ebook img

ALMOST F-INJECTIVE MODULES AND ALMOST FLAT MODULES Zhu Zhanmin 1. Introduction ... PDF

12 Pages·2014·0.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ALMOST F-INJECTIVE MODULES AND ALMOST FLAT MODULES Zhu Zhanmin 1. Introduction ...

InternationalElectronicJournalofAlgebra Volume16(2014)115-126 ALMOST F-INJECTIVE MODULES AND ALMOST FLAT MODULES ZhuZhanmin Received:16May2014;Revised:28June2014 CommunicatedbyAbdullahHarmancı Abstract. A left R-module M is called almost F-injective, if every R-homomorphism fromafinitelypresentedleftidealtoMextendstoahomomorphismofRtoM. Aright R-moduleVissaidtobealmostflat,ifforeveryfinitelypresentedleftidealI,thecanonical mapV⊗I→V⊗Rismonic.AringRiscalledleftalmostsemihereditary,ifeveryfinitely presentedleftidealofRisprojective. AringRissaidtobeleftalmostregular,ifevery finitelypresentedleftidealofRisadirectsummandofRR. Weobservesomecharacter- izationsandpropertiesofalmostF-injectivemodulesandalmostflatmodules. Usingthe conceptsofalmostF-injectivityandalmostflatnessofmodules,wepresentsomecharac- terizationsofleftcoherentrings,leftalmostsemihereditaryrings,andleftalmostregular rings. MathematicsSubjectClassification(2010):16E50,16E60,16D40,16D50,16P70 Keywords:AlmostF-injectivemodules,almostflatmodules,coherentrings,almostsemi- hereditaryrings,almostregularrings 1. Introduction Throughoutthispaper,Rdenotesanassociativeringwithidentityandallmodulescon- sideredareunitary. ForanyR-module M, M+ =Hom(M,Q/Z)willbethecharactermod- uleofM. Recall that a left R-module A is said to be finitely presented if there is an exact se- quence F → F → A → 0 in which F ,F are finitely generated free left R-modules, 1 0 1 0 or equivalently, if there is an exact sequence P → P → A → 0, where P ,P are 1 0 1 0 finitely generated projective left R-modules. Let n be a positive integer. Then a left R-module M is called n-presented [2] if there is an exact sequence of left R-modules F → F → ··· → F → F → M → 0 in which every F is a finitely generated n n−1 1 0 i free,equivalently,projectiveleftR-module. AleftR-module M issaidtobeFP-injective [9]ifExt1(A,M) = 0foreveryfinitelypresentedleftR-module A. FP-injectivemodules arealsocalledabsolutelypuremodules[7]. AleftR-module M iscalledF-injective[4]if every R-homomorphism from a finitely generated left ideal to M extends to a homomor- phismofRtoM,orequivalently,ifExt1(R/I,M)=0foreveryfinitelygeneratedleftideal I. ArightR-moduleMisflatifandonlyifTor (M,A)=0foreveryfinitelypresentedleft 1 116 ZHUZHANMIN R-module A if and only if Tor (M,R/I) = 0 for every finitely generated left ideal I. We 1 recallalsothataringRiscalledleftcoherent ifeveryfinitelygeneratedleftidealofRis finitelypresented.Coherentringsandtheirgenerationshavebeenstudiedbymanyauthors (see,forexample,[1,2,6,7,9,10]). Inthispaper, weshallextendtheconceptsof F-injectivemodulesandflatmodulesto almost F-injectivemodulesandalmostflatmodulesrespectively, andweshallgivesome characterizations and properties of almost F-injective modules and almost flat modules. Moreover,weshallcallaringRleftalmostsemihereditaryifeveryfinitelypresentedleft ideal of R is projective. And we shall call a ring R left almost regular if every finitely presentedleftidealofRisadirectsummand. Leftcoherentrings,leftalmostsemihered- itary rings and left almost regular rings will be characterized by almost F-injective left R-modulesandalmostflatrightR-modules. 2. AlmostF-injectivemodulesandalmostflatmodules WefirstextendtheconceptofF-injectivemodulesasfollows. Definition2.1. AleftR-moduleMiscalledalmostF-injective,ifeveryR-homomorphism fromafinitelypresentedleftidealtoMextendstoahomomorphismofRtoM. Recall that a submodule A of a left R-module B is said to be a pure submodule if for everyrightR-module M, theinducedmap M⊗ A → M⊗ Bismonic, orequivalently, R R everyfinitelypresentedleftR-moduleisprojectivewithrespecttotheexactsequence0→ A → B → B/A → 0. In this case, the exact sequence 0 → A → B → B/A → 0 is called pure. It is well known that a left R-module M is FP-injective if and only if it is pureineverymodulecontainingitasasubmodule. Wecallashortexactsequenceofleft R-modules 0 → A → B → C → 0 almost pure if for every finitely presented left ideal I, R/I is projective with respect to this sequence. In this case, we call A an almost pure submoduleofB. Next,wegivesomecharacterizationsofalmostF-injectivemodules. Theorem2.2. LetMbealeftR-module. Thenthefollowingstatementsareequivalent. (1) MisalmostF-injective. (2) Ext1(R/I,M)=0foreveryfinitelypresentedleftidealI. (3) M isinjectivewithrespecttoeveryexactsequence0 → C → B → R/I → 0of leftR-moduleswithIafinitelypresentedleftideal. (4) M isinjectivewithrespecttoeveryexactsequence0 → K → P → R/I → 0of leftR-moduleswithPprojectiveandIafinitelypresentedleftideal. (5) EveryexactsequenceofleftR-modules0→ M → M(cid:48) → M(cid:48)(cid:48) →0isalmostpure. ALMOSTF-INJECTIVEMODULESANDALMOSTFLATMODULES 117 (6) MisanalmostpuresubmoduleofitsinjectiveenvelopeE(M). (7) There exists an almost pure exact sequence 0 → M → M(cid:48) → M(cid:48)(cid:48) → 0 of left R-moduleswithM(cid:48)injective. (8) There exists an almost pure exact sequence 0 → M → M(cid:48) → M(cid:48)(cid:48) → 0 of left R-moduleswithM(cid:48)almostF-injective. Proof. (1)⇔(2)BytheexactsequenceHom(R,M)→Hom(I,M)→Ext1(R/I,M)→0. (2)⇒(3)BytheexactsequenceHom(B,M)→Hom(C,M)→Ext1(R/I,M)=0. (3)⇒(4)⇒(1)areclear. (2)⇒(5)Assume(2). Thenwehaveanexactsequence Hom(R/I,M(cid:48))→Hom(R/I,M(cid:48)(cid:48))→Ext1(R/I,M)=0 foreveryfinitelypresentedleftidealI,andso(5)follows. (5)⇒(6)⇒(7)⇒(8)areobvious. f (8) ⇒ (2)By(8),wehaveanalmostpureexactsequence0 → M → M(cid:48) → M(cid:48)(cid:48) → 0 ofleftR-moduleswhere M(cid:48) isalmost F-injective,andso,foreveryfinitelypresentedleft ideal I,wehaveanexactsequenceHom(R/I,M(cid:48)) →f∗ Hom(R/I,M(cid:48)(cid:48)) → Ext1(R/I,M) → Ext1(R/I,M(cid:48))=0with f epic. ThisimpliesthatExt1(R/I,M)=0,and(2)follows. (cid:3) ∗ Proposition 2.3. The class of almost F-injective left R-modules is closed under direct limitsandalmostpuresubmodules. Proof. ItiseasytoseethattheclassofalmostF-injectiveleftR-modulesisclosedunder direct limits by [1, Lemma 2.9(2)] and Theorem 2.2(2). Now let A be an almost pure submoduleofanalmost F-injectiveleftR-module B. Foranyfinitelypresentedleftideal I,wehaveanexactsequence Hom(R/I,B)→Hom(R/I,B/A)→Ext1(R/I,A)→Ext1(R/I,B)=0. SinceAisalmostpureinB,thesequenceHom(R/I,B)→Hom(R/I,B/A)→0isexact. HenceExt1(R/I,A)=0,andsoAisalmostF-injective. (cid:3) Proposition 2.4. Let {M | i ∈ I} be a family of left R-modules. Then the following i statementsareequivalent. (1) EachM isalmostF-injective. i (cid:81) (2) M isalmostF-injective. i∈I i (3) ⊕ M isalmostF-injective. i∈I i Proof. (1)⇔(2)bytheisomorphismExt1(A,(cid:81) M) (cid:27) (cid:81) Ext1(A,M)andTheorem i∈I i i∈I i 2.2(2). (1)⇔(3)isobvious. (cid:3) 118 ZHUZHANMIN Definition2.5. ArightR-moduleV issaidtobealmostflat,ifforeveryfinitelypresented leftidealI,thecanonicalmapV⊗I →V⊗Rismonic. Clearly, a right R-module V is almost flat if and only if Tor (V,R/I) = 0 for every 1 finitelypresentedleftidealI. Proposition 2.6. Let {V | i ∈ I} be a family of right R-modules. Then the following i statementsareequivalent. (1) EachV isalmostflat. i (2) ⊕ V isalmostflat. i∈I i (cid:81) (3) V isalmostflat. i∈I i Proof. (1)⇔(2)bytheisomorphismTor (⊕ V,A)(cid:27)⊕ Tor (V,A). 1 i∈I i i∈I 1 i (1) ⇔ (3) For any finitely presented right ideal T, by [1, Lemma 2.10], there is an isomorphism Tor ((cid:81) V,R/T) (cid:27) (cid:81) Tor (V,R/T), so the conditions (1) and (3) are 1 i∈I i i∈I 1 i equivalent. (cid:3) Theorem2.7. ThefollowingaretrueforanyringR. (1) AleftR-moduleMisalmostF-injectiveifandonlyifM+isalmostflat. (2) ArightR-moduleMisalmostflatifandonlyifM+isalmostF-injective. (3) The class of almost F-injective left R-modules is closed under pure submodules, purequotients,directsums,directsummands,directproductsanddirectlimits. (4) The class of almost flat right R-modules is closed under pure submodules, pure quotients,directsums,directsummands,directproductsanddirectlimits. Proof. (1) Let I be a finitely presented left ideal. Then R/I is 2-presented. So, by [1, Lemma2.7(2)],wehave Tor (M+,R/I)(cid:27)Ext1(R/I,M)+, 1 andthen(1)follows. (2)Thisfollowsfromthedualityformula Extn(N,M+)(cid:27)Tor (M,N)+, n whereMisarightR-moduleandN isaleftR-module. (3) By Proposition 2.3 and Proposition 2.4, we need only to prove that the class of almostF-injectiveleftR-modulesisclosedunderpurequotients. Let0→ A→ B→C → 0beapureexactsequenceofleftR-moduleswith Balmost F-injective. Thenwegetthe splitexactsequence0 →C+ → B+ → A+ → 0. Since B+ isalmostflatby(1),C+ isalso almostflat,andsoCisalmostF-injectiveby(1)again. ALMOSTF-INJECTIVEMODULESANDALMOSTFLATMODULES 119 (4) By Proposition 2.6, the class of almost flat right R-modules is closed under direct sums, directsummandsanddirectproducts. Let0 → A → B → C → 0beapureexact sequenceofrightR-moduleswithBalmostflat. SinceB+ isalmostF-injectiveby(2),A+ andC+ are also almost F-injective, and so A andC are almost flat by (2) again. So the classofalmostflatrightR-modulesisclosedunderpuresubmodulesandpurequotients. Bytheisomorphismformula Tor (N,limM )(cid:27)limTor (N,M ), n −−→ k −−→ n k weseethattheclassofalmostflatrightR-modulesisclosedunderdirectlimits. (cid:3) Theorem2.8. ThefollowingstatementsareequivalentforaringR. (1) Risleftcoherent. (2) EveryalmostF-injectiveleftR-moduleisF-injective. (3) EveryalmostF-injectiveleftR-moduleisFP-injective. (4) EveryalmostflatrightR-moduleisflat. Proof. (1)⇒(2)and(3)⇒(2)areobvious. (2) ⇒ (4) Let M be an almost flat right R-module. Then by Theorem 2.7(2), M+ is almostF-injective,soM+isF-injectiveby(2). AndthusMisflat. (4) ⇒ (1)Assume(4). ThensincethedirectproductsofalmostflatrightR-modulesis almostflat,thedirectproductsofflatrightR-modulesisflat,andsoRisleftcoherent. (1),(2) ⇒ (3)Bytheproofof[7, Theorem4], every F-injectiveleftR-moduleovera leftcoherentringRisFP-injective,andso(3)followsfrom(1)and(2). (cid:3) LetF beaclassofleft(right)R-modulesandMaleft(right)R-module. Following[3], wesaythatahomomorphismϕ : M → F where F ∈ F isanF-preenvelopeof M iffor any morphism f : M → F(cid:48) with F(cid:48) ∈ F, there is a g : F → F(cid:48) such that gϕ = f. An F-preenvelopeϕ: M → F issaidtobeanF-envelopeifeveryendomorphismg: F → F suchthatgϕ = ϕisanisomorphism. Dually,wehavethedefinitionsofF-precoversand F-covers. F-envelopes (F-covers) may not exist in general, but if they exist, they are uniqueuptoisomorphism. Theorem2.9. ThefollowingholdforanyringR. (1) Every left R-module has an almost F-injective cover and an almost F-injective preenvelope. (2) EveryrightR-modulehasanalmostflatcoverandanalmostflatpreenvelope. (3) If A → Bis an almost F-injective (resp. almost flat) preenvelope of a left (resp. right) R-module A, then B+ → A+ is an almost flat (resp. almost F-injective) precoverofA+. 120 ZHUZHANMIN Proof. (1)SincetheclassofalmostF-injectiveleftR-modulesisclosedunderdirectsums andpurequotientsbyTheorem2.7(3),everyleftR-modulehasanalmostF-injectivecover by[5,Theorem2.5]. Sincetheclassofalmost F-injectiveleftR-modulesisclosedunder direct summands, direct products and pure submodules by Theorem 2.7(3), every left R- modulehasanalmostF-injectivepreenvelopeby[8,Corollary3.5(c)]. (2)issimilartothatof(1). (3) Let A → B be an almost F-injective preenvelope of a left R-module A. Then B+ isalmostflatbyTheorem2.7(1). ForanyalmostflatrightR-module M, M+ isanalmost F-injectiveleftR-modulebyTheorem2.7(2),andsoHom(B,M+)→Hom(A,M+)isepic. Considerthefollowingcommutativediagram: Hom(B,M+) −−−−−−→ Hom(A,M+) τ1(cid:121) (cid:121)τ2 Hom(M,B+) −−−−−−→ Hom(M,A+) Sinceτ andτ areisomorphisms,Hom(M,B+)→Hom(M,A+)isanepimorphism. So 1 2 B+ → A+isanalmostflatprecoverofA+. Theotherissimilar. (cid:3) Proposition2.10. ThefollowingstatementsareequivalentforaringR. (1) RisalmostF-injective. R (2) EveryleftR-modulehasanepicalmostF-injectivecover. (3) EveryrightR-modulehasamonicalmostflatpreenvelope. (4) EveryinjectiverightR-moduleisalmostflat. (5) EveryFP-injectiverightR-moduleisalmostflat. Proof. (1)⇒(2)Let M bealeftR-module. Then M hasanalmost F-injectivecoverϕ : α C → MbyTheorem2.9. Ontheotherhand,thereisanexactsequenceA→ M →0with Afree. NotethatAisalmostF-injectiveby(1),thereexistsahomomorphismβ : A →C suchthatα=ϕβ. Thisfollowsthatϕisepic. (2)⇒(1)Let f : N → RbeanepicalmostF-injectivecover. Thentheprojectivityof R Rimpliesthat RisisomorphictoadirectsummandofN,andso RisalmostF-injective. R R R (1) ⇒ (3) Let M be any right R-module. Then M has an almost flat preenvelope f : M → F byTheorem2.9(2). Since( R)+ isacogenerator, thereexistsanexactsequence R 0 → M →g (cid:81)( R)+. Since RisalmostF-injective,byTheorem2.7(1)andTheorem2.6, R R (cid:81)( R)+ isalmostflat,andsothereexistsarightR-homomorphismh: F →(cid:81)( R)+ such R R thatg=hf,whichshowsthat f ismonic. (3)⇒(4)Assume(3).ThenforeveryinjectiverightR-moduleE,Ehasamonicalmost flatpreenvelopeF,soEisisomorphictoadirectsummandofF,andthusEisalmostflat. ALMOSTF-INJECTIVEMODULESANDALMOSTFLATMODULES 121 (4)⇒(1)Since( R)+isinjective,by(4),itisalmostflat. Thus RisalmostF-injective R R byTheorem2.7(1). (4) ⇒ (5) Let M be an FP-injective right R-module. Then M is a pure submodule of itsinjectiveenvelope E(M). By(4), E(M)isalmostflat. So M isalmostflatbyTheorem 2.7(4). (5)⇒(4)isclear. (cid:3) Theorem2.11. Let F beanalmostflatmoduleand0 → K → F → B → 0beanexact sequenceofrightR-modules. Thenthefollowingconditionsareequivalent. (1) Bisalmostflat. (2) ForeveryfinitelypresentedleftidealI,thecanonicalmapK⊗R/I → F⊗R/I is amonomorphism. (3) ForeveryfinitelypresentedleftidealI =Rc +Rc +···+Rc ,K∩FnC = KnC, 1 2 n whereC =(c ,c ,··· ,c )(cid:48). 1 2 n (4) K∩FI = KIforeveryfinitelypresentedleftidealI. Proof. (1)⇔(2)Thisfollowsfromtheexactsequence 0=Tor (F,R/I)→Tor (B,R/I)→ K⊗R/I → F⊗R/I. 1 1 (2)⇒(3)Letk∈ K∩FnC. Thenthereexistx ,x ,··· ,x ∈ F suchthatk=(cid:80)n x c , 1 2 n j=1 j j andsowehavek⊗(1+I) = (cid:80)n (x ⊗(c +I)) = (cid:80)n (x ⊗0) = 0in F ⊗R/I. By(2), j=1 j j j=1 j k⊗(1+I) = 0in K ⊗R/I. Thisimpliesthatk ∈ KI ⊆ KnC sincethemapϕ : K/KI → K⊗R/I definedby x+KI (cid:55)→ x⊗(1+I)isanisomorphism. ThusK∩FnC ⊆ KnC. But KnC ⊆ K∩FnC,soK∩FnC = KnC. (3)⇒(4)LetI =Rc +Rc +···+Rc beafinitelypresentedleftideal. Letk∈ K∩FI. 1 2 n Then there exist x ,x ,··· ,x ∈ F such that k = (cid:80)n x c . WriteC = (c ,c ,··· ,c )(cid:48). 1 2 n j=1 j j 1 2 n Thenk∈ K∩FnC,andsok∈ KnCby(3). Thus,k∈ KI. Theinverseinclusionisclear. (4)⇒(2)Let I = Rc +Rc +···+Rc beafinitelypresentedleftideal. If(cid:80)s k ⊗ 1 2 n i=1 i (r +I)=0inF⊗R/I,wherek ∈ K, r ∈R,then((cid:80)s kr)⊗(1+I)=0inF⊗R/I. So i i i i=1 i i (cid:80)s kr ∈ K∩FI. By(4),(cid:80)s kr ∈ KI,andsothereexistu ,u ,··· ,u ∈ K suchthat i=1 i i i=1 i i 1 2 n (cid:80)s kr = (cid:80)n uc. Thus(cid:80)s k ⊗(r +I) = (cid:80)n u ⊗(c +I) = 0in K ⊗R/I, and(2) i=1 i i i=1 i i i=1 i i i=1 i i follows. (cid:3) 3. Almostsemihereditaryringsandalmostregularrings RecallthataringRiscalledleftsemihereditary[4]ifeveryfinitelygeneratedleftideal ofRisprojective,orequivalently,ifeveryfinitelygeneratedsubmoduleofaprojectiveleft R-modulesisprojective. Next,wedefineleftalmostsemihereditaryringsasfollows. 122 ZHUZHANMIN Definition3.1. AringRiscalledleftalmostsemihereditary,ifeveryfinitelypresentedleft idealofRisprojective. Clearly,aringRisleftsemihereditaryifandonlyifRisleftalmostsemihereditaryand leftcoherent. Theorem3.2. ThefollowingstatementsareequivalentforaringR. (1) Risleftalmostsemihereditary. (2) pd (R/I)≤1foreveryfinitelypresentedleftidealIofR. R (3) EverysubmoduleofanalmostflatrightR-modulesisalmostflat. (4) EveryfinitelygeneratedrightidealofRisalmostflat. (5) EveryquotientmoduleofanalmostF-injectiveleftR-moduleisalmostF-injective. (6) EveryquotientmoduleofanF-injectiveleftR-moduleisalmostF-injective. (7) EveryquotientmoduleofaninjectiveleftR-moduleisalmostF-injective. (8) EveryleftR-modulehasamonicalmostF-injectivecover. (9) EveryrightR-modulehasanepicalmostflatenvelope. (10) For every left R-module A, the sum of an arbitrary family of almost F-injective submodulesofAisalmostF-injective. Proof. (1) ⇔ (2) It follows from the exact sequence 0 = Ext1(R,M) → Ext1(I,M) → Ext2(R/I,M)→Ext2(R,M)=0. (1)⇒(3)LetAbeasubmoduleofanalmostflatrightR-moduleB.Thenforanyfinitely presentedleftidealI,by(1),Iisprojectiveandhenceflat.Sotheexactnessofthesequence 0 = Tor (B/A,R) → Tor (B/A,R/I) → Tor (B/A,I) = 0impliesthatTor (B/A,R/I) = 0. 2 2 1 2 And thus from the exactness of the sequence 0 = Tor (B/A,R/I) → Tor (A,R/I) → 2 1 Tor (B,R/I)=0wehaveTor (A,R/I)=0,thisfollowsthatAisalmostflat. 1 1 (3)⇒(4)and(5)⇒(6)⇒(7)aretrivial. (4)⇒(1)Let I beafinitelypresentedleftideal. Thenforanyfinitelygeneratedright ideal K, the exact sequence 0 → K → R → R/K → 0 implies the exact sequence 0 → Tor (R/K,R/I) → Tor (K,R/I) = 0since K isalmostflat. SoTor (R/K,R/I) = 0, 2 1 2 and then we obtain an exact sequence 0 = Tor (R/K,R/I) → Tor (R/K,I) → 0. Thus, 2 1 Tor (R/K,I)=0,andsoI isafinitelypresentedflatleftR-module. Therefore,I isprojec- 1 tive. (2)⇒(5)LetMbeanalmostF-injectiveleftR-moduleandNasubmoduleofM. Then for any finitely presented left ideal I, by (2), Ext2(R/I,N) = 0. Thus the exact sequence 0 = Ext1(R/I,M) → Ext1(R/I,M/N) → Ext2(R/I,N) = 0impliesthatExt1(R/I,M/N) = 0. Consequently,M/N isalmostF-injective. ALMOSTF-INJECTIVEMODULESANDALMOSTFLATMODULES 123 (7) ⇒ (1) Let I be a finitely presented left ideal. Then for any left R-module M, by hypothesis, E(M)/M is almost F-injective, and so Ext1(R/I,E(M)/M) = 0. Thus, the exactnessofthesequence0=Ext1(R/I,E(M)/M)→Ext2(R/I,M)→Ext2(R/I,E(M))= 0impliesthatExt2(R/I,M)=0. Andso,theexactnessofthesequence0=Ext1(R,M)→ Ext1(I,M)→Ext2(R/I,M)=0impliesthatExt1(I,M)=0,thisshowsthatIisprojective, asrequired. (6) ⇒ (8) Let M be a left R-module. Then by Theorem 2.9(1), there is an almost F- injective cover f : E → M. Since im(f) is almost F-injective by (6), and f : E → M is an almost F-injective precover, for the inclusion map i : im(f) → M, there is a homomorphism g : im(f) → E such that i = fg. Hence f = f(gf). Observing that f : E → M isanalmost F-injectivecoverandgf isanendomorphismof E, sogf isan automorphismofE,andhence f : E → MisamonicalmostF-injectivecover. (8)⇒(6)Let M beanalmost F-injectiveleftR-moduleand N beasubmoduleof M. By(8), M/N hasamonicalmost F-injectivecover f : E → M/N. Letπ : M → M/N be thenaturalepimorphism.Thenthereexistsahomomorphismg: M → Esuchthatπ= fg. Thus f isanisomorphism,andwhenceM/N (cid:27) EisalmostF-injective. (3)⇒(9)Let MbearightR-moduleandLet{K} bethefamilyofallsubmodulesof i i∈I M suchthat M/K isalmostflat. LetF = M/∩ K andπbethenaturalepimorphismof i i∈I i M to F. Defineα : F → (cid:81) M/K byα(m+∩ K) = (m+K)form ∈ M,thenαisa i∈I i i∈I i i (cid:81) monomorphism. ByTheorem2.7(4), M/K isalmostflat. By(3),wehavethat F is i∈I i almostflat. ForanyalmostflatrightR-module F(cid:48) andanyhomomorphism f : M → F(cid:48), since M/Ker(f) (cid:27) Im(f) ⊆ F(cid:48), M/Ker(f)isalmostflatby(3),andthusKer(f) = K for j some j ∈ I. Nowwedefineg : F → F(cid:48);x+∩ K (cid:55)→ f(x), thengisahomomorphism i∈I i suchthat f =gπ. Hence,πisanalmostflatpreenvelopeof M. Notethatepicpreenvelope isanenvelope,soπ: M → F isanepicalmostflatenvelopeofM. (9)⇒(3)Assume(9).ThenforanysubmoduleKofanalmostflatrightR-moduleM,K hasanepicalmostflatenvelopeϕ: K → F. Sothereexistsahomomorphismh: F → M such that i = hϕ, where i : K → M is the inclusion map. Thus ϕ is monic, and hence K (cid:27) F isalmostflat. (6)⇒(10)LetAbealeftR-moduleand{A |γ∈Γ}beanarbitraryfamilyofalmostF- γ injectivesubmodulesof A. Sincethedirectsumofalmost F-injectivemodulesisalmost (cid:80) (cid:80) F-injective and γ∈ΓAγ is a homomorphic image of ⊕γ∈ΓAγ, by (6), γ∈ΓAγ is almost F-injective. (10) ⇒ (7) Let E be an injective left R-module and K ≤ E. Take E = E = E,N = 1 2 E ⊕E ,D = {(x,−x) | x ∈ K}. Define f : E → N/Dby x (cid:55)→ (x ,0)+D, f : E → 1 2 1 1 1 1 2 2 N/D by x (cid:55)→ (0,x ) + D and write E = f(E),i = 1,2. Then E (cid:27) E is injective, 2 2 i i i i i 124 ZHUZHANMIN i=1,2,andsoN/D= E +E isalmostF-injective. BytheinjectivityofE,(N/D)/E is 1 2 i i isomorphictoadirectsummandofN/DandthusitisalmostF-injective. Nowwedefine f : E → (N/D)/E by e (cid:55)→ f (e)+E . Then f is epic with Ker(f) = K, and therefore 1 2 1 E/K (cid:27)(N/D)/E isalmostF-injective. (cid:3) 1 Following[2],wecallaringRaleft(n,d)-ringifeveryn-presentedleftR-modulehas projective dimension at most d. An (n,1)-domain is called an n-Pru¨fer domain [2]. By Theorem3.2,aleft(2,1)-ringisaleftalmostsemihereditaryring. Example3.3. LetKbeafield,andletT = K+Mbeavaluationringwithmaximalideal M. LetkbeasubfieldofK withk(cid:44) K,andletR=k+M. Then (1) If [K : k] = ∞, then by [2, Corollary 5.2 (1)], R is a 2-Pru¨fer domain but not a Pru¨ferdomain. SoRisacommutativealmostsemihereditaryring,butRisnota semihereditaryring. (2) If[K :k]<∞andM = M2,thenby[2,Corollary5.2(1)],Risa2-Pru¨ferdomain but not a Pru¨fer domain. So R is an almost semihereditary ring, but R is not a semihereditaryring. (3) If [K : k] < ∞ and M (cid:44) M2, then by [2, Corollary 5.2 (3)], R is a coherent ring but not a 2-Pru¨fer domain. So R is a coherent ring, but R is not an almost semihereditaryring. Next,wegeneralizetheconceptofregularrings. Definition3.4. AringRiscalledleftalmostregular,ifeveryfinitelypresentedleftideal ofRisadirectsummandof R. R Theorem3.5. ThefollowingconditionsareequivalentforaringR. (1) Risaleftalmostregularring. (2) ForeveryfinitelypresentedleftidealI,R/IisaprojectiveleftR-module. (3) EveryleftR-moduleisalmostF-injective. (4) EveryrightR-moduleisalmostflat. (5) Risleftalmostsemihereditaryand RisalmostF-injective. R (6) RisleftalmostsemihereditaryandeveryinjectiverightR-moduleisalmostflat. Proof. (1)⇔(2)⇔(3),and(2)⇔(4)aswellas(1),(4)⇒(6)areobvious. (5)⇔(6)byProposition2.10. (6) ⇒ (4) Let M be any right R-module. Then for any finitely presented left ideal I, sinceRisleftalmostsemihereditary,I isprojective,andso pd (R/I) ≤ 1. Thus,fromthe R exactsequence0 = Tor (R/I,E(M)/M) → Tor (R/I,M) → Tor (R/I,E(M)) = 0,weget 2 1 1 thatTor (R/I,M)=0. Therefore,Misalmostflat. (cid:3) 1

Description:
Zhu Zhanmin. Received: 16 May 2014; Revised: 28 June 2014. Communicated by Abdullah Harmancı. Abstract. A left R-module M is called almost F-injective, if every R-homomorphism from a finitely presented left ideal to M extends to a homomorphism of R to M. A right. R-module V is said to be almost
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.