Alma Mater Studiorum - Universit`a di Bologna DEI - Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione Dottorato di Ricerca in Ingegneria Elettronica, delle Telecomunicazioni e Tecnologie dell’Informazione XXVIII Ciclo Settore Concorsuale: 09/F2 - Telecomunicazioni Settore Scientifico Disciplinare: ING-INF/03 Heterogeneous Networks for the IoT and Machine Type Communications Tesi di: Melchiorre Danilo Abrignani Coordinatore: Chiar.mo Prof. Ing. Alessandro Vanelli-Coralli Relatori: Chiar.mo Prof. Ing. Roberto Verdone Esame anno finale 2016 “The important thing is to not stop questioning. Curiosity has its own reason for existing.” (A. Einstein) Table of Contents Table of Contents iii Abstract vii List of Acronyms ix List of Figures xxi List of Tables xxv Introduction 1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Context of the Thesis: Newcom♯ . . . . . . . . . . . . . . . . . . . . . . . . 2 EuWIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Structure of the Thesis and Approach . . . . . . . . . . . . . . . . . . . . . 4 1 IoT and M2M 7 1.1 IoT Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.1 Issues and challenges . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 IoT scenarios - Heterogeneous networks . . . . . . . . . . . . . . . . . 12 1.3 Standardization players . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 3rd Generation Partnership Project (3GPP) . . . . . . . . . . 12 1.3.2 European Telecommunications Standards Institute (ETSI) . . 13 1.3.3 oneM2M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Contents 1.3.4 Comit´e Europen de Normalisation - European Commitee for Standardization (CEN)/Comit´e Europ´een de Normalisation ´ Electrotechnique - European Committee for Electrotechnical Standardization (CENELEC) . . . . . . . . . . . . . . . . . . 14 1.3.5 Institute of Electrical and Electronics Engineers (IEEE) . . . . 14 1.3.6 Internet Engineering Task Force (IETF) . . . . . . . . . . . . 14 1.3.7 International Telecommunication Union Telecommunication Standardization Bureau (ITU-T) . . . . . . . . . . . . . . . . 15 1.4 M2M Traffic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 IoT short range solutions 19 2.1 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.1 IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.2 Zigbee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.3 6LowPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.4 Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.5 SDN approaches . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 Testing platform: EuWIn@UniBO . . . . . . . . . . . . . . . . . . . . 35 2.2.1 The Flexible Topology (FLEXTOP) testbed . . . . . . . . . . 37 2.2.2 User Interface and remote access procedure . . . . . . . . . . . 41 2.2.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3 Performance analysis: Short-range protocols comparison . . . . . . . 45 2.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4 Performance analysis: Coexistence analysis . . . . . . . . . . . . . . . 64 2.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.4.2 Wi-Fi network setup and traffic . . . . . . . . . . . . . . . . . 66 2.4.3 Zigbee network setup and traffic . . . . . . . . . . . . . . . . . 68 2.4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 70 2.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.5 Fast Deploying tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.5.1 Downscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.5.2 REM device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 iv Contents 3 IoT in the Cellular world - MTC 105 3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.2 LTE/LTE-A architecture . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.2.1 Uplink in LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4 RRM for M2M traffic in cellular networks 115 4.1 State of the Art Uplink RRM for M2M . . . . . . . . . . . . . . . . . 118 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.3 MILP approaches, model and results . . . . . . . . . . . . . . . . . . 124 4.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.3.2 Mixed Integer Linear Programming (MILP) Models . . . . . . 126 4.4 Algorithm and algorithm execution performances analysis . . . . . . . 131 4.4.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 131 4.4.2 Algorithms Comparison . . . . . . . . . . . . . . . . . . . . . 134 4.5 NS3 - simulation tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.6.1 Reference System Architecture and Simulated Scenario . . . . 140 4.6.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.6.3 Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . 144 4.6.4 Key Performance Indicators . . . . . . . . . . . . . . . . . . . 145 4.6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 146 4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5 RRM for M2M with uplink enhancement (Carrier Aggregation) 161 5.1 Carrier Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.2 Carrier Aggregation (CA) technology overview . . . . . . . . . . . . . 162 5.3 Review the state of the art . . . . . . . . . . . . . . . . . . . . . . . . 165 5.4 Extended Milp Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.5 NS3 contribution to the community . . . . . . . . . . . . . . . . . . 169 5.5.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.5.2 Impact on LTE Stack . . . . . . . . . . . . . . . . . . . . . . . 170 5.5.3 Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.5.4 User Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.5.5 Implementation on the Network Simulator v.3 (NS3) . . . . . 173 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Conclusions 185 v Contents Bibliography 187 Publications 203 Acknowledgements 207 vi Abstract The Internet of Things promises to be a key-factor in the forthcoming industrial and social revolution. The Internet of Things concept rely on pervasive communications where ’things’ are ’always connected’. The focus of the thesis is on Heterogeneous Networks for Internet of Things and Machine Type Communications. Heterogeneous Networks are an enabling factor of paramount important in order to achieve the ’always connected’ paradigm. On the other hand, Machine Type Communications are deeply different from Human-to-Human communications both in terms of traffic patterns and requirements. This thesis investigate both concepts. In particular, here are studied short and long range solutions for Machine-to-machine applications. For this work a dual approach has been followed: for the short-range solutions analysis an experimental approach has been privileged; meanwhile for the long-range solutions analysis a theoretical and simulation approach has been preferred. In both case, a particular attention has been given to the feasibility of the solutions proposed, hence solutions based on products that already exist in the market have been privileged.
Description: