plasma dynamics . . . . . . . . . . . . . . . 62 4.2 Laser-plasma interactions . . . . . . . . . . . . . . . . . . . . . 65 4.2.1 Ionization mechanisms . . . . . . . . . . . . . . . . . . 65 4.2.2 Free electron motion . . . . . . . . . . . . . . . . . . . 67 4.2.3 Propagation of waves in plasma . . . . . . . . . . . . . 72 4.2.4 Energy absorption mechanisms . . . . . . . . . . . . . 75 4.3 Ion acceleration mechanisms . . . . . . . . . . . . . . . . . . . 78 4.4 Target normal sheath acceleration . . . . . . . . . . . . . . . . 78 4.5 Radiation pressure acceleration . . . . . . . . . . . . . . . . . 80 4.6 Collisionless shock acceleration . . . . . . . . . . . . . . . . . 85 5 Experimental Configuration at BNL Accelerator Test Facility 91 5.1 ATF Terrawatt CO Laser . . . . . . . . . . . . . . . . . . . . 92 2 5.1.1 Controlled pre-pulse generation . . . . . . . . . . . . . 97 5.2 Experimental chamber and laser plasma interaction diagnostics 98 5.3 Ion beam diagnostics . . . . . . . . . . . . . . . . . . . . . . . 109 6 Diagnostic Tools for Imaging Laser Accelerated Ions 113 6.1 Film and polymer detectors . . . . . . . . . . . . . . . . . . . 115 6.2 Micro-channel plate detectors . . . . . . . . . . . . . . . . . . 117 6.3 Scintillator candidates . . . . . . . . . . . . . . . . . . . . . . 119 6.3.1 Organic scintillators . . . . . . . . . . . . . . . . . . . 119 6.3.2 Polyvinyl toluene . . . . . . . . . . . . . . . . . . . . . 120 6.3.3 Inorganic scintillators . . . . . . . . . . . . . . . . . . . 121 6.3.4 Additional properties . . . . . . . . . . . . . . . . . . . 122 6.3.5 Al O :Cr O — chromox . . . . . . . . . . . . . . . . 124 2 3 2 3 6.4 Experimental methods . . . . . . . . . . . . . . . . . . . . . . 125 6.4.1 Stony Brook tandem van de graaff . . . . . . . . . . . 125 6.4.2 CCD camera . . . . . . . . . . . . . . . . . . . . . . . 127 6.4.3 The European Machine Vision Association model . . . 127 vii 6.5 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . 130 6.5.1 Yield analysis . . . . . . . . . . . . . . . . . . . . . . . 130 6.5.2 Scattering effects . . . . . . . . . . . . . . . . . . . . . 135 6.5.3 Afterglow . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7 Laser driven shock wave acceleration of ions at BNL Acceler- ator Test Facility 141 7.1 Hydrodynamic target shaping . . . . . . . . . . . . . . . . . . 142 7.1.1 flash simulations . . . . . . . . . . . . . . . . . . . . 145 7.2 Helium ion acceleration . . . . . . . . . . . . . . . . . . . . . . 149 7.2.1 Pre-pulse regimes . . . . . . . . . . . . . . . . . . . . . 150 7.3 Particle-in-cell simulations . . . . . . . . . . . . . . . . . . . . 154 7.3.1 Shock breakdown . . . . . . . . . . . . . . . . . . . . . 160 7.4 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Bibliography 172 viii List of Figures 1.1 The corresponding dose-depth curves for various charged parti- cles. Ions exhibit a Bragg Peak in their energy deposition near the end of their range [1]. . . . . . . . . . . . . . . . . . . . . 3 2.1 Coordinate system in the frame of reference of a particle trav- elling an arbitrary trajectory relative to the design path. . . . 12 2.2 Particles with the same value of action J fall on an ellipse in phasespace. Particlepropertiessuchasmaximumdisplacement √ √ x = 2Jβ and maximum momentum x(cid:48) = 2Jγ are max max described using Twiss parameters. . . . . . . . . . . . . . . . . 16 2.3 An example symmetric FODO, featuring a circular beam and zero dispersion. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Anentirelatticedepictedgraphicallywithparametersβ (blue), x β (red), and D (green) superimposed. . . . . . . . . . . . . . 20 y x 2.5 The lattice parameters β ,β , and D are plotted versus s for x y x the entire synchrotron. . . . . . . . . . . . . . . . . . . . . . . 21 2.6 The stability of a bunch in an RF bucket is depicted in (φ,φ(cid:48)) phase space. The stationary RF bucket (solid black line) is accompanied by stable orbits (dashed green lines). . . . . . . . 27 2.7 The injection of a bunch into a bucket is depicted through evo- lution in the particle phase space (φ, φ(cid:48)), where φ is the relative phase coordinate. A “mismatched” bunch characterized by a longbunchwithminimalmomentumvariationquicklyfilaments and eventually fills the phase region defined by the orbit of the particle with maximum emittance, depicted by the red line. . . 28 2.8 The accelerating bucket (solid black line) for synchronous phase φ = π/6 along with stable orbits (green, dashed lines) is de- s picted in (φ, φ(cid:48)) phase space. . . . . . . . . . . . . . . . . . . . 29 ix

Description:
two contrasting approaches to improving ion beam acceleration: tional RF cavities. We introduce a ferrite based RF scheme for a rapid cycling synchrotron known as “harmonic ratcheting.” By systematically decreasing the itations of a given beam in isolating a specific volume within a body. Pro
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.