InternationalElectronicJournalofAlgebra Volume16(2014)115-126 ALMOST F-INJECTIVE MODULES AND ALMOST FLAT MODULES ZhuZhanmin Received:16May2014;Revised:28June2014 CommunicatedbyAbdullahHarmancı Abstract. A left R-module M is called almost F-injective, if every R-homomorphism fromafinitelypresentedleftidealtoMextendstoahomomorphismofRtoM. Aright R-moduleVissaidtobealmostflat,ifforeveryfinitelypresentedleftidealI,thecanonical mapV⊗I→V⊗Rismonic.AringRiscalledleftalmostsemihereditary,ifeveryfinitely presentedleftidealofRisprojective. AringRissaidtobeleftalmostregular,ifevery finitelypresentedleftidealofRisadirectsummandofRR. Weobservesomecharacter- izationsandpropertiesofalmostF-injectivemodulesandalmostflatmodules. Usingthe conceptsofalmostF-injectivityandalmostflatnessofmodules,wepresentsomecharac- terizationsofleftcoherentrings,leftalmostsemihereditaryrings,andleftalmostregular rings. MathematicsSubjectClassification(2010):16E50,16E60,16D40,16D50,16P70 Keywords:AlmostF-injectivemodules,almostflatmodules,coherentrings,almostsemi- hereditaryrings,almostregularrings 1. Introduction Throughoutthispaper,Rdenotesanassociativeringwithidentityandallmodulescon- sideredareunitary. ForanyR-module M, M+ =Hom(M,Q/Z)willbethecharactermod- uleofM. Recall that a left R-module A is said to be finitely presented if there is an exact se- quence F → F → A → 0 in which F ,F are finitely generated free left R-modules, 1 0 1 0 or equivalently, if there is an exact sequence P → P → A → 0, where P ,P are 1 0 1 0 finitely generated projective left R-modules. Let n be a positive integer. Then a left R-module M is called n-presented [2] if there is an exact sequence of left R-modules F → F → ··· → F → F → M → 0 in which every F is a finitely generated n n−1 1 0 i free,equivalently,projectiveleftR-module. AleftR-module M issaidtobeFP-injective [9]ifExt1(A,M) = 0foreveryfinitelypresentedleftR-module A. FP-injectivemodules arealsocalledabsolutelypuremodules[7]. AleftR-module M iscalledF-injective[4]if every R-homomorphism from a finitely generated left ideal to M extends to a homomor- phismofRtoM,orequivalently,ifExt1(R/I,M)=0foreveryfinitelygeneratedleftideal I. ArightR-moduleMisflatifandonlyifTor (M,A)=0foreveryfinitelypresentedleft 1 116 ZHUZHANMIN R-module A if and only if Tor (M,R/I) = 0 for every finitely generated left ideal I. We 1 recallalsothataringRiscalledleftcoherent ifeveryfinitelygeneratedleftidealofRis finitelypresented.Coherentringsandtheirgenerationshavebeenstudiedbymanyauthors (see,forexample,[1,2,6,7,9,10]). Inthispaper, weshallextendtheconceptsof F-injectivemodulesandflatmodulesto almost F-injectivemodulesandalmostflatmodulesrespectively, andweshallgivesome characterizations and properties of almost F-injective modules and almost flat modules. Moreover,weshallcallaringRleftalmostsemihereditaryifeveryfinitelypresentedleft ideal of R is projective. And we shall call a ring R left almost regular if every finitely presentedleftidealofRisadirectsummand. Leftcoherentrings,leftalmostsemihered- itary rings and left almost regular rings will be characterized by almost F-injective left R-modulesandalmostflatrightR-modules. 2. AlmostF-injectivemodulesandalmostflatmodules WefirstextendtheconceptofF-injectivemodulesasfollows. Definition2.1. AleftR-moduleMiscalledalmostF-injective,ifeveryR-homomorphism fromafinitelypresentedleftidealtoMextendstoahomomorphismofRtoM. Recall that a submodule A of a left R-module B is said to be a pure submodule if for everyrightR-module M, theinducedmap M⊗ A → M⊗ Bismonic, orequivalently, R R everyfinitelypresentedleftR-moduleisprojectivewithrespecttotheexactsequence0→ A → B → B/A → 0. In this case, the exact sequence 0 → A → B → B/A → 0 is called pure. It is well known that a left R-module M is FP-injective if and only if it is pureineverymodulecontainingitasasubmodule. Wecallashortexactsequenceofleft R-modules 0 → A → B → C → 0 almost pure if for every finitely presented left ideal I, R/I is projective with respect to this sequence. In this case, we call A an almost pure submoduleofB. Next,wegivesomecharacterizationsofalmostF-injectivemodules. Theorem2.2. LetMbealeftR-module. Thenthefollowingstatementsareequivalent. (1) MisalmostF-injective. (2) Ext1(R/I,M)=0foreveryfinitelypresentedleftidealI. (3) M isinjectivewithrespecttoeveryexactsequence0 → C → B → R/I → 0of leftR-moduleswithIafinitelypresentedleftideal. (4) M isinjectivewithrespecttoeveryexactsequence0 → K → P → R/I → 0of leftR-moduleswithPprojectiveandIafinitelypresentedleftideal. (5) EveryexactsequenceofleftR-modules0→ M → M(cid:48) → M(cid:48)(cid:48) →0isalmostpure. ALMOSTF-INJECTIVEMODULESANDALMOSTFLATMODULES 117 (6) MisanalmostpuresubmoduleofitsinjectiveenvelopeE(M). (7) There exists an almost pure exact sequence 0 → M → M(cid:48) → M(cid:48)(cid:48) → 0 of left R-moduleswithM(cid:48)injective. (8) There exists an almost pure exact sequence 0 → M → M(cid:48) → M(cid:48)(cid:48) → 0 of left R-moduleswithM(cid:48)almostF-injective. Proof. (1)⇔(2)BytheexactsequenceHom(R,M)→Hom(I,M)→Ext1(R/I,M)→0. (2)⇒(3)BytheexactsequenceHom(B,M)→Hom(C,M)→Ext1(R/I,M)=0. (3)⇒(4)⇒(1)areclear. (2)⇒(5)Assume(2). Thenwehaveanexactsequence Hom(R/I,M(cid:48))→Hom(R/I,M(cid:48)(cid:48))→Ext1(R/I,M)=0 foreveryfinitelypresentedleftidealI,andso(5)follows. (5)⇒(6)⇒(7)⇒(8)areobvious. f (8) ⇒ (2)By(8),wehaveanalmostpureexactsequence0 → M → M(cid:48) → M(cid:48)(cid:48) → 0 ofleftR-moduleswhere M(cid:48) isalmost F-injective,andso,foreveryfinitelypresentedleft ideal I,wehaveanexactsequenceHom(R/I,M(cid:48)) →f∗ Hom(R/I,M(cid:48)(cid:48)) → Ext1(R/I,M) → Ext1(R/I,M(cid:48))=0with f epic. ThisimpliesthatExt1(R/I,M)=0,and(2)follows. (cid:3) ∗ Proposition 2.3. The class of almost F-injective left R-modules is closed under direct limitsandalmostpuresubmodules. Proof. ItiseasytoseethattheclassofalmostF-injectiveleftR-modulesisclosedunder direct limits by [1, Lemma 2.9(2)] and Theorem 2.2(2). Now let A be an almost pure submoduleofanalmost F-injectiveleftR-module B. Foranyfinitelypresentedleftideal I,wehaveanexactsequence Hom(R/I,B)→Hom(R/I,B/A)→Ext1(R/I,A)→Ext1(R/I,B)=0. SinceAisalmostpureinB,thesequenceHom(R/I,B)→Hom(R/I,B/A)→0isexact. HenceExt1(R/I,A)=0,andsoAisalmostF-injective. (cid:3) Proposition 2.4. Let {M | i ∈ I} be a family of left R-modules. Then the following i statementsareequivalent. (1) EachM isalmostF-injective. i (cid:81) (2) M isalmostF-injective. i∈I i (3) ⊕ M isalmostF-injective. i∈I i Proof. (1)⇔(2)bytheisomorphismExt1(A,(cid:81) M) (cid:27) (cid:81) Ext1(A,M)andTheorem i∈I i i∈I i 2.2(2). (1)⇔(3)isobvious. (cid:3) 118 ZHUZHANMIN Definition2.5. ArightR-moduleV issaidtobealmostflat,ifforeveryfinitelypresented leftidealI,thecanonicalmapV⊗I →V⊗Rismonic. Clearly, a right R-module V is almost flat if and only if Tor (V,R/I) = 0 for every 1 finitelypresentedleftidealI. Proposition 2.6. Let {V | i ∈ I} be a family of right R-modules. Then the following i statementsareequivalent. (1) EachV isalmostflat. i (2) ⊕ V isalmostflat. i∈I i (cid:81) (3) V isalmostflat. i∈I i Proof. (1)⇔(2)bytheisomorphismTor (⊕ V,A)(cid:27)⊕ Tor (V,A). 1 i∈I i i∈I 1 i (1) ⇔ (3) For any finitely presented right ideal T, by [1, Lemma 2.10], there is an isomorphism Tor ((cid:81) V,R/T) (cid:27) (cid:81) Tor (V,R/T), so the conditions (1) and (3) are 1 i∈I i i∈I 1 i equivalent. (cid:3) Theorem2.7. ThefollowingaretrueforanyringR. (1) AleftR-moduleMisalmostF-injectiveifandonlyifM+isalmostflat. (2) ArightR-moduleMisalmostflatifandonlyifM+isalmostF-injective. (3) The class of almost F-injective left R-modules is closed under pure submodules, purequotients,directsums,directsummands,directproductsanddirectlimits. (4) The class of almost flat right R-modules is closed under pure submodules, pure quotients,directsums,directsummands,directproductsanddirectlimits. Proof. (1) Let I be a finitely presented left ideal. Then R/I is 2-presented. So, by [1, Lemma2.7(2)],wehave Tor (M+,R/I)(cid:27)Ext1(R/I,M)+, 1 andthen(1)follows. (2)Thisfollowsfromthedualityformula Extn(N,M+)(cid:27)Tor (M,N)+, n whereMisarightR-moduleandN isaleftR-module. (3) By Proposition 2.3 and Proposition 2.4, we need only to prove that the class of almostF-injectiveleftR-modulesisclosedunderpurequotients. Let0→ A→ B→C → 0beapureexactsequenceofleftR-moduleswith Balmost F-injective. Thenwegetthe splitexactsequence0 →C+ → B+ → A+ → 0. Since B+ isalmostflatby(1),C+ isalso almostflat,andsoCisalmostF-injectiveby(1)again. ALMOSTF-INJECTIVEMODULESANDALMOSTFLATMODULES 119 (4) By Proposition 2.6, the class of almost flat right R-modules is closed under direct sums, directsummandsanddirectproducts. Let0 → A → B → C → 0beapureexact sequenceofrightR-moduleswithBalmostflat. SinceB+ isalmostF-injectiveby(2),A+ andC+ are also almost F-injective, and so A andC are almost flat by (2) again. So the classofalmostflatrightR-modulesisclosedunderpuresubmodulesandpurequotients. Bytheisomorphismformula Tor (N,limM )(cid:27)limTor (N,M ), n −−→ k −−→ n k weseethattheclassofalmostflatrightR-modulesisclosedunderdirectlimits. (cid:3) Theorem2.8. ThefollowingstatementsareequivalentforaringR. (1) Risleftcoherent. (2) EveryalmostF-injectiveleftR-moduleisF-injective. (3) EveryalmostF-injectiveleftR-moduleisFP-injective. (4) EveryalmostflatrightR-moduleisflat. Proof. (1)⇒(2)and(3)⇒(2)areobvious. (2) ⇒ (4) Let M be an almost flat right R-module. Then by Theorem 2.7(2), M+ is almostF-injective,soM+isF-injectiveby(2). AndthusMisflat. (4) ⇒ (1)Assume(4). ThensincethedirectproductsofalmostflatrightR-modulesis almostflat,thedirectproductsofflatrightR-modulesisflat,andsoRisleftcoherent. (1),(2) ⇒ (3)Bytheproofof[7, Theorem4], every F-injectiveleftR-moduleovera leftcoherentringRisFP-injective,andso(3)followsfrom(1)and(2). (cid:3) LetF beaclassofleft(right)R-modulesandMaleft(right)R-module. Following[3], wesaythatahomomorphismϕ : M → F where F ∈ F isanF-preenvelopeof M iffor any morphism f : M → F(cid:48) with F(cid:48) ∈ F, there is a g : F → F(cid:48) such that gϕ = f. An F-preenvelopeϕ: M → F issaidtobeanF-envelopeifeveryendomorphismg: F → F suchthatgϕ = ϕisanisomorphism. Dually,wehavethedefinitionsofF-precoversand F-covers. F-envelopes (F-covers) may not exist in general, but if they exist, they are uniqueuptoisomorphism. Theorem2.9. ThefollowingholdforanyringR. (1) Every left R-module has an almost F-injective cover and an almost F-injective preenvelope. (2) EveryrightR-modulehasanalmostflatcoverandanalmostflatpreenvelope. (3) If A → Bis an almost F-injective (resp. almost flat) preenvelope of a left (resp. right) R-module A, then B+ → A+ is an almost flat (resp. almost F-injective) precoverofA+. 120 ZHUZHANMIN Proof. (1)SincetheclassofalmostF-injectiveleftR-modulesisclosedunderdirectsums andpurequotientsbyTheorem2.7(3),everyleftR-modulehasanalmostF-injectivecover by[5,Theorem2.5]. Sincetheclassofalmost F-injectiveleftR-modulesisclosedunder direct summands, direct products and pure submodules by Theorem 2.7(3), every left R- modulehasanalmostF-injectivepreenvelopeby[8,Corollary3.5(c)]. (2)issimilartothatof(1). (3) Let A → B be an almost F-injective preenvelope of a left R-module A. Then B+ isalmostflatbyTheorem2.7(1). ForanyalmostflatrightR-module M, M+ isanalmost F-injectiveleftR-modulebyTheorem2.7(2),andsoHom(B,M+)→Hom(A,M+)isepic. Considerthefollowingcommutativediagram: Hom(B,M+) −−−−−−→ Hom(A,M+) τ1(cid:121) (cid:121)τ2 Hom(M,B+) −−−−−−→ Hom(M,A+) Sinceτ andτ areisomorphisms,Hom(M,B+)→Hom(M,A+)isanepimorphism. So 1 2 B+ → A+isanalmostflatprecoverofA+. Theotherissimilar. (cid:3) Proposition2.10. ThefollowingstatementsareequivalentforaringR. (1) RisalmostF-injective. R (2) EveryleftR-modulehasanepicalmostF-injectivecover. (3) EveryrightR-modulehasamonicalmostflatpreenvelope. (4) EveryinjectiverightR-moduleisalmostflat. (5) EveryFP-injectiverightR-moduleisalmostflat. Proof. (1)⇒(2)Let M bealeftR-module. Then M hasanalmost F-injectivecoverϕ : α C → MbyTheorem2.9. Ontheotherhand,thereisanexactsequenceA→ M →0with Afree. NotethatAisalmostF-injectiveby(1),thereexistsahomomorphismβ : A →C suchthatα=ϕβ. Thisfollowsthatϕisepic. (2)⇒(1)Let f : N → RbeanepicalmostF-injectivecover. Thentheprojectivityof R Rimpliesthat RisisomorphictoadirectsummandofN,andso RisalmostF-injective. R R R (1) ⇒ (3) Let M be any right R-module. Then M has an almost flat preenvelope f : M → F byTheorem2.9(2). Since( R)+ isacogenerator, thereexistsanexactsequence R 0 → M →g (cid:81)( R)+. Since RisalmostF-injective,byTheorem2.7(1)andTheorem2.6, R R (cid:81)( R)+ isalmostflat,andsothereexistsarightR-homomorphismh: F →(cid:81)( R)+ such R R thatg=hf,whichshowsthat f ismonic. (3)⇒(4)Assume(3).ThenforeveryinjectiverightR-moduleE,Ehasamonicalmost flatpreenvelopeF,soEisisomorphictoadirectsummandofF,andthusEisalmostflat. ALMOSTF-INJECTIVEMODULESANDALMOSTFLATMODULES 121 (4)⇒(1)Since( R)+isinjective,by(4),itisalmostflat. Thus RisalmostF-injective R R byTheorem2.7(1). (4) ⇒ (5) Let M be an FP-injective right R-module. Then M is a pure submodule of itsinjectiveenvelope E(M). By(4), E(M)isalmostflat. So M isalmostflatbyTheorem 2.7(4). (5)⇒(4)isclear. (cid:3) Theorem2.11. Let F beanalmostflatmoduleand0 → K → F → B → 0beanexact sequenceofrightR-modules. Thenthefollowingconditionsareequivalent. (1) Bisalmostflat. (2) ForeveryfinitelypresentedleftidealI,thecanonicalmapK⊗R/I → F⊗R/I is amonomorphism. (3) ForeveryfinitelypresentedleftidealI =Rc +Rc +···+Rc ,K∩FnC = KnC, 1 2 n whereC =(c ,c ,··· ,c )(cid:48). 1 2 n (4) K∩FI = KIforeveryfinitelypresentedleftidealI. Proof. (1)⇔(2)Thisfollowsfromtheexactsequence 0=Tor (F,R/I)→Tor (B,R/I)→ K⊗R/I → F⊗R/I. 1 1 (2)⇒(3)Letk∈ K∩FnC. Thenthereexistx ,x ,··· ,x ∈ F suchthatk=(cid:80)n x c , 1 2 n j=1 j j andsowehavek⊗(1+I) = (cid:80)n (x ⊗(c +I)) = (cid:80)n (x ⊗0) = 0in F ⊗R/I. By(2), j=1 j j j=1 j k⊗(1+I) = 0in K ⊗R/I. Thisimpliesthatk ∈ KI ⊆ KnC sincethemapϕ : K/KI → K⊗R/I definedby x+KI (cid:55)→ x⊗(1+I)isanisomorphism. ThusK∩FnC ⊆ KnC. But KnC ⊆ K∩FnC,soK∩FnC = KnC. (3)⇒(4)LetI =Rc +Rc +···+Rc beafinitelypresentedleftideal. Letk∈ K∩FI. 1 2 n Then there exist x ,x ,··· ,x ∈ F such that k = (cid:80)n x c . WriteC = (c ,c ,··· ,c )(cid:48). 1 2 n j=1 j j 1 2 n Thenk∈ K∩FnC,andsok∈ KnCby(3). Thus,k∈ KI. Theinverseinclusionisclear. (4)⇒(2)Let I = Rc +Rc +···+Rc beafinitelypresentedleftideal. If(cid:80)s k ⊗ 1 2 n i=1 i (r +I)=0inF⊗R/I,wherek ∈ K, r ∈R,then((cid:80)s kr)⊗(1+I)=0inF⊗R/I. So i i i i=1 i i (cid:80)s kr ∈ K∩FI. By(4),(cid:80)s kr ∈ KI,andsothereexistu ,u ,··· ,u ∈ K suchthat i=1 i i i=1 i i 1 2 n (cid:80)s kr = (cid:80)n uc. Thus(cid:80)s k ⊗(r +I) = (cid:80)n u ⊗(c +I) = 0in K ⊗R/I, and(2) i=1 i i i=1 i i i=1 i i i=1 i i follows. (cid:3) 3. Almostsemihereditaryringsandalmostregularrings RecallthataringRiscalledleftsemihereditary[4]ifeveryfinitelygeneratedleftideal ofRisprojective,orequivalently,ifeveryfinitelygeneratedsubmoduleofaprojectiveleft R-modulesisprojective. Next,wedefineleftalmostsemihereditaryringsasfollows. 122 ZHUZHANMIN Definition3.1. AringRiscalledleftalmostsemihereditary,ifeveryfinitelypresentedleft idealofRisprojective. Clearly,aringRisleftsemihereditaryifandonlyifRisleftalmostsemihereditaryand leftcoherent. Theorem3.2. ThefollowingstatementsareequivalentforaringR. (1) Risleftalmostsemihereditary. (2) pd (R/I)≤1foreveryfinitelypresentedleftidealIofR. R (3) EverysubmoduleofanalmostflatrightR-modulesisalmostflat. (4) EveryfinitelygeneratedrightidealofRisalmostflat. (5) EveryquotientmoduleofanalmostF-injectiveleftR-moduleisalmostF-injective. (6) EveryquotientmoduleofanF-injectiveleftR-moduleisalmostF-injective. (7) EveryquotientmoduleofaninjectiveleftR-moduleisalmostF-injective. (8) EveryleftR-modulehasamonicalmostF-injectivecover. (9) EveryrightR-modulehasanepicalmostflatenvelope. (10) For every left R-module A, the sum of an arbitrary family of almost F-injective submodulesofAisalmostF-injective. Proof. (1) ⇔ (2) It follows from the exact sequence 0 = Ext1(R,M) → Ext1(I,M) → Ext2(R/I,M)→Ext2(R,M)=0. (1)⇒(3)LetAbeasubmoduleofanalmostflatrightR-moduleB.Thenforanyfinitely presentedleftidealI,by(1),Iisprojectiveandhenceflat.Sotheexactnessofthesequence 0 = Tor (B/A,R) → Tor (B/A,R/I) → Tor (B/A,I) = 0impliesthatTor (B/A,R/I) = 0. 2 2 1 2 And thus from the exactness of the sequence 0 = Tor (B/A,R/I) → Tor (A,R/I) → 2 1 Tor (B,R/I)=0wehaveTor (A,R/I)=0,thisfollowsthatAisalmostflat. 1 1 (3)⇒(4)and(5)⇒(6)⇒(7)aretrivial. (4)⇒(1)Let I beafinitelypresentedleftideal. Thenforanyfinitelygeneratedright ideal K, the exact sequence 0 → K → R → R/K → 0 implies the exact sequence 0 → Tor (R/K,R/I) → Tor (K,R/I) = 0since K isalmostflat. SoTor (R/K,R/I) = 0, 2 1 2 and then we obtain an exact sequence 0 = Tor (R/K,R/I) → Tor (R/K,I) → 0. Thus, 2 1 Tor (R/K,I)=0,andsoI isafinitelypresentedflatleftR-module. Therefore,I isprojec- 1 tive. (2)⇒(5)LetMbeanalmostF-injectiveleftR-moduleandNasubmoduleofM. Then for any finitely presented left ideal I, by (2), Ext2(R/I,N) = 0. Thus the exact sequence 0 = Ext1(R/I,M) → Ext1(R/I,M/N) → Ext2(R/I,N) = 0impliesthatExt1(R/I,M/N) = 0. Consequently,M/N isalmostF-injective. ALMOSTF-INJECTIVEMODULESANDALMOSTFLATMODULES 123 (7) ⇒ (1) Let I be a finitely presented left ideal. Then for any left R-module M, by hypothesis, E(M)/M is almost F-injective, and so Ext1(R/I,E(M)/M) = 0. Thus, the exactnessofthesequence0=Ext1(R/I,E(M)/M)→Ext2(R/I,M)→Ext2(R/I,E(M))= 0impliesthatExt2(R/I,M)=0. Andso,theexactnessofthesequence0=Ext1(R,M)→ Ext1(I,M)→Ext2(R/I,M)=0impliesthatExt1(I,M)=0,thisshowsthatIisprojective, asrequired. (6) ⇒ (8) Let M be a left R-module. Then by Theorem 2.9(1), there is an almost F- injective cover f : E → M. Since im(f) is almost F-injective by (6), and f : E → M is an almost F-injective precover, for the inclusion map i : im(f) → M, there is a homomorphism g : im(f) → E such that i = fg. Hence f = f(gf). Observing that f : E → M isanalmost F-injectivecoverandgf isanendomorphismof E, sogf isan automorphismofE,andhence f : E → MisamonicalmostF-injectivecover. (8)⇒(6)Let M beanalmost F-injectiveleftR-moduleand N beasubmoduleof M. By(8), M/N hasamonicalmost F-injectivecover f : E → M/N. Letπ : M → M/N be thenaturalepimorphism.Thenthereexistsahomomorphismg: M → Esuchthatπ= fg. Thus f isanisomorphism,andwhenceM/N (cid:27) EisalmostF-injective. (3)⇒(9)Let MbearightR-moduleandLet{K} bethefamilyofallsubmodulesof i i∈I M suchthat M/K isalmostflat. LetF = M/∩ K andπbethenaturalepimorphismof i i∈I i M to F. Defineα : F → (cid:81) M/K byα(m+∩ K) = (m+K)form ∈ M,thenαisa i∈I i i∈I i i (cid:81) monomorphism. ByTheorem2.7(4), M/K isalmostflat. By(3),wehavethat F is i∈I i almostflat. ForanyalmostflatrightR-module F(cid:48) andanyhomomorphism f : M → F(cid:48), since M/Ker(f) (cid:27) Im(f) ⊆ F(cid:48), M/Ker(f)isalmostflatby(3),andthusKer(f) = K for j some j ∈ I. Nowwedefineg : F → F(cid:48);x+∩ K (cid:55)→ f(x), thengisahomomorphism i∈I i suchthat f =gπ. Hence,πisanalmostflatpreenvelopeof M. Notethatepicpreenvelope isanenvelope,soπ: M → F isanepicalmostflatenvelopeofM. (9)⇒(3)Assume(9).ThenforanysubmoduleKofanalmostflatrightR-moduleM,K hasanepicalmostflatenvelopeϕ: K → F. Sothereexistsahomomorphismh: F → M such that i = hϕ, where i : K → M is the inclusion map. Thus ϕ is monic, and hence K (cid:27) F isalmostflat. (6)⇒(10)LetAbealeftR-moduleand{A |γ∈Γ}beanarbitraryfamilyofalmostF- γ injectivesubmodulesof A. Sincethedirectsumofalmost F-injectivemodulesisalmost (cid:80) (cid:80) F-injective and γ∈ΓAγ is a homomorphic image of ⊕γ∈ΓAγ, by (6), γ∈ΓAγ is almost F-injective. (10) ⇒ (7) Let E be an injective left R-module and K ≤ E. Take E = E = E,N = 1 2 E ⊕E ,D = {(x,−x) | x ∈ K}. Define f : E → N/Dby x (cid:55)→ (x ,0)+D, f : E → 1 2 1 1 1 1 2 2 N/D by x (cid:55)→ (0,x ) + D and write E = f(E),i = 1,2. Then E (cid:27) E is injective, 2 2 i i i i i 124 ZHUZHANMIN i=1,2,andsoN/D= E +E isalmostF-injective. BytheinjectivityofE,(N/D)/E is 1 2 i i isomorphictoadirectsummandofN/DandthusitisalmostF-injective. Nowwedefine f : E → (N/D)/E by e (cid:55)→ f (e)+E . Then f is epic with Ker(f) = K, and therefore 1 2 1 E/K (cid:27)(N/D)/E isalmostF-injective. (cid:3) 1 Following[2],wecallaringRaleft(n,d)-ringifeveryn-presentedleftR-modulehas projective dimension at most d. An (n,1)-domain is called an n-Pru¨fer domain [2]. By Theorem3.2,aleft(2,1)-ringisaleftalmostsemihereditaryring. Example3.3. LetKbeafield,andletT = K+Mbeavaluationringwithmaximalideal M. LetkbeasubfieldofK withk(cid:44) K,andletR=k+M. Then (1) If [K : k] = ∞, then by [2, Corollary 5.2 (1)], R is a 2-Pru¨fer domain but not a Pru¨ferdomain. SoRisacommutativealmostsemihereditaryring,butRisnota semihereditaryring. (2) If[K :k]<∞andM = M2,thenby[2,Corollary5.2(1)],Risa2-Pru¨ferdomain but not a Pru¨fer domain. So R is an almost semihereditary ring, but R is not a semihereditaryring. (3) If [K : k] < ∞ and M (cid:44) M2, then by [2, Corollary 5.2 (3)], R is a coherent ring but not a 2-Pru¨fer domain. So R is a coherent ring, but R is not an almost semihereditaryring. Next,wegeneralizetheconceptofregularrings. Definition3.4. AringRiscalledleftalmostregular,ifeveryfinitelypresentedleftideal ofRisadirectsummandof R. R Theorem3.5. ThefollowingconditionsareequivalentforaringR. (1) Risaleftalmostregularring. (2) ForeveryfinitelypresentedleftidealI,R/IisaprojectiveleftR-module. (3) EveryleftR-moduleisalmostF-injective. (4) EveryrightR-moduleisalmostflat. (5) Risleftalmostsemihereditaryand RisalmostF-injective. R (6) RisleftalmostsemihereditaryandeveryinjectiverightR-moduleisalmostflat. Proof. (1)⇔(2)⇔(3),and(2)⇔(4)aswellas(1),(4)⇒(6)areobvious. (5)⇔(6)byProposition2.10. (6) ⇒ (4) Let M be any right R-module. Then for any finitely presented left ideal I, sinceRisleftalmostsemihereditary,I isprojective,andso pd (R/I) ≤ 1. Thus,fromthe R exactsequence0 = Tor (R/I,E(M)/M) → Tor (R/I,M) → Tor (R/I,E(M)) = 0,weget 2 1 1 thatTor (R/I,M)=0. Therefore,Misalmostflat. (cid:3) 1
Description: