ALMA MATER STUDIORUM ` UNIVERSITA DI BOLOGNA Facolta` di Scienze Matematiche Fisiche e Naturali Dipartimento di Astronomia DOTTORATO DI RICERCA IN ASTRONOMIA CICLO XXIV (2009-2011) SOLVING THE COOLING FLOW PROBLEM THROUGH MECHANICAL AGN FEEDBACK TesidiDottorato di MASSIMO GASPARI COORDINATORE: RELATORE: Chiar.moProf. Chiar.moProf. Lauro MOSCARDINI Fabrizio BRIGHENTI EsameFinaleAnno2012 SCUOLADIDOTTORATOINSCIENZEMATEMATICHE,FISICHEEASTRONOMICHE SettoreConcorsuale: 02/C1–Astronomia,Astrofisica,FisicadellaTerraedeiPianeti SettoreScientifico-Disciplinare: FIS/05–AstronomiaeAstrofisica To the people who believed in me Alle persone che hanno creduto in me Contents Introduction 3 1 TheCoolingFlowProblem 5 1.1 HotGas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 CoolingTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 PureCoolingFlows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 QuenchedCoolingFlows . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 X-raySurfaceBrightness . . . . . . . . . . . . . . . . . . . . . . 11 1.4.2 TemperatureProfiles . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.3 CoolingRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.4 ColdGas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.5 StarFormation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 HeatingMechanisms 17 2.1 AGNBubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 AGNShocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 AGNJetsandOutflows . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Self-regulationandThermalBalance . . . . . . . . . . . . . . . . . . . . 26 2.5 Transport: ConductionandTurbulence . . . . . . . . . . . . . . . . . . . 28 3 NumericalMethods 31 3.1 FLASHcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 TheEulerianAMRgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 NumericalSolver: PPM . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 I II CONTENTS 3.5 RadiativeCooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.1 ColdGasDropout . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.6 AGNOutflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.7 AccretionandSelf-regulation . . . . . . . . . . . . . . . . . . . . . . . . 46 3.8 StellarWindsandSupernovae . . . . . . . . . . . . . . . . . . . . . . . 48 3.9 InitialConditionsandGravity . . . . . . . . . . . . . . . . . . . . . . . 50 3.9.1 GaussianPerturbations . . . . . . . . . . . . . . . . . . . . . . . 51 4 AGNFeedbackinGalaxyClusters 53 4.1 GalaxyClustersOverview . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 SimulationSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.1 Template: Abell1795 . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 PureCoolingFlow [cl-CF] . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 ColdFeedback: (cid:15) = 5 10−4 [cl-C5m4] . . . . . . . . . . . . . . 61 × 4.3.3 ColdFeedback: (cid:15) = 10−3 [cl-C1m3] . . . . . . . . . . . . . . . . 64 4.3.4 ColdFeedback: (cid:15) = 5 10−3 [cl-C5m3] . . . . . . . . . . . . . . 64 × 4.3.5 ColdFeedback: (cid:15) = 10−2 [cl-C1m2] . . . . . . . . . . . . . . . . 66 4.3.6 ColdFeedback: (cid:15) = 5 10−2 [cl-C5m2] . . . . . . . . . . . . . . 67 × 4.3.7 ColdFeedback: (cid:15) = 10−1 [cl-C1m1] . . . . . . . . . . . . . . . . 67 4.3.8 SummaryofColdFeedback . . . . . . . . . . . . . . . . . . . . 68 4.3.9 IntermittentorContinuousFeedback . . . . . . . . . . . . . . . . 68 4.3.10 RoleoftheJetSize . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.11 BondiFeedback: (cid:15) = 10−1 [cl-B1m1S] . . . . . . . . . . . . . . . 71 4.4 DynamicsofBestModel [cl-C5m3] . . . . . . . . . . . . . . . . . . . . . 73 4.5 X-rayObservables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5.1 CavitiesandShocks . . . . . . . . . . . . . . . . . . . . . . . . 79 4.5.2 IronEnrichmentandMixing . . . . . . . . . . . . . . . . . . . . 80 4.5.3 HydrostaticEquilibrium . . . . . . . . . . . . . . . . . . . . . . 81 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.6.1 ComparisonwithotherFeedbackModels . . . . . . . . . . . . . 83 4.6.2 ColdFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.6.3 HotBondi-likeFeedback . . . . . . . . . . . . . . . . . . . . . . 87 4.6.4 BestModelsComparison . . . . . . . . . . . . . . . . . . . . . . 88 M.Gaspari PhDThesis CONTENTS III 5 AGNFeedbackinGalaxyGroups 89 5.1 GalaxyGroupsOverview . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 SimulationSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2.1 Template: NGC5044 . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.1 PureCoolingFlow [gr-CF] . . . . . . . . . . . . . . . . . . . . . 95 5.3.2 BondiFeedback: (cid:15) = 5 10−2 [gr-Bc5m2] . . . . . . . . . . . . . 97 × 5.3.3 HybridFeedback: (cid:15) = 5 10−2 [gr-Bi5m2] . . . . . . . . . . . . . 99 × 5.3.4 BondiFeedback: (cid:15) = 10−1 [gr-Bc1m1] . . . . . . . . . . . . . . . 101 5.3.5 HybridFeedback: (cid:15) = 10−1 [gr-Bi1m1] . . . . . . . . . . . . . . . 102 5.3.6 BondiandHybridFeedback: (cid:15) = 10−2 [gr-Bc1m2;gr-Bi1m2] . . . . 102 5.3.7 BondiandHybridFeedback: (cid:15) = 10−3 [gr-Bc1m3;gr-Bi1m3] . . . . 103 5.3.8 ColdFeedback: (cid:15) = 5 10−5 [gr-C5m5] . . . . . . . . . . . . . . 103 × 5.3.9 ColdFeedback: (cid:15) = 10−4 [gr-C1m4] . . . . . . . . . . . . . . . . 103 5.3.10 ColdFeedback: (cid:15) = 5 10−4 [gr-C5m4] . . . . . . . . . . . . . . 104 × 5.3.11 ColdFeedback: (cid:15) = 10−3 [gr-C1m3] . . . . . . . . . . . . . . . . 106 5.3.12 IntermittentFeedback . . . . . . . . . . . . . . . . . . . . . . . 107 5.3.13 ThermalFeedback . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.14 Inflow-OutflowFeedback . . . . . . . . . . . . . . . . . . . . . 110 5.4 DynamicsandObservablesofBestModels . . . . . . . . . . . . . . . . 111 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5.1 HotBondi-likeFeedback . . . . . . . . . . . . . . . . . . . . . . 117 5.5.2 ColdFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.5.3 Hybridfeedback . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.5.4 RejectedModels . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.5.5 ComparisonwithotherWorks . . . . . . . . . . . . . . . . . . . 120 5.5.6 ComparisonwithGalaxyClusters . . . . . . . . . . . . . . . . . 121 6 AGNFeedbackinEllipticalGalaxies 123 6.1 EllipticalGalaxiesOverview . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 SimulationSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2.1 IsolatedElliptical . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2.2 EllipticalwithCircumgalacticGas . . . . . . . . . . . . . . . . . 130 6.3 Results: IsolatedElliptical . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.1 PureCoolingFlow . . . . . . . . . . . . . . . . . . . . . . . . . 131 M.Gaspari PhDThesis IV CONTENTS 6.3.2 ColdFeedback: (cid:15) = 10−4 [iso-C1m4] . . . . . . . . . . . . . . . . 133 6.3.3 ColdFeedback: (cid:15) = 10−3 [iso-C1m3] . . . . . . . . . . . . . . . . 135 6.3.4 ColdFeedback: (cid:15) = 3.3 10−4 [iso-C3m4] . . . . . . . . . . . . . 136 × 6.3.5 X-rayObservables . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.4 Results: EllipticalwithCircumgalacticGas . . . . . . . . . . . . . . . . 141 6.4.1 ColdFeedback: (cid:15) = 8 10−4 [cgg-C8m4] . . . . . . . . . . . . . . 141 × 6.4.2 X-rayObservables . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.5.1 ComparisonwithotherFeedbackModels . . . . . . . . . . . . . 150 6.5.2 AGNTurbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.5.3 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . 152 7 MultiphaseGas 155 7.1 ColdGasOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.2 SimulationSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.2.1 InitialConditions . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.3.1 PureCoolingFlow [r7-CF] . . . . . . . . . . . . . . . . . . . . . 162 7.3.2 AGNFeedback: tcool/tff = 7and(cid:15) = 6 10−3 [r7-i6m3] . . . . . . 164 × 7.3.3 AGNFeedback: tcool/tff = 7and(cid:15) = 10−2 [r7-i1m2] . . . . . . . . 168 7.3.4 AGNFeedback: WobblingOutflows [r7-i6m3w] . . . . . . . . . . 170 7.3.5 AGNFeedback: tcool/tff = 21and(cid:15) = 6 10−3 [r21-i6m3] . . . . . 171 × 7.3.6 AGNFeedback: tcool/tff = 21and(cid:15) = 10−2 [r21-i1m2] . . . . . . . 171 7.4 Discussion: theDetailedThermalState . . . . . . . . . . . . . . . . . . 173 8 Conclusions 181 8.1 ConsistencywithObservations . . . . . . . . . . . . . . . . . . . . . . . 182 8.2 SuccessfulFeedbackCharacteristics . . . . . . . . . . . . . . . . . . . . 184 8.3 LimitationsandFutureDevelopments . . . . . . . . . . . . . . . . . . . 187 8.4 Finale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Bibliography 191 PhDProduction 204 Acknowledgments 206 M.Gaspari PhDThesis Introduction O NE of the most crucial problems of present-day astrophysics concerns the thermodynamical evolution of the baryonic, ordinary matter. Heating processes play a fundamental role in galaxies, groups and clusters, struggling in an intricate but fascinating dance with its antagonist, cooling. The majority of baryons in the universe appears to reside in the form of an almost fully ionised gas, a plasma with temperaturesovertenmilliondegreesanddensitiesbelowoneparticlepercm3. Quantum mechanics tells us that such plasma looses thermal energy, emitting photons, mainly due tobremsstrahlung,recombinationandlineexcitation. Unopposedradiativecoolingwould leadtothecoolingcatastrophe;thedenser,centralregionsofvirialisedsystemscoolfaster, loosingpartialpressuresupportandinducingasubsonicinflowofgasfromtheperipheral zones toward the nucleus. The increment of gas density causes a further increase of radiative cooling. This vicious circle leads to unobserved cooling rates up to hundreds solar masses per year, in the most massive systems. At the centre of galaxies, groups andclusters,thehugeaccumulationofmonolithicallycondensedcoldgaswouldproduce unrealistic surface brightness peaks and star formation rates. This is the cooling flow problem. Since every important baryonic structure, like molecular clouds, stars, dust and planets,willlaterrisefromthehotplasmacrucible,itiscrucialtofindandunderstandthe counterbalancingprocess,i.e.heating. The last-generation (X-ray) telescopes, Chandra and XMM-Newton, have provided a striking hint to the solution of the cooling flow problem. We now see the spectacular and powerful interactions of the supermassive black hole, residing at the centre of the active galactic nucleus (AGN), with the surrounding medium, in the form of buoyant bubbles, shock cocoons, metals dredge-up, turbulence, jets and nuclear outflows. Even if fromanenergeticpointofviewtheAGNiscapabletobalanceradiativelosses,numerous questionsarefartobesettled. Inprimis,whatisdominantengineofheating? Howcanthe AGN energy couple to the interstellar/intracluster plasma? How can the galaxy, group or clustermaintainastateofquasithermalequilibriumforseveralGyr? Whatistheoriginal feedbackprocessthatgeneratesthewealthofobservationalfeatures? Whydoweobserve extended(filamentary)andnuclearcoldgas,eveninthepresenceofstrongheating? WiththepresentThesis,Iintendtodeeplyinvestigatethepreviousquestions,focusing on the solution of the cooling flow problem, i.e. dramatically quenching the cooling rates for several Gyr without destroying the cool-core structure. The main theoretical 1 2 Introduction hypothesis is that the dominant feedback process should be mechanical and anisotropic, originated from massive subrelativistic AGN outflows. The natural self-regulation may beprovidedbylinkingthepropertyofthecoolinggastotheinjectionoffeedbackenergy. Thiscentralideawillbeseverelytestedviathree-dimensionalhydrodynamicsimulations, carried out via the state-of-the-art Eulerian code FLASH, substantially modified and upgraded to study astrophysical phenomena, as outflows, shocks, cooling, turbulence, thermalinstabilities,andmultiphasegas. TheThesisisorganisedasfollows. In Chapter 1, I first review the key properties of the hot plasma, residing in the • majority of the cosmic virialised structures, as clusters, groups and ellipticals. I focus on the theoretical background essential to understand what is a classic cooling flow. The second part describes insteadthe observational evidences of real, quenchedcoolingflows. In Chapter 2, I present an essential review on the cooling counterpart, heating. • The attention is mainly given to the various manifestation of AGN feedback in hot halo systems, including buoyant bubbles, shocks, jets/outflows, but also transport processesasconductionandturbulence. In Chapter 3, I describe the entire numerical methods, necessary to carry out the • simulations via the FLASH code. After a brief introduction on hydrodynamics, I introduce the AMR grid structure and how the Euler equations are solved (PPM scheme). Idiscussthen,indetail,thekeyimplementationofradiativecooling,AGN outflows,theself-regulation,stellarevolutionandtheinitialconditionsetup. InChapter4,Ibegintopresenttheresultsofthesimulationson(mechanical)AGN • feedback in galaxy clusters, after a brief overview of these systems. The ultimate aim of the investigation is to solve the cooling flow problem, at the same time avoidingoverheatingandreproducingfundamentalfeatures,ascavities,shocksand metal inhomogeneities. As in the next Chapters, I present an in-depth discussion of the merits and flaws of all models, with a critical eye toward observational concordance. In Chapter 5, I continue to analyse the 3D simulations on massive AGN outflows, • self-regulated by cold and and hot accretion, this time in a typical galaxy group. I present the best models dynamics and observables, thoroughly discussing the propertiesofthefeedbackself-regulation. InChapter6,Iclosetherangeoftestedhothalosystems,studyingtheself-regulated • AGN outflows also in (isolated and massive) elliptical galaxies. It is important to solve the cooling flow problem on every scale. In fact, in less bound objects, the feedback seems to have more dramatic consequences. Particular attention is given tothegeneratedX-rayfeatures. In Chapter 7, I test the idea that multiphase gas is the direct consequence of the • AGN feedback. The recurrent outflows may induce substantial turbulence, leading to nonlinear thermal instabilities, with the condensation of the hot phase into cold M.Gaspari PhDThesis
Description: