ToappearinApJL PreprinttypesetusingLATEXstyleemulateapjv.08/22/09 ALMA690GHZOBSERVATIONSOFIRAS16293-2422B:INFALLINAHIGHLYOPTICALLY-THICKDISK LuisA.Zapata1,LaurentLoinard1,2,LuisF.Rodr´ıguez1,3,VicenteHerna´ndez1, SatokoTakahashi4,AlfonsoTrejo4,andBe´renge`reParise2 ToappearinApJL ABSTRACT Wepresentsensitive,highangularresolution(∼0.2arcsec)submillimetercontinuumandlineobservations 3 ofIRAS16293-2422BmadewiththeAtacamaLargeMillimeter/SubmillimeterArray(ALMA).The0.45mm 1 continuum observations reveal a single and very compact source associated with IRAS 16293-2422B. This 0 submillimeter source has a deconvolved angular size of about 400 milli-arcseconds (50 AU), and does not 2 showanyinnerstructureinsideof thisdiameter. TheH13CN, HC15N, andCH OH line emissionregionsare 3 n about twice as large as the continuum emission and reveal a pronounced inner depression or ”hole” with a a sizecomparabletothatestimatedforthesubmillimetercontinuum. Wesuggestthatthepresenceofthisinner J depression and the fact that we do not see inner structure (or a flat structure) in the continuum is produced 4 by very optically thick dust located in the innermostparts of IRAS 16293-2422B.All three lines also show 1 pronouncedinverse P-Cygni profiles with infall and dispersion velocities largerthan those recently reported fromobservationsatlowerfrequencies,suggestingthatwearedetectingfaster,andmoreturbulentgaslocated ] closertothecentralobject. Finally,wereportasmalleast-westvelocitygradientinIRAS16293-2422Bthat A suggeststhatitsdiskplaneislikelylocatedveryclosetotheplaneofthesky. G Subjectheadings: stars: pre-mainsequence–ISM:jetsandoutflows–ISM:individual:(IRAS16293−2422) . –techniques:spectroscopic h p - o 1. INTRODUCTION and lacking of a jet-like feature along its symmetry axis. In r addition,itsdynamicalageisonlyabout200years. Locatedatadistanceof120pc(Loinardetal.2008)intheρ t s Ophiuchistarformingregion,IRAS16293−2422B,isawell- One of the first evidences of the detection of infall mo- a tionsassociatedwith IRAS16293−2422BcamefromChan- studiedlow-massveryyoungstar. Togetherwithitsclose-by [ companionseparatedbyonly600AU(IRAS16293−2422A), dler et al. (2005) using Submillimeter Array (SMA) obser- 1 theentireregion(IRAS16293−2422)hasabolometriclumi- vations at 300 GHz. More recently, Pineda et al. (2012) using ALMA Science Verification observations with high- v nosityof25L⊙,andisembeddedina2M⊙ envelopeofsize 5 ∼ 2000AU (Correia et al. 2004). Both sourcesshow a very spectral resolution studied the gas kinematics with detail in 0 rich and complex chemistry, with hot-core-like (hot-corino) IRAS 16293−2422Bat 220GHz, and reportedclear inverse 1 properties at scales of ∼ 100 AU and temperatures of about P-Cygni profiles toward this source in their three brightest 3 100K(Ceccarellietal.1998;Cazauxetal.2003;Bottinelliet linesandderivedfromasimpletwo-layermodelaninfallrate 1. al.2004;Chandleretal.2005;Cauxetal.2011). of4.5×10−5 M⊙ yr−1,whichisatypicalvalueforlow-mass 0 Sensitiveandhighangularresolutionobservationsat7mm protostars. 3 revealed a compact, possibly isolated disk associated with In this Letter, we report ∼0.2 arcsec resolution 690 GHz 1 IRAS 16293−2422B with a Gaussian half-power radius of observations obtained with the Atacama Large Millime- : only8 AU (Rodr´ıguezet al. 2005). However, the search for ter/Submillimeter Array (ALMA) from the object IRAS v an outflow associated with this source has been a hard task. 16293-2422B. The continuum observations reveal a very Xi Jørgensenet al. (2011)using submillimeter(SMA) observa- compactsourcewithadeconvolvedangularsizeofabout400 tionsofIRAS16293−2422witharelativelyhighangularres- milli-arcsecondsor a spatial size of about 50 AU, while the r a olution resolved the A and B components, and did not find line emission shows a clear pronouncedinner depression or ”hole” in the middle of IRAS 16293−2422B. All the three anystrongindicationsforhighvelocitygastowardB.Yehet al.(2008)reportedthedetectionofacompactblue-shiftedCO linesmappedinthisstudyshowpronouncedinverseP-Cygni profiles. structuretothesouth-eastofsourceB,andmentionedthatit might correspond to a compact outflow ejected from source 2. OBSERVATIONS B. Loinardetal. (2012)usingALMAobservationsrevealed The observations were made with fifteen antennas of indeed that the source B is driving a south-east blueshifted ALMAonApril2012,duringtheALMAscienceverification compactoutflow. However,the flowhaspeculiarproperties: itishighlyasymmetric,bubble-like,fairlyslow(10kms−1), dataprogram. Thearrayatthatpointonlyincludedantennas withdiametersof12meters. The105independentbaselines ranged in projected length from 26 to 403 m. The observa- 1Centro deRadioastronom´ıa yAstrof´ısica, UNAM,Apdo. Postal3-72 tionsweremadeinmosaicingmodeusingahalf-powerpoint (Xangari),58089Morelia,Michoaca´n,Me´xico 2Max-Planck-Institut fu¨r Radioastronomie, Auf dem Hu¨gel 69, 53121, spacingbetweenfieldcentersandthuscoveringbothsources Bonn,Germany IRAS 16293−2422Aand B. However, in this study we will 3AstronomyDepartment,FacultyofScience,KingAbdulazizUniversity, focusonlyonthemolecularandcontinuumemissionarising P.O.Box80203,Jeddah21589,SaudiArabia from IRAS 16293−2422B. The primary beam of ALMA at 4AcademiaSinicaInstituteofAstronomyandAstrophysics,P.O.Box23- 690GHzhasaFWHMof∼8arcsec. 141,Taipei10617,Taiwan TheALMA digitalcorrelatorwas configuredin 4 spectral 2 Zapata,etal. TABLE1 Observationalandphysicalparametersofthesubmillimeterlines Restfrequencya Elower RangeofVelocities Linewidth LSRVelocityb LinePeakflux Lines [GHz] [K] [kms−1] [kms−1] [kms−1] JyBeam−1 H13CN[J=8−7]ν=0 690.55207 80.6 −1,+7 4.0 −3.0 1.00 HC15N[J=8−7]ν=0 688.27379 80.3 −1,+7 3.8 −3.0 1.00 CH3OH[9(3,6)-8(2,7)]νt=0 687.22456 84.3 −1,+7 3.8 −3.0 1.02 aThe rest frequencies were obtained from the Splatalogue: http://splatalogue.net windowsof1875MHzand3840channelseach.Thisprovides achannelwidthof0.488MHz(∼0.2kms−1),butthespectral resolution is a factor of two lower (0.4 km/s) due to online Hanningsmoothing. Observations of Juno provided the absolute scale for the flux density calibration while observations of the quasars J1625−254andNRAO530(withfluxdensitiesof0.4and0.6 Jy, respectively) provided the gain phase calibration. The quasars3C279andJ1924-292wereusedforthebandpasscal- ibration. The data were calibrated, imaged, and analyzed using the CommonAstronomySoftwareApplications(CASA).Toan- alyze the data, we also used the KARMA software (Gooch 1996).Theresultingr.m.s.noiseforthelineimageswasabout 50mJybeam−1inavelocitywidthof0.4kms−1 and20mJy beam−1forthecontinuumemissionatanangularresolutionof 0′.′31×0′.′18withaP.A.=−69.3◦. Weusedarobustparam- eterof0.5intheCLEANtask. Thespectraandthephysical parameters of the observed lines are shown in Figure 1 and Table1,respectively.Manymorespectrallinesfromdifferent molecularspecieswerefoundacrosstheentirespectralband- width, however, this study will concentrate on the analysis ofthecontinuumemissionandthelinespresentedinTable1 IRFAigS.116.—293H−1234C2N2B(b.lTueh)e,HblCac1k5Nda(mshaegdelnitnae),manadrkCsHth3eOsHys(tgermeeicn)LsSuRmmveeldocsiptyecotrfaIfRroAmS thatareassociatedwithIRAS16293−2422B.Theseselected 16293−2422B(VLSR∼3kms−1). linesshowagoodcontrastbetweentheabsorptionandemis- sionfeaturesascomparedwiththerest. Wegivethelinepeak whenourbeamsizeisabouthalfofthesource’ssizeatthese emissionofeverylineinTable1. wavelengths. Thissuggeststhatweareseeingveryoptically thickdustemissionatthesewavelengths. 3. RESULTSANDDISCUSSION The flux density of IRAS 16293−2422B at these wave- 3.1. 0.45mmcontinuumemission lengths is 12.5 ± 0.5 Jy and has a peak flux of 3.2 ± 0.2 Jy In Figure 2, we show color and contour maps of the line Beam−1. Using the full Planck equation, we can obtain the and continuum emission as mapped by ALMA from IRAS brightnesstemperature: 16293−2422Batthesewavelengths. InthisFigure,we have hν overlaidthe resultingcontinuummapwith the integratedin- T = , b tensity (moment zero) maps of the spectral molecular lines. Istuirsroculenadrslythoebsceornvteidnuiunmallelminiesssi,otnhaatnthdehmasolaecsutrloarngemciesnstiroanl kln2Shννc32Ω +1 depressionor”hole”inthemiddle. where c is the speed of light, S is the flux density, ν is Thepeakofthecontinuumshowsasmalloffsettothewest the frequency, k is Boltzmann conνstant, and Ω is the solid withrespecttothecentralpositionofthe”hole”. Thissmall angle. Following this relation, and using a Gaussian beam, deviation might be explained by opacity effects of the dust we estimated a brigthness temperature at these wavelengths emission at these wavelengths. However, this shift effect forIRAS16293−2422Bof160K. is also observed at longer wavelengths by Rodr´ıguez et al. Withthesefluxvaluesonecanestimatealowerlimitforthe (2005). massofthedisk. Assumingthatthedustisopticallythinand The dust compact source has a deconvolvedsize of about isothermal, the dust mass (M ) will be directly proportional 400 ± 55 milli-arcseconds or a spatial size of 50 AU at the d tothefluxdensity(S )as: distanceofIRAS16293−2422.Thissizeisquitelarge(afac- ν torofaboutsix)comparedtothatfoundat7mmbyRodr´ıguez d2S etal.(2005).Thisdifferenceinapparentangularsizesismost Md = κ B (Tν ), probably the result of the increasing optical depth with fre- ν ν d quencyofthedust. Moreover,insideofthe50AUdiameter, wherethedisthedistancetotheobject,κ thedustmassopac- ν the source B does not show any more inner structure even ity, and B (T ) the Planck function for the dust temperature ν d 3 13 H CN Fig.3.—Integratedintensityoftheweightedvelocity(moment1)colormapofthe H13CNemissionfromthesourceIRAS16293−2422Boverlaidincontourswiththe 15 integratedintensitycontourmap(white).Thewhitecontoursarefrom15%to90%with HC N stepsof5%ofthepeakoftheintegratedlineemission;thepeakoftheintegratedline emissionis4.1×103mJyBeam−1kms−1.Thecolor-scalebarontherightindicatesthe LSRvelocitiesinkms−1. T . Assuming a dust mass opacity (κ ) of 2.2 cm2 g−1, ob- d ν tained extrapolatingat these wavelenghts the value obtained byOssenkopf&Henning(1994)forcoagulateddustparticles with no ice mantles, and at a density of 108 cm−3. Assum- ing also an opacity power-law index β = 0.6 (Rodr´ıguez et al.2005),aswellasacharacteristicdusttemperature(T )of d 160K,weestimatedalowerlimitforthemassforthediskof about0.03M⊙. Pleasenotethatthelevelofuncertaintyinthe masslowerlimitis a factoroffive, giventherangeof 0.435 mmopacitiesinTable1ofOssenkopf&Henning(1994). 3.2. Molecularlineemission InFigure1and2,asmentionedearlier,wepresenttheinte- gratedintensitymaps(moment0) ofthe molecularemission reportedonthiswork. Thespectrumfromalllineswereob- CH OH tained averaging in an area (box) similar to the size of the 3 molecular ring like structure (∼ 1.0′′). The spectrum of all lines is found to be well centered at an LSR velocity of +3 kms−1,whichisapproximatelythesystemicvelocityforthis source (Pinedaet al. 2012;Jørgensenet al. 2011). All three linesalsoshowmarkedinverseP-Cygniprofilesbutwiththat oftheCH OHshowingthemorepronouncedabsorptionfea- 3 ture. Thisis probablyduetothisline frequentlybeingmore optically thick. The H13CN and HC15N show line profiles very similar with the emission components being stronger compared with the CH OH spectra, see Figure 1. This lat- 3 ter line mostly shows two faint condensations surrounding thecontinuumsourceanddoesnotpresentamarkedringlike structureascomparedwiththerestofthelines. The morphology of the line emission in general forms a welldefinedringlikestructurearoundthecontinuum. How- ever, the ring like structure is not completely closed, there is a smallcavity towardsits southeast. This cavity is proba- Fig.2.—H13CN(blue),HC15N(magenta),andCH3OH(yellow)colorscalemoment bly created by the southeast monopolaroutflow reported by 0mapsfromIRAS16293−2422Boverlaidingreycontourswithitsownlineemission Loinardetal. (2012). Themolecularringlikestructurehas a andinredcontourswiththe0.45mmcontinuumemission. Theredcontoursarefrom diameterof850±50milli-arcsecondsandaninnerdiameter 15%to90%withstepsof7%ofthepeakofthelineemission;thepeakofthe0.45 of300±50milli-arcseconds,whichiscomparabletothede- mmcontinuumemissionis3.2JyBeam−1.Forthelineemissionthegreycontoursare from15%to90%withstepsof5%ofthepeakoftheintegratedlineemission. The convolvedsizeofthe0.45mmcontinuumsource(about400 synthesizedbeamofthecontinuumimageisshowninthebottomleftcornerofeach milli-arcseconds). image. 4 Zapata,etal. the ratio of solid angles between the region in absorptionto theregionin emission. Fromthefits ofPinedaetal. (2012) to lines at lower frequencies (220 GHz) they estimate T = x 40K.Thelinessampledbyusareprobablyoriginatingingas closer to the star (see below). Assuming that the excitation temperatureofthemoleculesdecreasesasthesquarerootof thedistanceandthatthegassampledbyPinedaetal. (2012) is50%moredistantthanthatsampledbyus, weadoptT = x 50K.Thefittingwasminimizedwithagridsearch,obtaining thefollowingparameters: V =0.7kms−1,σ =0.6kms−1, in v andτ =0.17.Finally,thesystemicvelocityobtainedfromthe 0 fitwasV =3.0kms−1. LSR Severaloftheparametersarequitesimilartothosederived byPinedaetal. (2012)fromlinesat220GHz. However,oth- ers are not and we discuss them here. First, the brightness temperatureof the optically thick continuumsource is 20 K in the case of Pineda et al. (2012) and 160 K in this paper. This is as expected since the optical depth of dust increases sharplywithfrequency. Thelargebrightnesstemperaturede- rivedbyusandconsistentwith ourprofilemodelingimplies thatat690GHzweareobservingatrulyoptically-thickdisk sincethebrightnesstemperatureiscomparablewiththether- modynamictemperaturesexpectedintheinnerpartsofaYSO accretiondisk. Theopticaldepthusedbyusisaboutonehalf ofthatusedbyPinedaetal. (2012).Finally,theinfallvelocity andvelocitydispersionrequiredbyourmodeling(0.7and0.6 Fig.4.—Observed(solidline)andmodeled(dashedline)spectraoftheCH3OH. kms−1, respectively)arelargerthanthoseusedbyPinedaet al. (about0.5and0.3kms−1,respectively),implyingthatwe maybedetectingfaster, moreturbulentgaslocatedcloserto In Figure 3, we show the integrated intensity of the thecentralobject.Thisisconsistentwiththestandardpicture weightedvelocity(moment1)colormapoftheH13CN.This of infall, where highervelocitiesoccuratsmaller radii. The figure reveals a clear east-west velocity gradient of approx- velocities reported here are supersoinic as those reported in imately 1.3 km s−1 over 60 AU. This small gradient might Pinedaetal. (2012). suggestthattheorientationofthe diskplaneisverycloseto the plane of the sky. If we assume that the rotation is Kep- 4. SUMMARY lerianandattributeittoadiskinrotationthenthedynamical In this paper, we have reportedline and continuumobser- massassociatedtothisvelocitygradientcorrespondstoonly vations obtained with ALMA at 690 GHz with a very high 0.1 M⊙, which is indeed very small and is comparable with angularresolution(∼0.2arcsec)ofIRAS16293-2422B.The thedustdiskmass. However,ifwecorrectbytheinclination angledividingthismassbythesinθwithθsay5◦,weobtaina mainconclusionsareasfollows: valueof1.2M⊙,amorereasonablevalueforthecentralobject • The 0.45 mm continuum emission revealed a very andthediskassociatedwithasolartypeyoungstar,seeCor- compact object with a deconvolved angular size of reia et al. (2004). We thereforeconcludethatthe disk plane ofIRAS16293−2422Bmustbelocatedalmostontheplaneof about400milli-arcsecondsthatisassociatedwithIRAS 16293-2422B.This size is very large comparedto the thesky,asalreadysuggestedbyRodr´ıguezetal.(2005). onereportedat7mm(about8AU)anddoesnotshow anystructureinsideofthisdiameter(oraflatstructure). 3.3. Modeling InFigure4,weshowtheresultofthemodeledspectrathat • The H13CN, HC15N, and CH OH images revealed a 3 we made in this study. We fitted the spectral profile using a pronouncedinnerdepressionor”hole”withasizecom- modifiedtwo-layermodel(Myerset al. 1996; Di Francesco parable to that estimated forthe submillimetercontin- etal2001;Kristensenetal. 2012),asdescribedbyPinedaet uum. al. (2012).Thismodelconsistsoftwolayersofgas,frontand rear, thatare infalling towardsthe centralsource with an in- • We suggest that the presence of this inner depression fallvelocity,velocitydispersion,excitationtemperature,and with an angularsize comparable with that of the con- opacityatthecenterofthelineofVin,σv,Tx,andτ0,respec- tinuum source and the fact that we do not see inner tively. In between the two layers there is an optically thick structure in the continuum is produced by very opti- continuumsourceemittingasablackbodyoftemperatureTc, callythickdustlocatedintheinnermostpartsofIRAS andfillingafractionofthebeam,Φ.Thebackgroundtemper- 16293-2422B. aturethatilluminatestherearlayeristakentobethecosmic background,T =3K. • AllthreelinesalsoshowinverseP-Cygniprofileswith f Thebrightnesstemperatureoftheopticallythickcontinuum infall and dispersion velocities larger than those re- sourceistakentobesuchthatitmatchesthepeakcontinuum centlyreportedatsmallerwavelengths,suggestingthat flux density of the image, T = 160 K. The adopted filling wearerevealingfaster,andmoreturbulentgaslocated c fractionofthecontinuumsource, Φ =0.37isconsistentwith closertothecentralobject. 5 • We reporta smalleast-west velocitygradientin IRAS indebted to the Alexandervon HumboldtStiftung for finan- 16293-2422Bobservedinalllinesthatsuggeststhatthe cial support. This papermakes use of the followingALMA disk planeof thisobjectis likely locatedverycloseto data: ADS/JAO.ALMA#2011.0.00007.SV.ALMA is a part- theplaneofthesky. nershipofESO(representingitsmemberstates),NSF(USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, L.A.Z, L. L. and L. F. R. acknowledge the financial sup- AUI/NRAOandNAOJ. portfromDGAPA,UNAM,andCONACyT,Me´xico.L.L.is REFERENCES Bottinelli,S.,Ceccarelli,C.,Neri,R.,etal.2004,ApJ,617,L69 Kristensen,L.E.,vanDishoeck,E.F.,Bergin,E.A.,etal.2012,A&A,542, Caux,E.,Kahane,C.,Castets,A.,etal.2011,A&A,532,A23 A8 Cazaux,S.,Tielens,A.G.G.M.,Ceccarelli,C.,etal.2003,ApJ,593,L51 Loinard,L.,Torres,R.M.,Mioduszewski,A.J.,&Rodr´ıguez,L.F.2008, Ceccarelli,C.,Castets,A.,Loinard,L.,Caux,E.,&Tielens,A.G.G.M. ApJ,675,L29 1998,A&A,338,L43 Loinard,L.,Zapata,L.A.,Rodr´ıguez,L.F.,etal.2012,MNRAS,L35 Chandler,C.J.,Brogan,C.L.,Shirley,Y.L.,&Loinard,L.2005,ApJ,632, Myers,P.C.,Mardones,D.,Tafalla,M.,Williams,J.P.,&Wilner,D.J. 371 1996,ApJ,465,L133 Correia,J.C.,Griffin,M.,&Saraceno,P.2004,A&A,418,607 Ossenkopf,V.,&Henning,T.1994,A&A,291,943 DiFrancesco,J.,Myers,P.C.,Wilner,D.J.,Ohashi,N.,&Mardones,D. Pineda,J.E.,Maury,A.J.,Fuller,G.A.,etal.2012,A&A,544,L7 2001,ApJ,562,770 Rodr´ıguez,L.F.,Loinard,L.,D’Alessio,P.,Wilner,D.J.,&Ho,P.T.P. Gooch,R.1996,AstronomicalDataAnalysisSoftwareandSystemsV,101, 2005,ApJ,621,L133 80 Yeh,S.C.C.,Hirano,N.,Bourke,T.L.,etal.2008,ApJ,675,454 Jørgensen,J.K.,Bourke,T.L.,NguyenLuong,Q.,&Takakuwa,S.2011, A&A,534,A100