ROMAIJ.,v.11,no.2(2015),1–11 ALMOST PERIODICITY OF FUNCTIONS ON PSEUDOCOMPACT GROUPOIDS Mitrofan M. Choban, Dorin I. Pavel Department of Mathematics, Tiraspol State University, Chi¸sin˘au, Republic of Moldova [email protected],[email protected] Abstract In this article the weakly almost periodic functions and almost periodic functions on a quasigroup are studied. It is proved that the almost periodic compactification is a groupoidcompactificationanditisgeneratedbythefamilyofweaklyalmostperiodic functions. WorkpresentedasinvitedlectureatCAIM2015,September17-20,2015, University“S¸tefancelMare”ofSuceava,Romania. Keywords:almostperiodicfunction,weaklyalmostperiodicfunction,compactification. 2010MSC:54H10,06B30,54C35,20N15. 1. INTRODUCTION The aim of the present article is to study the compactifications of topological groupoids. Any space is considered to be Tychonoff and non-empty. We use the terminologyfrom[12]. LetG be a non-empty topological space. A continuous mapping ω : G2 G is → called a binary operation on G. Let ω : G2 G be a binary operation on a space → G. Then the pair (G,ϕ) is called a topological groupoid. Subgroupoids, homomor- phisms, isomorphisms and Cartesian products of topological groupoids are defined intraditionalway[1,13,8]. Apair(E,ϕ)isaalgebraicalgeneralizedcompactificationoranag-compactification of a topological groupoid G if E is a compact topological groupoid, ϕ : G E is → a continuous homomorphism and the set ϕ(G) is dense in E. If (Z,ϕ) and (Y,ψ) are a-compactifications of G, then (Z,ϕ) (Y,ψ) if and only if there exists a con- ≤ tinuous homomorphism g : Y Z such that ϕ = g ψ. If (Y,ϕ) and (Z,ψ) → ◦ are ag-compactifications of G, (Y,ϕ) (Z,ψ) and (Z,ψ) (Y,ϕ), then the ag- ≤ ≤ compactifications (Y,ϕ), (Z,ψ) are called equivalent and there exists a unique topo- logical isomorphism g : Y Z such that ψ = g ϕ. We identify the equivalent → ◦ ag-compactifications. In this case the class of all ag-compactifications of the space G isaset. IfϕisanembeddingofG in E,then E iscalledana-compactification. In thiscaseweassumethatGisasubspaceof E andϕ(x) = xforeach x G. ∈ IfGisatopologicalgroupoid,thenCom (G)isthesetofallag-compactifications a ofthetopologicalgroupoidG. Thefollowingpropertiesareobvious. 1 2 Mitrofan M. Choban, Dorin I. Pavel Property1.1. ThesetCom (G)isacompletelatticeforeverytopologicalgroupoid a G andforeverynon-emptysubset L Com (X)thereexistthemaximalelement L a ⊆ ∨ andtheminimalelement L. ∧ Property1.2. Inthelatticeofallag-compactificationsofthetopologicalgroupoid G thereexiststhemaximalag-compactification(β G,β ). a G Property1.3. Inthelatticeofallag-compactificationsofthetopologicalgroupoid Gthereexiststheminimalag-compactification(µ G,µ ),µ Gisasingletongroupoid. a G a FixatopologicalspaceG. LetC(G)bethespaceofreal-valuedcontinuousfunc- tionsonthespaceG inthetopologyofuniformconvergence. ThetopologyonC(G) is generated by the metric d(f,g) = sup f(x) g(x) : x G . Let C (G) be the ◦ {| − | ∈ } subspace of all bounded continuous functions. Then C (G) is a Banach space with ◦ the norm f = sup f(x) : x G . For some f,g C(G) it is possible that k k {| | ∈ } ∈ d(f,g) = . We have C(G) = C (G) if and only if the space G is pseudocompact. ◦ ∞ If C(G) , C (G), then C(G) is a linear space, but is not a topological linear space. ◦ ThespaceC(G)isatopologicalringrelativelytotheoperations f +gand f g. For any number λ R the correspondence t (f) = λf is a continuous mapping o·fC(G) λ ∈ intoC(G). For λ , 0, the correspondence t : C(G) C(G) is a linear mapping, a λ → homeomorphismandagrouphomomorphism. Compactificationsofthespacescanbeproducedinavarietyofways. Onewayis byusesubspacesofthespaceC (G). ◦ Let F C (G) be a non-empty subspace. Consider the mapping e : G RF, ◦ F where e (⊆x) = (f(x) : f F). Denote by b G the closure of the set e (G)→in RF. F F F ∈ Then(b G,e )isageneralizedcompactification(briefly,ag-compactification)ofG F F andβG = β GistheStone-C˘echmaximalcompactificationofG(see[12]). C (G) ◦ Let (E,ϕ) be a g-compactification of a topological space G. If C (G) = f ϕ : E { ◦ f C(E) , then C (G) is the maximal subalgebra F of the Banach algebra C (G) E ◦ ∈ } suchthat(E,ϕ)=(b G,e ). Inparticular, (E,ϕ)=(b G,e ). DenoteCa(G) F F CE(G) CE(G) =C (G). β G a Question A. Let G be a topological quasigroup and F C (G). Under which ◦ ⊆ conditions(b G,e )isagroupoidag-compactificationofG ande : G b G isa F F F F → homomorphism? Question B. Let G be a topological quasigroup and f C(G). Under which ∈ conditions f Ca(G)? ∈ Lemma 1. Let (X,d) be a complete metric space. For a non-empty subset L of the spaceX thefollowingassertionsareequivalent: 1. TheclosureH =cl LofthesetLinX isacompactsubsetofX. X 2. Foe every ǫ > 0 there exists a finite subset S(ǫ) of X such that d(x,S(ǫ)) = inf d((x,y) : y S(ǫ) ǫ foreach x L. { ∈ } ≤ ∈ Proof. Follows immediately from Theorem 4.3.29 from [12], which affirm that a metrizable space Y is compact if and only if on Y there exists a metric ρ which is bothtotallyboundedandcomplete. Almost periodicity of functions on pseudocompact groupoids 3 2. P-ALMOST PERIODIC FUNCTIONS ON SPACES Fix a topological space G. Denote by Π(G) the set of all continuous mappings ϕ : G G. Relatively to the operation of composition ϕ ψ, where (ϕ ψ)(x) = → ◦ ◦ ϕ(ψ(x)) for ψ,ψ Π(G) and x G, the set Π(G) is a semigroup with identity e , G ∈ ∈ wheree (x) = xforeach x G. WesaythatΠ(G)isthesemigroupofallcontinuous G ∈ translations ofG. If f C(G) and ϕ Π(G), then f = f ϕ (f (x) = f(ϕ(x)) for ϕ ϕ ∈ ∈ ◦ any x G). Evidently, f C(G). ϕ ∈ ∈ Fixanon-emptysubsetP Π(G). WesaythatPisasetofcontinuoustranslations ⊆ of G. The set P is called a transitive set of translations of G if for any two points x,y Gthereexistsϕ Psuchthatϕ(x) = y. Obviously,thesetΠ(G)istransitive. ∈ ∈ For any function f C(G) we put P(f) = f : ϕ P . If f C (G), then ϕ ◦ ∈ { ∈ } ∈ P(f) C (G). ◦ ⊆ Definition 2.1. A function f C(G) is called a P-periodic function of a spaceG if theclosureP¯(f)ofthesetP(f∈)inthespaceC(G)isacompactset. Denote by P-ap(G) the subspace of all P-almost periodic functions of a spaceG. If the set P is finite, then P-ap(G) = C(G). The distinct spaces of almost periodic functionswasstudiedin[5,14,4,6,8,9,11]. Theorem2.1. Let PbeasetofcontinuoustranslationsofG. Then P-ap(G)hasthe followingproperties: 1. P-ap(G)isalinearsubspaceofthelinearspaceC(G). 2. P-ap(G)isatopologicalsubringofthetopologicalringC(G). 3. P-ap(G)isaclosedsubspaceofthecompletemetricspaceC(G). Inparticular, P-ap(G)isacompletemetricspace. 4. If f C(G)isaconstantfunction,then f P-ap(G). ∈ ∈ 5. If f P-ap(G), thenforany x G thereexistsanumber c(f,x) > 0suchthat ∈ ∈ f(ϕ(x)) c(f,x)foranyϕ P. | | ≤ ∈ 6. If f P-ap(G),ψ Π(G)andg(x) = f(ψ(x))foreachx G,theng P-ap(G). ∈ ∈ ∈ ∈ Inparticular, f P-ap(G)forall f P-ap(G)andψ Π(G). ψ ∈ ∈ ∈ Proof. Fix f,g P-ap(G). Since P¯(f), P¯(g), P¯(f) P¯(f)+P¯(g)and P¯(f) P¯(g)are compactsubsets∈of P-ap(G)and P¯(f)=P¯( −f),P¯(f +g) P¯(f)+P¯(g),P¯·(f g) P¯(f) P¯(g),then f, f +g, f g −P-ap(G).−Hence P-ap(G⊆)isatopologicalsu·brin⊆g · − · ∈ ofthetopologicalringC(G). If f P-ap(G) and λ R, then correspondence t (f) = λf is a continuous λ mapping∈ofC(G)intoC(G)∈andP¯(λf)=t (P¯(f)). Henceλf P-ap(G)andP-ap(G) λ ∈ isalinearsubspaceofthelinearspaceC(G). Let f P-ap(G) : n N and f = lim f . It is well known that f C(G). n n n Fixǫ >{0. ∈Thereexistn ∈Nan}dafinitesubs→et∞S ofC(G)suchthat: ∈ ∈ - f (x) f(x) ǫ/3foreach x G; n | − | ≤ ∈ 4 Mitrofan M. Choban, Dorin I. Pavel -d(g,S) ǫ/3foreachg P(f ). n ≤ ∈ Fix ϕ P. For a given ǫ > 0 there exists g S such that g(x) f (ϕ(x)) n ∈ ∈ | − ≤ ǫ/3+ǫ/3foreach x G. Then g(x) f(ϕ(x) g(x) f (ϕ(x) + f (ϕ(x)) f(ϕ(x) n n ∈ | − |≤ | − | | − | < ǫ/3+ǫ/3+ǫ/3 = ǫ. Hence d(h,S) ǫ for each h P(f). By virtue of Lemma ≤ ∈ 1, f P-ap(G). Hence, P-ap(G) is a closed subspace of the complete metric space ∈ C(G). Theassertion4isobvious. Assume that f C(G), b G and the set f(ϕ(x)) : ϕ P is unbounded. Then there exists a∈sequence ϕ∈ P : n N{ such that f(∈ϕ (b})) 2 + f(b) and f(ϕ (b)) 2 + f(ϕ (b{))nf∈or each n∈ N}. We put g| (x)1= f|(ϕ≥(x)). |Then| d(f,|g ) n+12n f|o≥r each|n nN. |Hence P(f)∈is an unboundend subset onf C(G) and n ≥ ∈ f < P ap(G). Theassertion5isproved. − Fixψ Π(G). ConsiderthemappingΦ :C(G) C(G),whereΦ(h)(x)=h(ψ(x)) ∈ −→ for all h C(G) and x G. We have d(Φ(f),Φ(g)) d(f,g) for all f,g C(G). ∈ ∈ ≤ ∈ Fix now f P-ap(G) and put g(x) = f(ψ(x)) for each x G. Let ǫ > 0. Then ∈ ∈ there exists a finite subset S of C(G) such that d(h,S) ǫ for each h P(f). We ≤ ∈ have g (x) = g(ϕ(x)) = f(ϕ(ψ(x))) for each x G and each ϕ P. Assume that ϕ ∈ ∈ ϕ P, δ > 0, h C(G) and d(f ,h) δ. Since f(ϕ(x) h(x) δ for any x G, ϕ ∈ ∈ ≤ | − | ≤ ∈ we have f(ϕ(ψ(x)) h(ψ(x)) δ for any x G. Hence, the set Φ(S) is finite and | − | ≤ ∈ d(h,Φ(S)) ǫ foreachh P(g). ByvirtueofLemma1,theassertion6isproved. ≤ ∈ Corollary 2.1. If P is a transitive set of translations ofG, then any function f P- ∈ ap(G)isboundedandP-ap(G)isaBanachalgebraofcontinuousfunctions. Theorem 2.2. Let P be a set of continuous translations of G and F be a compact subset of the complete metric space P-ap(G). Then the closure H of the set P(F) = P(f) : f F isacompactsubsetofthespaceP-ap(G). ∪{ ∈ } Proof. Fixǫ > 0. ThereexistsafinitesubsetS ofFsuchthatd(h,S ) ǫ/2foreach 1 1 ≤ h F. Foreach f F thereexistsafinitesubsetS ofP(f)suchthatd(h,S ) ǫ/2 f f ∈ ∈ ≤ for each h P(f). We put S = S : f S . Fix h F and ϕ P. There f 1 ∈ ∪{ ∈ } ∈ ∈ exists f S such that d(f,h) ǫ/2. In continuation, there exists g S such that 1 f ∈ ≤ ∈ d(f ,g) ǫ/2. Since d(h , f ) d(h, f), we have d(h ,g) d(h , f )+d(f ,g) . ϕ ϕ ϕ ϕ ϕ ϕ ϕ ≤ ≤ ≤ ≤ Henced(h,S) ǫ foreachh P(F). Theproofiscomplete. ≤ ∈ 3. GROUPOIDS Let (G, ) be a groupoid. For each a G we put L (x) = a x and R (x) = x a a a · ∈ · · for each x G. The mappings L ,R are called the left and right multiplication a a ∈ operators or the left and right actions. A groupoid (G, ) with topology is called a · semitopologicalgroupoidiftheactions L ,R :G G arecontinuous. Let(G, )be a a → · agroupoid. WeputL = L : a G andR = R : a G . G a G a { ∈ } { ∈ } DenotebySL theminimalsetofcontinuoustranslationsofGwithproperties: G -L SL ; G G ⊂ Almost periodicity of functions on pseudocompact groupoids 5 -ifϕ,ψ SL ,thenϕ ψ SL . G G ∈ ◦ ∈ DenotebySR theminimalsetofcontinuoustranslationsofGwithproperties: G -R SR ; G G ⊂ -ifϕ,ψ SR ,thenϕ ψ SR . G G ∈ ◦ ∈ NowweputS =SL SR . G G G ∪ Foranyfunction f : G Rweput L (f)= f : ϕ SL(G) ,R (f)= f : ϕ G ϕ G ϕ → { ∈ } { ∈ SR(G) andS (f)= f : ϕ S(G) =L (f) R (f). G ϕ G G } { ∈ } ∪ Let(G, )beasemitopologicalgroupoid. If f C(G),thenS (f) C(G). G · ∈ ⊆ Definition 3.1. Let (G, ) be a semitopological groupoid. A function f C(G) is · ∈ called: - a left almost periodic function of G if the closure L¯ (f) of the set L (f) in the G G spaceC(G)isacompactset; -arightalmostperiodicfunctionofG iftheclosureR¯ (f)ofthesetR (f)inthe G G spaceC(G)isacompactset; - a bi-almost periodic function of G if the closure S¯ (f) of the set S (f) in the G G spaceC(G)isacompactset. Denote by L-ap(G) the subspace of all left almost periodic continuous functions, by R-ap(G) the subspace of all right almost periodic continuous functions and by SB-ap(G) the subspace of all bi-almost periodic continuous functions of the semi- topologicalgroupoidG. Bydefinitions,wehaveSB-ap(G)=L-ap(G) R-ap(G). ∩ Forthespaces L-ap(G),R-ap(G)andSB-ap(G)aretrueallassertionsofthesec- ondSection. If G is a compact semitopological semigroup, then L-ap(G) = R-ap(G) = SB- ap(G)=C(G)(see[14]). A pseudometric d is an invariant pseudometric on a topological groupoid (G, ) if · d isacontinuouspseudometricandd(xy,uv) d(x,u)+d(y,v)forall x,y,u,v G. ≤ ∈ Thepseudometricd iscontinuousonGifthesets B(x,d,r)= y G : d(x,y) < r { ∈ } areopeninGforall x Gandr > 0. ∈ If f SB-ap(G),thend (x,y)= sup f(ψ(x)) f(ψ(y)) : ψ S(G) isainvariant f ∈ {| − | ∈ } pseudometriconG. Ifthefunction f SB-ap(G)isbounded,thenthepseudometric ∈ d istotallybounded. f Example3.1. Let(A, )bethemultiplicativesemigroupofrationalswiththetopology · generated by the open base (u,v) : u,v A,u < v . The space A is a metrizable { ∈ } topological semigroup. Denote by B= x A : x 0 as a subsemigroup of A. Let { ∈ ≥ } d be an invariant pseudometric on B. Assume that 0 a < b and d(a,b) = 4k > 0. ≤ Since g(t) = d(0,t) is a continuous function on G and g(0) = 0, there exists λ > 0 suchthatg(t) < kforallt λ. Thend(u,v) 2kprovided0 u v λ. Thereexist ≤ ≤ ≤ ≤ ≤ three numbers p,q,r Bsuch that 0 p < q λ, r > 0, a = rp and b = rq. Then ∈ ≤ ≤ 4k = d(a,b)=d(rp,rq) d(r,r)+d(p,q) 0+2k = 2k,acontradiction. Thus: ≤ ≤ -ontopologicalsemigroupsAand Banyinvariantpseudometricd istrivial (d(x,y) = 0forall x,y); 6 Mitrofan M. Choban, Dorin I. Pavel -ontopologicalsemigroupsAand Banyalmostperiodicfunctionisconstant. Now we put S = L R and S = ϕ ψ : ϕ S ,ψ S for (G,1) G G (G,n+1) (G,1) (G,n) eachn N. ∪ { ◦ ∈ ∈ } ∈ Definition 3.2. Let (G, ) be a semitopological groupoid. A function f C(G) is calledaweaklyalmostp·eriodicfunctionofG iftheclosureS¯ (f)ofthese∈tS (f)= n n f(ϕ(x)) : ϕ S inthespaceC(G)isacompactsetforeachn N. (G,n) { ∈ } ∈ Definition 3.3. Let (G, ) be a semitopological groupoid. A function f C(G) is calledanalmostperiodic· functionofGiftheclosureS(¯f)ofthesetS(f)=∈f(ϕ(x)) : ϕ S ,n N inthespaceC(G)isacompactsetforeachn N. { (G,n) ∈ ∈ } ∈ DenotebyS-wap(G)thesubspaceofallweaklyalmostperiodiccontinuousfunc- tionsofthesemitopologicalgroupoidGandS-wap (G)=S-wap(G) C (G). Denote ◦ ◦ ∩ byS-ap(G)thesubspaceofallalmostperiodiccontinuousfunctionsofthesemitopo- logicalgroupoidGandS-ap (G)=S-ap(G) C (G). ◦ ◦ ∩ IfGisasemitopologicalsemigroup,thenS-wap(G)=S-ap(G)andS(f)=S (f) 2 foranyfunction f C(G). ∈ Theorem3.1. IfGisacompacttopologicalgroupoid,thenS-wap(G)=C(G). Proof. Fix f C(X). ∈ Consider the mappings Φ : G C(G) and Ψ : G C(G), where Φ(y)(x) = −→ −→ f(L (x)) and Ψ(y)(x) = f(R (x)) for all x,y G. Since G is a compact space, the y y ∈ mappingsΦandΨarecontinuous. HencethesetS (f)=Φ(G) Ψ(G)isacompact 1 ∪ set. Fix n 2. Fix an n-collection ξ = (i ,i ,...,i ), where i L,R for any j n, and 1 2 n j ≥ { } ≤ apointa = (a ,a ,...,a ) Gn. Weputϕ = L fori = L,ϕ =R fori = R 1 2 n ∈ (a,i) aj j (a,i) aj j andϕ =ϕ ϕ ... ϕ . ConsiderthemappingΦ :Gn C(G),where (ξ,a) (a,1)◦ (a,2)◦ ◦ (a,n) ξ −→ Φ (x) = f ϕ for any x Gn. Since G is a compact space, the mapping Φ is ξ ◦ (ξ,x) ∈ ξ continuous. HencethesetΦ (G)iscompact. Byconstruction,S (f)= Φ (G) : ξis ξ n ξ ∪{ ann-collection . Sincewehaveafinitesetofn-collections,thesetS (f)iscompact. n } Theproofiscomplete. Corollary3.1. IfGisatopologicalgroupoid,thenCa(G)=S-wap (G)and(β G,β ) ◦ a G =(b G,e )forF =S-wap (G). F F ◦ Proof. Let F = S-wap (G). For each f F the pseudometric d is totally bounded ◦ f ∈ and invariant. The operation : G2 G is uniformly continuous relatively to · −→ pseudometrics d , f F. Hence for each f F on b G there exists a unique f F ∈ ∈ continuous pseudometric ρ such that d (x,y) = ρ (e (x),e (y)) for all x,y G. f f f F F ∈ As was proved [12], on b G there exists a structure of groupoid such that e is a F F homomorphism and ρ are invariant pseudometrics. The invariant pseudometrics f inducedonb G thegroupoidtopology. Henceb isacompactgroupoid. Theproof F F iscomplete. Almost periodicity of functions on pseudocompact groupoids 7 4. QUASIGROUPS A groupoid (G, ) is called a division groupoid if for any two points a,b G the · ∈ equations a x = b and y a = b are solutions. If there exist a unique point x G · · ∈ suchthata x = b,andauniquepointy Gsuchthaty a = b,then(G, )iscalleda · ∈ · · quasigroup. Adivisiongroupoid(G, )withtopologyiscalled: · -asemitopologicaldivisiongroupoidiftheactionsL ,R :G Garecontinuous; a a → -aparatopologicaldivisiongroupoidiftheoperation :G2 Giscontinuous; · → - a topological division groupoid if G is a paratopological division groupoid and there exist two continuous binary operation l,r : G2 G such that x l(x,y) = → · r(y,x) y=yforall x,y G. · ∈ The operation l(x,y) is the left division and the operation r(x,y) is the right divi- sion. A division groupoid (G, ) with the divisions l,r is a quasigroup if and only if · l(x,x y)=l(r(x,y),x)=r(y x,x)=r(x,l((y,x))=yforall x,y G. · · ∈ Some properties of paratopological and semitopological groups were studied in [4, 2, 3]. There exists a semitopological group which is not a paratopological group (see[4,2]). Thereexistsasimpleexampleofaparatopologicalgroupwhichisnota topologicalgroup. Example 4.1. Let A be the additive group of rationals with the topology generated by the open base [u,v) : u,v A,u < v . The space A is countable and metrizable. { ∈ } ThegroupAisaparatopologicalgroupwhichisnotatopologicalgroup. Example4.2. Let Abethesetofrationalsand B= (u,v) : u,v A betheadditive { ∈ } groupwiththeoperation(u,v)+(w,t)=(u+w,v+t)andwiththetopologygenerated bytheopenbase O((u,v),r) = ((u r,u] (v r,v]) ([u,u+r) [v,v+r)) : u,v,r { − × − ∪ × ∈ A,r > 0 . ThespaceBiscountableandmetrizable. ThegroupBisasemitopological } group which is not a paratopological group. The inverse operation z ( z) is not → − continuous. Example4.3. Let AbethesetofrationalsandC = (u,v) : u,v A betheadditive { ∈ } groupwiththeoperation(u,v)+(w,t)=(u+w,v+t)andwiththetopologygenerated bytheopenbase O((u,v),r)= (u,v) (x,y) C : u r < x < u+r, x u < y v < { { }∪{ ∈ − −| − | − x u : (u,v) C,r > 0 . ThespaceC iscountableandmetrizable. ThegroupC is | − |} ∈ } asemitopologicalgroupwhichisnotaparatopologicalgroup. Theinverseoperation z ( z)iscontinuous. → − Thefollowingassertionsareevidently. Proposition 4.1. Let (G,+) be a division groupoid with the topology T and α,β : G G betwocontinuousmappingsofthespaceG intoG. ConsideronG thenew −→ binaryoperation x y = α(x)+β(y). Then: ∗ 1. If the actions of the groupoid (G,+) are continuous, then the actions of the groupoid(G, )arecontinuoustoo. ∗ 8 Mitrofan M. Choban, Dorin I. Pavel 2. Iftheoperation+iscontinuous,thentheoperation iscontinuoustoo. ∗ 3. (G, )isadivisiongroupoidifandonlyifα(G)=β(G)=G. ∗ 4. If(G,+)isatopologicaldivisiongroupoidandα,βarehomeomorphisms,then (G, )isatopologicaldivisiongroupoidtoo. ∗ 5. If(G,+)isatopologicalquasigroup, then(G, )isatopologicalquasigroupif ∗ andonlyifα,βarehomeomorphisms. 5. PERIODIC GROUPOIDS Let f : G G be a mapping of a space G. We put f1 = f, f2 = f f1, ..., fn+1 = f fn−,→... and f0(x) = x for each x G. The mapping f is called◦periodic ◦ ∈ if there exists an integer n 1 such that fn = f0. The minimal integer n 1 for ≥ ≥ which fn = f0 iscalledtheperiodof f andisnotedbyπ(f). Acontinuousperiodic mappingisahomeomorphism. Definition5.1. Agroupoid(G, )withthetopologyT iscalledasemitopologicalΠ- · groupoidifthereexiststwoperiodiccontinuoushomomorphismsλ,µ :G G and −→ a binary operation + on G such that (G,+) is a semitopological group and x y = · λ(x)+µ(y)forall x,y G. Inthiscasewesaythat(+,λ,µ)isastronggroupisotope ∈ ofthesemitopologicalΠ-groupoid(G, ). · Definition 5.2. A groupoid (G, ) with the topology T is called a semitopological · GT-quasigroup if there exists two homeomorphisms λ,µ : G G and a binary −→ operation+onGsuchthat(G,+)isasemitopologicalgroupandx y=λ(x)+µ(y)for · allx,y G. Inthiscasewesaythat(+,λ,µ)isagroupisotopeofthesemitopological ∈ GT-quasigroup(G, ). · AgroupoidGiscalledamedialgroupoidif(xu)(vy)=(xv)(uy)forallx,y,u,v G. ∈ AnytopologicalmedialquasigroupisatopologicalGT-quasigroup(see[1,15]). Any topological medial quasigroup with a multiply unity is a topological Π-quasigroup [3]. FromProposition4.1itfollows Corollary 5.1. Any Π-groupoid is a GT-quasigroup and any semitopological GT- quasigroupisasemitopologicalquasigroup. Theorem 5.1. Let P be a non-empty set of properties of topological spaces. The followingassertionsareequivalent: 1. AnysemitopologicalgroupwithpropertiesPisatopologicalgroup. 2. AnysemitopologicalΠ-groupoidwithpropertiesPisatopologicalquasigroup. 3. Any semitopologicalGT-quasigroup with properties P is a topological quasi- group. Proof. Since any semitopological group is a semitopological Π-groupoid, the im- plication 2 1 is obvious. Any semitopological Π-groupoid is semitopological → GT-quasigroup. Hencetheimplication3 2istruetoo. → Almost periodicity of functions on pseudocompact groupoids 9 Assume now that any semitopological group with properties P is a topological group. Fix a semitopological GT-quasigroup (G, ) with properties P and a group · isotope(+,λ,µ)ofthesemitopologicalGT-quasigroup(G, ). Then(G,+)isasemi- topological group with properties P. Hence (G,+) is a topo·logical group. Then, by virtueofProposition4.1,(G, )isatopologicalquasigroup. · In[4,2,3]therearegivendistinctpropertiesunderwhichasemitopologicalgroup isatopologicalgroup. Inparticular,weobtain: Corollary 5.2. A pseudocompact (or locally pseudocompact) paratopological GT- quasigroupisatopologicalquasigroup. Corollary5.3. Ifapseudocompact(orlocallypseudocompact)paratopologicalquasi- groupGismedial,thenGisatopologicalquasigroup. 6. ALMOST PERIODIC FUNCTIONS ON PERIODIC GROUPOIDS If G is a division groupoid, then SL(G) and SR(G) are transitive semigroups of translations. Hence,fromCorollary2.1itfollows Corollary 6.1. Let G be a division semitopological groupoid. Then any function f L-ap(G) R-ap(G) is bounded and L-ap(G), R-ap(G), S-ap(G) are Banach ∈ ∪ algebrasofcontinuousfunctions. Corollary 6.2. Let G be a semitopological quasigroup. Then any function f L- ∈ ap(G) R-ap(G) is bounded and L-ap(G), R-ap(G), S-ap(G) are Banach algebras ∪ ofcontinuousfunctions. Theorem6.1. Let(G, )beapseudocompactparatopologicalΠ-groupoid. Then: · 1. L-ap(G)=R-ap(G)=SB-ap(G)=C(G). 2. (G, )isapseudocompacttopologicalΠ-quasigroup. 3. (β·G,β ) is a compact topological Π-groupoid and β G is the Stone-Cˇech a G a compactificationβGofthespaceG. Proof. Denote by (+,λ,µ) a strong group isotope of the topological Π-groupoid (G, ). Assume that n,m 1 and λn(x) = µm(x) = x for each x G. By definition, · ≥ ∈ themappingsλ,µ :G Garetopologicalisomorphismsand x y=λ(x)+µ(y)for −→ · all x,y G. Hence x+y = λ 1(x) µ 1(y) for all x,y G. By virtue of Proposition − − ∈ · ∈ 4.1 and Corollary 5.2, (G, ) is a topological quasigroup and (G,+) is a topological · group. By virtue of W.W. Comfort and K.A. Ross theorem (see [4],Corollary 6.6.3 and Theorem6.6.4),onheStone-CˇechcompactificationβG ofthespaceG thereexistsa structureofatopologicalgroupsuchthatGisasubgroupofβG. Thenthereexisttwo homeomorphismsην : βG βG suchthatλ = ηG andµ = νG. Obviously, ηn(x) −→ | | =νm(x)= xforeach x βG. Thusthemappingsη,νareperiodictoo. Theoperation ∈ 10 Mitrofan M. Choban, Dorin I. Pavel x y = η(x)+ν(y), x,y βG, forms a structure of a topological Π-groupoid on βG · ∈ such that G is a subquasigroup of the compact topological quasigroup βG. Hence, withoutlossofgenerality,wecanassumethatG = βGisacompactquasigroup. WeputSL (G)= L = L : a G ,SR (G)=R = L : a G andSL (G)= 1 G a 1 G a i+ { ∈ } { ∈ } ϕ ψ : ϕ L ,ψ SL(G) ,SR (G)= ϕ ψ : ϕ R ,ψ SR(G) foreachi 1. G i i+ G i {Ob◦viously∈SL(G)=∈ SL(G} ) : i N an{dS◦R(G)=∈ SR(∈G) : i N} ≥ i i Fixk N. Leta =∪({a ,a ,...,a∈) }Gk. Weputτ =∪L{ L ... ∈L .}ThenL (G)= ∈ 1 2 k ∈ a a1◦ a2◦ ◦ ak k τ : a Gk . Nowwefix f C(G)anda Gk. Then f(L (x))= f(a x)= f(η(a )+ { a ∈ } ∈ ∈ a1 1· 1 ν(x)), f(L (L (x)))= f(η(a )+ν(η(a )+ν(x)))= f(η(a )+ν(η(a )+ν2(x))),..., f(τ (x) a1 a2 1 2 1 2 a = f(η(a )+ν(η(a )+...+ν(η(a )+ν(x))...))= f(η(a )+ν(η(a ))+...+νk 1(η(a ))+νk(x)). 1 2 k 1 2 − k By construction, SL (f) = f(τ (x)) : a Gk = f(b + νk(x)) : b G . Hence k a SL (f)=SL (f)andL ({f)= f : ϕ S∈L(G}) ={ SL (f) : k N ∈= }SL (f) : k+m k G ϕ k k { ∈ } ∪{ ∈ } ∪{ k 1,2,...,m . ∈ { }} Since the correspondence a f(τ (x)), a Gk, is a continuous mapping of a a → ∈ compact space Gk into C(G), the set SL (f) is compact. Hence the set L (f) is k G compactastheunionofafinitefamilyofcompactsets. Therefore L-ap(G)=C(G). In the similar way we establish that R-ap(G) = C(G). Thus L-ap(G) = R-ap(G) = SB-ap(G)=C(G). Theproofiscomplete. Example 6.1. LetG be the compact space of complex number z with z = 1. Rela- | | tively to the multiplicative operation and inverse operation 1 the space G is a − {·} { } compactcommutativegroupwiththeunite1. Letg : G G beahomeomorphism −→ and x y = x g(y) for all x,y G. Then (G, ) is a topological GT-quasigroup. ∗ · ∈ ∗ Denote by P(g) the translations of the topological quasigroup (G,ω ). Obviously, g g P(g). ∈ In[4]wasconstructedsuchhomeomorphismg forwhichonlyconstantfunctions 0 are continuous almost periodic on (G,ω ). Since G is a compact space, then, by g0 virtueofTheorem3.1,wehaveS-wap(G)=C(G). References [1] E.M.AlfsenandP.Holm,Anoteoncompactrepresentationsandalmostperiodicityintopolog- icalgroups,Math.Scand.10(1962),127-136. [2] A.V.Arhangel’skiiandM.M.Choban,Completenesstypepropertiesofsemitopologicalgroups, andthetheoremsofMontgomeryandEllis,TopologyProceedings37(2011),33-60. [3] A. V. Arhangel’skii and M. M. Choban, Semitopological groups, and the theorems of Mont- gomeryandEllis,ComptesRendusAcad.BulgareSci.62:8(2009)917-922. [4] A. V. Arhangelskii and M. G. Tkachenko, Topological groups and related structures, Atlantis Press,Amsterdam-Paris,2008. [5] V.D.Belousov,Osnovyteoriikvazigruppilup,Nauka,Moskva,1967. [6] J.F.Berglund,H.D.JunghennandP.Milnes,CompactRightTopologicalSemigroupsandGen- eralizationsofAlmostPeriodicity,LectureNotesMath.,663,Springer,Berlin,1978. [7] M.M.Choban,Sometopicsintopologicalalgebra,TopologyandAppl.54(1993),183-202.
Description: