ebook img

Alma Mater Studiorum - Università di Bologna Human-Centric Wireless Communication Networks ... PDF

179 Pages·2016·3.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Alma Mater Studiorum - Università di Bologna Human-Centric Wireless Communication Networks ...

Alma Mater Studiorum - Università di Bologna DEI - Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi” Dottorato di Ricerca in Ingegneria Elettronica, delle Telecomunicazioni e Tecnologie dell’Informazione XXVIII Ciclo Settore Concorsuale: 09/F2 - Telecomunicazioni Settore Scientifico Disciplinare: ING-INF/03 Human-Centric Wireless Communication Networks Tesi di: Riccardo Cavallari Coordinatore: Chiar.mo Prof. Ing. Alessandro Vanelli-Coralli Relatori: Chiar.mo Prof. Ing. Roberto Verdone Dott.ssa Ing. Chiara Buratti Esame anno finale 2016 Abstract This thesis covers two main topics: the design and performance evaluation of Wireless Body Area Networks (WBANs), and the simulation and mathe- matical modeling of Delay Tolerant Networks (DTNs). Different Medium Access Control (MAC) protocols for WBANs are im- plemented on dedicated hardware in order to evaluate, through extensive measurement campaigns, the performance of the network in terms of packet loss rate, delay and energy consumption. Novel solutions to cope with body shadowing and to improve the coexistence with other wireless technologies, are presented and evaluated. An analytic model for the CSMA/CA protocol defined in the IEEE 802.15.6 standard is also presented. The benefits of offloading part of the traffic carried by a wireless back- bone to a DTN composed of mobile nodes in a urban environment, is also investigated. A more analytic approach, mainly using tools from stochas- tic geometry and Markov chains theory, is used to develop a mathematical framework for the evaluation of the performance of routing rules for DTNs. 3 Contents Introduction 1 Human-Centric Wireless Communication Networks: Concept . . . . 1 Problem Statement and Approach . . . . . . . . . . . . . . . . . . . 2 Context: the WiserBAN Project . . . . . . . . . . . . . . . . . . . . 4 Structure and Contribution of the Thesis . . . . . . . . . . . . . . . 6 I Wireless Body Area Networks 9 1 Wireless Body Area Networks 11 1.1 Definition and Taxonomy . . . . . . . . . . . . . . . . . . . . . 11 1.1.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Applications and Requirements . . . . . . . . . . . . . . . . . 16 1.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . 18 1.3 Wireless Technologies for WBANs . . . . . . . . . . . . . . . . 21 1.3.1 The IEEE 802.15.4 Standard . . . . . . . . . . . . . . . 21 1.3.2 IEEE 802.15.6 Standard . . . . . . . . . . . . . . . . . 24 1.3.3 Low Power Listening (LPL) . . . . . . . . . . . . . . . 28 1.4 Main Challenges in WBAN Design . . . . . . . . . . . . . . . 30 1.4.1 Radio Channel . . . . . . . . . . . . . . . . . . . . . . 30 i CONTENTS 1.4.2 Energy Consumption . . . . . . . . . . . . . . . . . . . 31 1.4.3 Coexistence . . . . . . . . . . . . . . . . . . . . . . . . 32 1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Performance Evaluation of MAC Protocols for WBANs 35 2.1 Reference Architecture, Scenario and Performance Metrics . . 35 2.1.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 38 2.1.3 Performance Metrics . . . . . . . . . . . . . . . . . . . 41 2.2 Analytic Model for MAC Performance in WBANs . . . . . . . 44 2.2.1 CSMA/CA Analytic Model . . . . . . . . . . . . . . . 44 2.2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . 52 2.3 Experimental Performance Evaluation . . . . . . . . . . . . . 55 2.3.1 Body Shadowing . . . . . . . . . . . . . . . . . . . . . 56 2.3.2 PLR, Delay and Throughput . . . . . . . . . . . . . . . 62 2.3.3 Energy consumption . . . . . . . . . . . . . . . . . . . 68 2.3.4 Coexistence . . . . . . . . . . . . . . . . . . . . . . . . 74 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 II Delay Tolerant Networks 79 3 A Wireless Backbone with Delay-Tolerant Offload 81 3.1 Introduction to Delay-Tolerant Networks and their Applications 81 3.2 A Wireless Backbone with Delay Tolerant Offload . . . . . . . 84 3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . 86 3.2.2 Reference Scenario . . . . . . . . . . . . . . . . . . . . 86 3.2.3 Backbone MAC protocol . . . . . . . . . . . . . . . . . 88 3.2.4 Offloading Mechanism . . . . . . . . . . . . . . . . . . 89 ii CONTENTS 3.2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . 90 3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4 Cost/Speed Analysis of Mobile DTNs 97 4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2 Network Model and Routing Rules . . . . . . . . . . . . . . . 98 4.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . 98 4.2.2 Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . 102 4.2.4 Routing Rule . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.1 The Continuous-Time Markov Chain . . . . . . . . . . 105 4.3.2 Limiting Distributions . . . . . . . . . . . . . . . . . . 108 4.3.3 Performance Metrics . . . . . . . . . . . . . . . . . . . 111 4.3.4 Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Analysis of Routing Rule 1 without Multihop . . . . . . . . . 115 4.4.1 Numerical and Simulation Results . . . . . . . . . . . . 120 4.5 Analysis of Routing Rule 1 with Multihop . . . . . . . . . . . 123 4.5.1 Calculation of E[C|θ ] . . . . . . . . . . . . . . . . . . . 127 i 4.5.2 Calculation of E[X |θ ] . . . . . . . . . . . . . . . . . . 131 w i 4.5.3 Numerical and Simulation Results . . . . . . . . . . . . 134 4.6 Other Routing Rules . . . . . . . . . . . . . . . . . . . . . . . 137 4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Appendix 4.A Calculation of rate µ(φ;θ) . . . . . . . . . . . . . . 139 Conclusions 149 iii List of Figures 1 WiserBAN application use cases and protocol stack. Figure taken from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Taxonomy of WBANs. . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Some of the available RF bands for WBANs. . . . . . . . . . . 13 1.3 IEEE 802.15.4 Superframe structure. . . . . . . . . . . . . . . 22 1.4 IEEE 802.15.4 slotted CSMA/CA algorithm. . . . . . . . . . . 23 1.5 Example of IEEE 802.15.6 superframe. . . . . . . . . . . . . . 25 1.6 IEEE 802.15.6 CSMA/CA algorithm. . . . . . . . . . . . . . . 27 1.7 The LPL mechanism. . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 The position of the nodes for the reference WBAN. . . . . . . 36 2.2 Traffic schemes used to evaluate the WBAN performance. . . . 37 2.3 ISO/OSI model of the reference WBAN design. . . . . . . . . 38 2.4 Screenshot of the WiserBAN testing application that runs on Android devices. . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5 Example of diagram for UP 4 and transmission time D = 3. tx CirclesdenoteBackoffstates,SquaredenoteTransmissionstates. 47 2.6 P (UP ) for for a network of 3 senders with the same UP values. 53 s i 2.7 P for N = 2,...,7 where EDs use the same UP values. . . . . 54 s 2.8 P when a new ED is added to the network. . . . . . . . . . . 54 s v LIST OF FIGURES 2.9 E[D] for N = 3, UP=4 for different payload size. . . . . . . . . 55 2.10 Cumulative distribution function of the delay for different va- lues of N and for a payload size of 100 Bytes. . . . . . . . . . 56 2.11 PLR for different links of Fig. 2.1. . . . . . . . . . . . . . . . . 58 2.12 Example of the data aggregation strategy. . . . . . . . . . . . 59 2.13 Optimal value of N . . . . . . . . . . . . . . . . . . . . . . . . 60 a 2.14 PLR and energy consumption for the data aggregation strategy. 61 2.15 Comparison of the PLR for three different contention access algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.16 Comparison of the average delay for three different contention access algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.17 Network throughput (periodic traffic). . . . . . . . . . . . . . 65 2.18 Average delay for a three nodes-network, each one with diffe- rent UP values: node 1-UP 3; node 2-UP 5; node 3-UP 7. . . . 66 2.19 Average delay for a three nodes-network, each one with the same UP value. . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.20 PLRforathreenodes-networkwiththesameUPanddifferent number of retransmissions. . . . . . . . . . . . . . . . . . . . . 68 2.21 ComparisonoftheenergyconsumptionofIEEE802.15.6CSMA/CA and Slotted ALOHA as function of the CAP duration and for different number of retransmissions. . . . . . . . . . . . . . . . 69 2.22 Distribution of the energy consumed in the different radio states for IEEE 802.15.6 CSMA/CA and Slotted ALOHA for different CAP durations. . . . . . . . . . . . . . . . . . . . . . 70 2.23 AverageenergyconsumptionperpacketforIEEE802.15.4and LPL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 vi

Description:
Dott.ssa Ing. Chiara Buratti of Wireless Body Area Networks (WBANs), and the simulation and mathe- .. with a Bluetooth transceiver) following published papers: [4], [5], [6], [7], [8], [9] and [10]; the last two being published .. (IEEE 802.11), Bluetooth, IEEE 802.15.4/ZigBee and other standards
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.