ebook img

almost periodicity of functions on pseudocompact groupoids PDF

206 Pages·2016·1.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview almost periodicity of functions on pseudocompact groupoids

ROMAIJ.,v.11,no.2(2015),1–11 ALMOST PERIODICITY OF FUNCTIONS ON PSEUDOCOMPACT GROUPOIDS Mitrofan M. Choban, Dorin I. Pavel Department of Mathematics, Tiraspol State University, Chi¸sin˘au, Republic of Moldova [email protected],[email protected] Abstract In this article the weakly almost periodic functions and almost periodic functions on a quasigroup are studied. It is proved that the almost periodic compactification is a groupoidcompactificationanditisgeneratedbythefamilyofweaklyalmostperiodic functions. WorkpresentedasinvitedlectureatCAIM2015,September17-20,2015, University“S¸tefancelMare”ofSuceava,Romania. Keywords:almostperiodicfunction,weaklyalmostperiodicfunction,compactification. 2010MSC:54H10,06B30,54C35,20N15. 1. INTRODUCTION The aim of the present article is to study the compactifications of topological groupoids. Any space is considered to be Tychonoff and non-empty. We use the terminologyfrom[12]. LetG be a non-empty topological space. A continuous mapping ω : G2 G is → called a binary operation on G. Let ω : G2 G be a binary operation on a space → G. Then the pair (G,ϕ) is called a topological groupoid. Subgroupoids, homomor- phisms, isomorphisms and Cartesian products of topological groupoids are defined intraditionalway[1,13,8]. Apair(E,ϕ)isaalgebraicalgeneralizedcompactificationoranag-compactification of a topological groupoid G if E is a compact topological groupoid, ϕ : G E is → a continuous homomorphism and the set ϕ(G) is dense in E. If (Z,ϕ) and (Y,ψ) are a-compactifications of G, then (Z,ϕ) (Y,ψ) if and only if there exists a con- ≤ tinuous homomorphism g : Y Z such that ϕ = g ψ. If (Y,ϕ) and (Z,ψ) → ◦ are ag-compactifications of G, (Y,ϕ) (Z,ψ) and (Z,ψ) (Y,ϕ), then the ag- ≤ ≤ compactifications (Y,ϕ), (Z,ψ) are called equivalent and there exists a unique topo- logical isomorphism g : Y Z such that ψ = g ϕ. We identify the equivalent → ◦ ag-compactifications. In this case the class of all ag-compactifications of the space G isaset. IfϕisanembeddingofG in E,then E iscalledana-compactification. In thiscaseweassumethatGisasubspaceof E andϕ(x) = xforeach x G. ∈ IfGisatopologicalgroupoid,thenCom (G)isthesetofallag-compactifications a ofthetopologicalgroupoidG. Thefollowingpropertiesareobvious. 1 2 Mitrofan M. Choban, Dorin I. Pavel Property1.1. ThesetCom (G)isacompletelatticeforeverytopologicalgroupoid a G andforeverynon-emptysubset L Com (X)thereexistthemaximalelement L a ⊆ ∨ andtheminimalelement L. ∧ Property1.2. Inthelatticeofallag-compactificationsofthetopologicalgroupoid G thereexiststhemaximalag-compactification(β G,β ). a G Property1.3. Inthelatticeofallag-compactificationsofthetopologicalgroupoid Gthereexiststheminimalag-compactification(µ G,µ ),µ Gisasingletongroupoid. a G a FixatopologicalspaceG. LetC(G)bethespaceofreal-valuedcontinuousfunc- tionsonthespaceG inthetopologyofuniformconvergence. ThetopologyonC(G) is generated by the metric d(f,g) = sup f(x) g(x) : x G . Let C (G) be the ◦ {| − | ∈ } subspace of all bounded continuous functions. Then C (G) is a Banach space with ◦ the norm f = sup f(x) : x G . For some f,g C(G) it is possible that k k {| | ∈ } ∈ d(f,g) = . We have C(G) = C (G) if and only if the space G is pseudocompact. ◦ ∞ If C(G) , C (G), then C(G) is a linear space, but is not a topological linear space. ◦ ThespaceC(G)isatopologicalringrelativelytotheoperations f +gand f g. For any number λ R the correspondence t (f) = λf is a continuous mapping o·fC(G) λ ∈ intoC(G). For λ , 0, the correspondence t : C(G) C(G) is a linear mapping, a λ → homeomorphismandagrouphomomorphism. Compactificationsofthespacescanbeproducedinavarietyofways. Onewayis byusesubspacesofthespaceC (G). ◦ Let F C (G) be a non-empty subspace. Consider the mapping e : G RF, ◦ F where e (⊆x) = (f(x) : f F). Denote by b G the closure of the set e (G)→in RF. F F F ∈ Then(b G,e )isageneralizedcompactification(briefly,ag-compactification)ofG F F andβG = β GistheStone-C˘echmaximalcompactificationofG(see[12]). C (G) ◦ Let (E,ϕ) be a g-compactification of a topological space G. If C (G) = f ϕ : E { ◦ f C(E) , then C (G) is the maximal subalgebra F of the Banach algebra C (G) E ◦ ∈ } suchthat(E,ϕ)=(b G,e ). Inparticular, (E,ϕ)=(b G,e ). DenoteCa(G) F F CE(G) CE(G) =C (G). β G a Question A. Let G be a topological quasigroup and F C (G). Under which ◦ ⊆ conditions(b G,e )isagroupoidag-compactificationofG ande : G b G isa F F F F → homomorphism? Question B. Let G be a topological quasigroup and f C(G). Under which ∈ conditions f Ca(G)? ∈ Lemma 1. Let (X,d) be a complete metric space. For a non-empty subset L of the spaceX thefollowingassertionsareequivalent: 1. TheclosureH =cl LofthesetLinX isacompactsubsetofX. X 2. Foe every ǫ > 0 there exists a finite subset S(ǫ) of X such that d(x,S(ǫ)) = inf d((x,y) : y S(ǫ) ǫ foreach x L. { ∈ } ≤ ∈ Proof. Follows immediately from Theorem 4.3.29 from [12], which affirm that a metrizable space Y is compact if and only if on Y there exists a metric ρ which is bothtotallyboundedandcomplete. Almost periodicity of functions on pseudocompact groupoids 3 2. P-ALMOST PERIODIC FUNCTIONS ON SPACES Fix a topological space G. Denote by Π(G) the set of all continuous mappings ϕ : G G. Relatively to the operation of composition ϕ ψ, where (ϕ ψ)(x) = → ◦ ◦ ϕ(ψ(x)) for ψ,ψ Π(G) and x G, the set Π(G) is a semigroup with identity e , G ∈ ∈ wheree (x) = xforeach x G. WesaythatΠ(G)isthesemigroupofallcontinuous G ∈ translations ofG. If f C(G) and ϕ Π(G), then f = f ϕ (f (x) = f(ϕ(x)) for ϕ ϕ ∈ ∈ ◦ any x G). Evidently, f C(G). ϕ ∈ ∈ Fixanon-emptysubsetP Π(G). WesaythatPisasetofcontinuoustranslations ⊆ of G. The set P is called a transitive set of translations of G if for any two points x,y Gthereexistsϕ Psuchthatϕ(x) = y. Obviously,thesetΠ(G)istransitive. ∈ ∈ For any function f C(G) we put P(f) = f : ϕ P . If f C (G), then ϕ ◦ ∈ { ∈ } ∈ P(f) C (G). ◦ ⊆ Definition 2.1. A function f C(G) is called a P-periodic function of a spaceG if theclosureP¯(f)ofthesetP(f∈)inthespaceC(G)isacompactset. Denote by P-ap(G) the subspace of all P-almost periodic functions of a spaceG. If the set P is finite, then P-ap(G) = C(G). The distinct spaces of almost periodic functionswasstudiedin[5,14,4,6,8,9,11]. Theorem2.1. Let PbeasetofcontinuoustranslationsofG. Then P-ap(G)hasthe followingproperties: 1. P-ap(G)isalinearsubspaceofthelinearspaceC(G). 2. P-ap(G)isatopologicalsubringofthetopologicalringC(G). 3. P-ap(G)isaclosedsubspaceofthecompletemetricspaceC(G). Inparticular, P-ap(G)isacompletemetricspace. 4. If f C(G)isaconstantfunction,then f P-ap(G). ∈ ∈ 5. If f P-ap(G), thenforany x G thereexistsanumber c(f,x) > 0suchthat ∈ ∈ f(ϕ(x)) c(f,x)foranyϕ P. | | ≤ ∈ 6. If f P-ap(G),ψ Π(G)andg(x) = f(ψ(x))foreachx G,theng P-ap(G). ∈ ∈ ∈ ∈ Inparticular, f P-ap(G)forall f P-ap(G)andψ Π(G). ψ ∈ ∈ ∈ Proof. Fix f,g P-ap(G). Since P¯(f), P¯(g), P¯(f) P¯(f)+P¯(g)and P¯(f) P¯(g)are compactsubsets∈of P-ap(G)and P¯(f)=P¯( −f),P¯(f +g) P¯(f)+P¯(g),P¯·(f g) P¯(f) P¯(g),then f, f +g, f g −P-ap(G).−Hence P-ap(G⊆)isatopologicalsu·brin⊆g · − · ∈ ofthetopologicalringC(G). If f P-ap(G) and λ R, then correspondence t (f) = λf is a continuous λ mapping∈ofC(G)intoC(G)∈andP¯(λf)=t (P¯(f)). Henceλf P-ap(G)andP-ap(G) λ ∈ isalinearsubspaceofthelinearspaceC(G). Let f P-ap(G) : n N and f = lim f . It is well known that f C(G). n n n Fixǫ >{0. ∈Thereexistn ∈Nan}dafinitesubs→et∞S ofC(G)suchthat: ∈ ∈ - f (x) f(x) ǫ/3foreach x G; n | − | ≤ ∈ 4 Mitrofan M. Choban, Dorin I. Pavel -d(g,S) ǫ/3foreachg P(f ). n ≤ ∈ Fix ϕ P. For a given ǫ > 0 there exists g S such that g(x) f (ϕ(x)) n ∈ ∈ | − ≤ ǫ/3+ǫ/3foreach x G. Then g(x) f(ϕ(x) g(x) f (ϕ(x) + f (ϕ(x)) f(ϕ(x) n n ∈ | − |≤ | − | | − | < ǫ/3+ǫ/3+ǫ/3 = ǫ. Hence d(h,S) ǫ for each h P(f). By virtue of Lemma ≤ ∈ 1, f P-ap(G). Hence, P-ap(G) is a closed subspace of the complete metric space ∈ C(G). Theassertion4isobvious. Assume that f C(G), b G and the set f(ϕ(x)) : ϕ P is unbounded. Then there exists a∈sequence ϕ∈ P : n N{ such that f(∈ϕ (b})) 2 + f(b) and f(ϕ (b)) 2 + f(ϕ (b{))nf∈or each n∈ N}. We put g| (x)1= f|(ϕ≥(x)). |Then| d(f,|g ) n+12n f|o≥r each|n nN. |Hence P(f)∈is an unboundend subset onf C(G) and n ≥ ∈ f < P ap(G). Theassertion5isproved. − Fixψ Π(G). ConsiderthemappingΦ :C(G) C(G),whereΦ(h)(x)=h(ψ(x)) ∈ −→ for all h C(G) and x G. We have d(Φ(f),Φ(g)) d(f,g) for all f,g C(G). ∈ ∈ ≤ ∈ Fix now f P-ap(G) and put g(x) = f(ψ(x)) for each x G. Let ǫ > 0. Then ∈ ∈ there exists a finite subset S of C(G) such that d(h,S) ǫ for each h P(f). We ≤ ∈ have g (x) = g(ϕ(x)) = f(ϕ(ψ(x))) for each x G and each ϕ P. Assume that ϕ ∈ ∈ ϕ P, δ > 0, h C(G) and d(f ,h) δ. Since f(ϕ(x) h(x) δ for any x G, ϕ ∈ ∈ ≤ | − | ≤ ∈ we have f(ϕ(ψ(x)) h(ψ(x)) δ for any x G. Hence, the set Φ(S) is finite and | − | ≤ ∈ d(h,Φ(S)) ǫ foreachh P(g). ByvirtueofLemma1,theassertion6isproved. ≤ ∈ Corollary 2.1. If P is a transitive set of translations ofG, then any function f P- ∈ ap(G)isboundedandP-ap(G)isaBanachalgebraofcontinuousfunctions. Theorem 2.2. Let P be a set of continuous translations of G and F be a compact subset of the complete metric space P-ap(G). Then the closure H of the set P(F) = P(f) : f F isacompactsubsetofthespaceP-ap(G). ∪{ ∈ } Proof. Fixǫ > 0. ThereexistsafinitesubsetS ofFsuchthatd(h,S ) ǫ/2foreach 1 1 ≤ h F. Foreach f F thereexistsafinitesubsetS ofP(f)suchthatd(h,S ) ǫ/2 f f ∈ ∈ ≤ for each h P(f). We put S = S : f S . Fix h F and ϕ P. There f 1 ∈ ∪{ ∈ } ∈ ∈ exists f S such that d(f,h) ǫ/2. In continuation, there exists g S such that 1 f ∈ ≤ ∈ d(f ,g) ǫ/2. Since d(h , f ) d(h, f), we have d(h ,g) d(h , f )+d(f ,g) . ϕ ϕ ϕ ϕ ϕ ϕ ϕ ≤ ≤ ≤ ≤ Henced(h,S) ǫ foreachh P(F). Theproofiscomplete. ≤ ∈ 3. GROUPOIDS Let (G, ) be a groupoid. For each a G we put L (x) = a x and R (x) = x a a a · ∈ · · for each x G. The mappings L ,R are called the left and right multiplication a a ∈ operators or the left and right actions. A groupoid (G, ) with topology is called a · semitopologicalgroupoidiftheactions L ,R :G G arecontinuous. Let(G, )be a a → · agroupoid. WeputL = L : a G andR = R : a G . G a G a { ∈ } { ∈ } DenotebySL theminimalsetofcontinuoustranslationsofGwithproperties: G -L SL ; G G ⊂ Almost periodicity of functions on pseudocompact groupoids 5 -ifϕ,ψ SL ,thenϕ ψ SL . G G ∈ ◦ ∈ DenotebySR theminimalsetofcontinuoustranslationsofGwithproperties: G -R SR ; G G ⊂ -ifϕ,ψ SR ,thenϕ ψ SR . G G ∈ ◦ ∈ NowweputS =SL SR . G G G ∪ Foranyfunction f : G Rweput L (f)= f : ϕ SL(G) ,R (f)= f : ϕ G ϕ G ϕ → { ∈ } { ∈ SR(G) andS (f)= f : ϕ S(G) =L (f) R (f). G ϕ G G } { ∈ } ∪ Let(G, )beasemitopologicalgroupoid. If f C(G),thenS (f) C(G). G · ∈ ⊆ Definition 3.1. Let (G, ) be a semitopological groupoid. A function f C(G) is · ∈ called: - a left almost periodic function of G if the closure L¯ (f) of the set L (f) in the G G spaceC(G)isacompactset; -arightalmostperiodicfunctionofG iftheclosureR¯ (f)ofthesetR (f)inthe G G spaceC(G)isacompactset; - a bi-almost periodic function of G if the closure S¯ (f) of the set S (f) in the G G spaceC(G)isacompactset. Denote by L-ap(G) the subspace of all left almost periodic continuous functions, by R-ap(G) the subspace of all right almost periodic continuous functions and by SB-ap(G) the subspace of all bi-almost periodic continuous functions of the semi- topologicalgroupoidG. Bydefinitions,wehaveSB-ap(G)=L-ap(G) R-ap(G). ∩ Forthespaces L-ap(G),R-ap(G)andSB-ap(G)aretrueallassertionsofthesec- ondSection. If G is a compact semitopological semigroup, then L-ap(G) = R-ap(G) = SB- ap(G)=C(G)(see[14]). A pseudometric d is an invariant pseudometric on a topological groupoid (G, ) if · d isacontinuouspseudometricandd(xy,uv) d(x,u)+d(y,v)forall x,y,u,v G. ≤ ∈ Thepseudometricd iscontinuousonGifthesets B(x,d,r)= y G : d(x,y) < r { ∈ } areopeninGforall x Gandr > 0. ∈ If f SB-ap(G),thend (x,y)= sup f(ψ(x)) f(ψ(y)) : ψ S(G) isainvariant f ∈ {| − | ∈ } pseudometriconG. Ifthefunction f SB-ap(G)isbounded,thenthepseudometric ∈ d istotallybounded. f Example3.1. Let(A, )bethemultiplicativesemigroupofrationalswiththetopology · generated by the open base (u,v) : u,v A,u < v . The space A is a metrizable { ∈ } topological semigroup. Denote by B= x A : x 0 as a subsemigroup of A. Let { ∈ ≥ } d be an invariant pseudometric on B. Assume that 0 a < b and d(a,b) = 4k > 0. ≤ Since g(t) = d(0,t) is a continuous function on G and g(0) = 0, there exists λ > 0 suchthatg(t) < kforallt λ. Thend(u,v) 2kprovided0 u v λ. Thereexist ≤ ≤ ≤ ≤ ≤ three numbers p,q,r Bsuch that 0 p < q λ, r > 0, a = rp and b = rq. Then ∈ ≤ ≤ 4k = d(a,b)=d(rp,rq) d(r,r)+d(p,q) 0+2k = 2k,acontradiction. Thus: ≤ ≤ -ontopologicalsemigroupsAand Banyinvariantpseudometricd istrivial (d(x,y) = 0forall x,y); 6 Mitrofan M. Choban, Dorin I. Pavel -ontopologicalsemigroupsAand Banyalmostperiodicfunctionisconstant. Now we put S = L R and S = ϕ ψ : ϕ S ,ψ S for (G,1) G G (G,n+1) (G,1) (G,n) eachn N. ∪ { ◦ ∈ ∈ } ∈ Definition 3.2. Let (G, ) be a semitopological groupoid. A function f C(G) is calledaweaklyalmostp·eriodicfunctionofG iftheclosureS¯ (f)ofthese∈tS (f)= n n f(ϕ(x)) : ϕ S inthespaceC(G)isacompactsetforeachn N. (G,n) { ∈ } ∈ Definition 3.3. Let (G, ) be a semitopological groupoid. A function f C(G) is calledanalmostperiodic· functionofGiftheclosureS(¯f)ofthesetS(f)=∈f(ϕ(x)) : ϕ S ,n N inthespaceC(G)isacompactsetforeachn N. { (G,n) ∈ ∈ } ∈ DenotebyS-wap(G)thesubspaceofallweaklyalmostperiodiccontinuousfunc- tionsofthesemitopologicalgroupoidGandS-wap (G)=S-wap(G) C (G). Denote ◦ ◦ ∩ byS-ap(G)thesubspaceofallalmostperiodiccontinuousfunctionsofthesemitopo- logicalgroupoidGandS-ap (G)=S-ap(G) C (G). ◦ ◦ ∩ IfGisasemitopologicalsemigroup,thenS-wap(G)=S-ap(G)andS(f)=S (f) 2 foranyfunction f C(G). ∈ Theorem3.1. IfGisacompacttopologicalgroupoid,thenS-wap(G)=C(G). Proof. Fix f C(X). ∈ Consider the mappings Φ : G C(G) and Ψ : G C(G), where Φ(y)(x) = −→ −→ f(L (x)) and Ψ(y)(x) = f(R (x)) for all x,y G. Since G is a compact space, the y y ∈ mappingsΦandΨarecontinuous. HencethesetS (f)=Φ(G) Ψ(G)isacompact 1 ∪ set. Fix n 2. Fix an n-collection ξ = (i ,i ,...,i ), where i L,R for any j n, and 1 2 n j ≥ { } ≤ apointa = (a ,a ,...,a ) Gn. Weputϕ = L fori = L,ϕ =R fori = R 1 2 n ∈ (a,i) aj j (a,i) aj j andϕ =ϕ ϕ ... ϕ . ConsiderthemappingΦ :Gn C(G),where (ξ,a) (a,1)◦ (a,2)◦ ◦ (a,n) ξ −→ Φ (x) = f ϕ for any x Gn. Since G is a compact space, the mapping Φ is ξ ◦ (ξ,x) ∈ ξ continuous. HencethesetΦ (G)iscompact. Byconstruction,S (f)= Φ (G) : ξis ξ n ξ ∪{ ann-collection . Sincewehaveafinitesetofn-collections,thesetS (f)iscompact. n } Theproofiscomplete. Corollary3.1. IfGisatopologicalgroupoid,thenCa(G)=S-wap (G)and(β G,β ) ◦ a G =(b G,e )forF =S-wap (G). F F ◦ Proof. Let F = S-wap (G). For each f F the pseudometric d is totally bounded ◦ f ∈ and invariant. The operation : G2 G is uniformly continuous relatively to · −→ pseudometrics d , f F. Hence for each f F on b G there exists a unique f F ∈ ∈ continuous pseudometric ρ such that d (x,y) = ρ (e (x),e (y)) for all x,y G. f f f F F ∈ As was proved [12], on b G there exists a structure of groupoid such that e is a F F homomorphism and ρ are invariant pseudometrics. The invariant pseudometrics f inducedonb G thegroupoidtopology. Henceb isacompactgroupoid. Theproof F F iscomplete. Almost periodicity of functions on pseudocompact groupoids 7 4. QUASIGROUPS A groupoid (G, ) is called a division groupoid if for any two points a,b G the · ∈ equations a x = b and y a = b are solutions. If there exist a unique point x G · · ∈ suchthata x = b,andauniquepointy Gsuchthaty a = b,then(G, )iscalleda · ∈ · · quasigroup. Adivisiongroupoid(G, )withtopologyiscalled: · -asemitopologicaldivisiongroupoidiftheactionsL ,R :G Garecontinuous; a a → -aparatopologicaldivisiongroupoidiftheoperation :G2 Giscontinuous; · → - a topological division groupoid if G is a paratopological division groupoid and there exist two continuous binary operation l,r : G2 G such that x l(x,y) = → · r(y,x) y=yforall x,y G. · ∈ The operation l(x,y) is the left division and the operation r(x,y) is the right divi- sion. A division groupoid (G, ) with the divisions l,r is a quasigroup if and only if · l(x,x y)=l(r(x,y),x)=r(y x,x)=r(x,l((y,x))=yforall x,y G. · · ∈ Some properties of paratopological and semitopological groups were studied in [4, 2, 3]. There exists a semitopological group which is not a paratopological group (see[4,2]). Thereexistsasimpleexampleofaparatopologicalgroupwhichisnota topologicalgroup. Example 4.1. Let A be the additive group of rationals with the topology generated by the open base [u,v) : u,v A,u < v . The space A is countable and metrizable. { ∈ } ThegroupAisaparatopologicalgroupwhichisnotatopologicalgroup. Example4.2. Let Abethesetofrationalsand B= (u,v) : u,v A betheadditive { ∈ } groupwiththeoperation(u,v)+(w,t)=(u+w,v+t)andwiththetopologygenerated bytheopenbase O((u,v),r) = ((u r,u] (v r,v]) ([u,u+r) [v,v+r)) : u,v,r { − × − ∪ × ∈ A,r > 0 . ThespaceBiscountableandmetrizable. ThegroupBisasemitopological } group which is not a paratopological group. The inverse operation z ( z) is not → − continuous. Example4.3. Let AbethesetofrationalsandC = (u,v) : u,v A betheadditive { ∈ } groupwiththeoperation(u,v)+(w,t)=(u+w,v+t)andwiththetopologygenerated bytheopenbase O((u,v),r)= (u,v) (x,y) C : u r < x < u+r, x u < y v < { { }∪{ ∈ − −| − | − x u : (u,v) C,r > 0 . ThespaceC iscountableandmetrizable. ThegroupC is | − |} ∈ } asemitopologicalgroupwhichisnotaparatopologicalgroup. Theinverseoperation z ( z)iscontinuous. → − Thefollowingassertionsareevidently. Proposition 4.1. Let (G,+) be a division groupoid with the topology T and α,β : G G betwocontinuousmappingsofthespaceG intoG. ConsideronG thenew −→ binaryoperation x y = α(x)+β(y). Then: ∗ 1. If the actions of the groupoid (G,+) are continuous, then the actions of the groupoid(G, )arecontinuoustoo. ∗ 8 Mitrofan M. Choban, Dorin I. Pavel 2. Iftheoperation+iscontinuous,thentheoperation iscontinuoustoo. ∗ 3. (G, )isadivisiongroupoidifandonlyifα(G)=β(G)=G. ∗ 4. If(G,+)isatopologicaldivisiongroupoidandα,βarehomeomorphisms,then (G, )isatopologicaldivisiongroupoidtoo. ∗ 5. If(G,+)isatopologicalquasigroup, then(G, )isatopologicalquasigroupif ∗ andonlyifα,βarehomeomorphisms. 5. PERIODIC GROUPOIDS Let f : G G be a mapping of a space G. We put f1 = f, f2 = f f1, ..., fn+1 = f fn−,→... and f0(x) = x for each x G. The mapping f is called◦periodic ◦ ∈ if there exists an integer n 1 such that fn = f0. The minimal integer n 1 for ≥ ≥ which fn = f0 iscalledtheperiodof f andisnotedbyπ(f). Acontinuousperiodic mappingisahomeomorphism. Definition5.1. Agroupoid(G, )withthetopologyT iscalledasemitopologicalΠ- · groupoidifthereexiststwoperiodiccontinuoushomomorphismsλ,µ :G G and −→ a binary operation + on G such that (G,+) is a semitopological group and x y = · λ(x)+µ(y)forall x,y G. Inthiscasewesaythat(+,λ,µ)isastronggroupisotope ∈ ofthesemitopologicalΠ-groupoid(G, ). · Definition 5.2. A groupoid (G, ) with the topology T is called a semitopological · GT-quasigroup if there exists two homeomorphisms λ,µ : G G and a binary −→ operation+onGsuchthat(G,+)isasemitopologicalgroupandx y=λ(x)+µ(y)for · allx,y G. Inthiscasewesaythat(+,λ,µ)isagroupisotopeofthesemitopological ∈ GT-quasigroup(G, ). · AgroupoidGiscalledamedialgroupoidif(xu)(vy)=(xv)(uy)forallx,y,u,v G. ∈ AnytopologicalmedialquasigroupisatopologicalGT-quasigroup(see[1,15]). Any topological medial quasigroup with a multiply unity is a topological Π-quasigroup [3]. FromProposition4.1itfollows Corollary 5.1. Any Π-groupoid is a GT-quasigroup and any semitopological GT- quasigroupisasemitopologicalquasigroup. Theorem 5.1. Let P be a non-empty set of properties of topological spaces. The followingassertionsareequivalent: 1. AnysemitopologicalgroupwithpropertiesPisatopologicalgroup. 2. AnysemitopologicalΠ-groupoidwithpropertiesPisatopologicalquasigroup. 3. Any semitopologicalGT-quasigroup with properties P is a topological quasi- group. Proof. Since any semitopological group is a semitopological Π-groupoid, the im- plication 2 1 is obvious. Any semitopological Π-groupoid is semitopological → GT-quasigroup. Hencetheimplication3 2istruetoo. → Almost periodicity of functions on pseudocompact groupoids 9 Assume now that any semitopological group with properties P is a topological group. Fix a semitopological GT-quasigroup (G, ) with properties P and a group · isotope(+,λ,µ)ofthesemitopologicalGT-quasigroup(G, ). Then(G,+)isasemi- topological group with properties P. Hence (G,+) is a topo·logical group. Then, by virtueofProposition4.1,(G, )isatopologicalquasigroup. · In[4,2,3]therearegivendistinctpropertiesunderwhichasemitopologicalgroup isatopologicalgroup. Inparticular,weobtain: Corollary 5.2. A pseudocompact (or locally pseudocompact) paratopological GT- quasigroupisatopologicalquasigroup. Corollary5.3. Ifapseudocompact(orlocallypseudocompact)paratopologicalquasi- groupGismedial,thenGisatopologicalquasigroup. 6. ALMOST PERIODIC FUNCTIONS ON PERIODIC GROUPOIDS If G is a division groupoid, then SL(G) and SR(G) are transitive semigroups of translations. Hence,fromCorollary2.1itfollows Corollary 6.1. Let G be a division semitopological groupoid. Then any function f L-ap(G) R-ap(G) is bounded and L-ap(G), R-ap(G), S-ap(G) are Banach ∈ ∪ algebrasofcontinuousfunctions. Corollary 6.2. Let G be a semitopological quasigroup. Then any function f L- ∈ ap(G) R-ap(G) is bounded and L-ap(G), R-ap(G), S-ap(G) are Banach algebras ∪ ofcontinuousfunctions. Theorem6.1. Let(G, )beapseudocompactparatopologicalΠ-groupoid. Then: · 1. L-ap(G)=R-ap(G)=SB-ap(G)=C(G). 2. (G, )isapseudocompacttopologicalΠ-quasigroup. 3. (β·G,β ) is a compact topological Π-groupoid and β G is the Stone-Cˇech a G a compactificationβGofthespaceG. Proof. Denote by (+,λ,µ) a strong group isotope of the topological Π-groupoid (G, ). Assume that n,m 1 and λn(x) = µm(x) = x for each x G. By definition, · ≥ ∈ themappingsλ,µ :G Garetopologicalisomorphismsand x y=λ(x)+µ(y)for −→ · all x,y G. Hence x+y = λ 1(x) µ 1(y) for all x,y G. By virtue of Proposition − − ∈ · ∈ 4.1 and Corollary 5.2, (G, ) is a topological quasigroup and (G,+) is a topological · group. By virtue of W.W. Comfort and K.A. Ross theorem (see [4],Corollary 6.6.3 and Theorem6.6.4),onheStone-CˇechcompactificationβG ofthespaceG thereexistsa structureofatopologicalgroupsuchthatGisasubgroupofβG. Thenthereexisttwo homeomorphismsην : βG βG suchthatλ = ηG andµ = νG. Obviously, ηn(x) −→ | | =νm(x)= xforeach x βG. Thusthemappingsη,νareperiodictoo. Theoperation ∈ 10 Mitrofan M. Choban, Dorin I. Pavel x y = η(x)+ν(y), x,y βG, forms a structure of a topological Π-groupoid on βG · ∈ such that G is a subquasigroup of the compact topological quasigroup βG. Hence, withoutlossofgenerality,wecanassumethatG = βGisacompactquasigroup. WeputSL (G)= L = L : a G ,SR (G)=R = L : a G andSL (G)= 1 G a 1 G a i+ { ∈ } { ∈ } ϕ ψ : ϕ L ,ψ SL(G) ,SR (G)= ϕ ψ : ϕ R ,ψ SR(G) foreachi 1. G i i+ G i {Ob◦viously∈SL(G)=∈ SL(G} ) : i N an{dS◦R(G)=∈ SR(∈G) : i N} ≥ i i Fixk N. Leta =∪({a ,a ,...,a∈) }Gk. Weputτ =∪L{ L ... ∈L .}ThenL (G)= ∈ 1 2 k ∈ a a1◦ a2◦ ◦ ak k τ : a Gk . Nowwefix f C(G)anda Gk. Then f(L (x))= f(a x)= f(η(a )+ { a ∈ } ∈ ∈ a1 1· 1 ν(x)), f(L (L (x)))= f(η(a )+ν(η(a )+ν(x)))= f(η(a )+ν(η(a )+ν2(x))),..., f(τ (x) a1 a2 1 2 1 2 a = f(η(a )+ν(η(a )+...+ν(η(a )+ν(x))...))= f(η(a )+ν(η(a ))+...+νk 1(η(a ))+νk(x)). 1 2 k 1 2 − k By construction, SL (f) = f(τ (x)) : a Gk = f(b + νk(x)) : b G . Hence k a SL (f)=SL (f)andL ({f)= f : ϕ S∈L(G}) ={ SL (f) : k N ∈= }SL (f) : k+m k G ϕ k k { ∈ } ∪{ ∈ } ∪{ k 1,2,...,m . ∈ { }} Since the correspondence a f(τ (x)), a Gk, is a continuous mapping of a a → ∈ compact space Gk into C(G), the set SL (f) is compact. Hence the set L (f) is k G compactastheunionofafinitefamilyofcompactsets. Therefore L-ap(G)=C(G). In the similar way we establish that R-ap(G) = C(G). Thus L-ap(G) = R-ap(G) = SB-ap(G)=C(G). Theproofiscomplete. Example 6.1. LetG be the compact space of complex number z with z = 1. Rela- | | tively to the multiplicative operation and inverse operation 1 the space G is a − {·} { } compactcommutativegroupwiththeunite1. Letg : G G beahomeomorphism −→ and x y = x g(y) for all x,y G. Then (G, ) is a topological GT-quasigroup. ∗ · ∈ ∗ Denote by P(g) the translations of the topological quasigroup (G,ω ). Obviously, g g P(g). ∈ In[4]wasconstructedsuchhomeomorphismg forwhichonlyconstantfunctions 0 are continuous almost periodic on (G,ω ). Since G is a compact space, then, by g0 virtueofTheorem3.1,wehaveS-wap(G)=C(G). References [1] E.M.AlfsenandP.Holm,Anoteoncompactrepresentationsandalmostperiodicityintopolog- icalgroups,Math.Scand.10(1962),127-136. [2] A.V.Arhangel’skiiandM.M.Choban,Completenesstypepropertiesofsemitopologicalgroups, andthetheoremsofMontgomeryandEllis,TopologyProceedings37(2011),33-60. [3] A. V. Arhangel’skii and M. M. Choban, Semitopological groups, and the theorems of Mont- gomeryandEllis,ComptesRendusAcad.BulgareSci.62:8(2009)917-922. [4] A. V. Arhangelskii and M. G. Tkachenko, Topological groups and related structures, Atlantis Press,Amsterdam-Paris,2008. [5] V.D.Belousov,Osnovyteoriikvazigruppilup,Nauka,Moskva,1967. [6] J.F.Berglund,H.D.JunghennandP.Milnes,CompactRightTopologicalSemigroupsandGen- eralizationsofAlmostPeriodicity,LectureNotesMath.,663,Springer,Berlin,1978. [7] M.M.Choban,Sometopicsintopologicalalgebra,TopologyandAppl.54(1993),183-202.

Description:
are a-compactifications of G, then (Z,ϕ) ≤ (Y,ψ) if and only if there exists a con- In the lattice of all ag-compactifications of the topological groupoid initial (disrupted) position: P0(X0;t0) in the final position (target): O(X1;t1) .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.