Mon.Not.R.Astron.Soc.000,1–13(2012) Printed18June2015 (MNLATEXstylefilev2.2) All about baryons: revisiting SIDM predictions at small halo masses A.Bastidas Fry1, F.Governato1(cid:63), A.Pontzen2, T.Quinn1, M.Tremmel1, L.Anderson1, H.Menon3, A.M.Brooks4 and J.Wadsley5 1AstronomyDepartment,UniversityofWashington,Box351580,Seattle,WA,98195-1580 2UCL,DepartmentofPhysics&Astronomy,GowerPlace,LondonWC1E6BT,UK 3DepartmentofComputerScience,UniversityofIllinoisatUrbana-Champaign,USA 5 4Dept.ofPhysics&AstronomyRutgersUniv.136FrelinghuysenRd,Piscataway,NJ08854 1 5Dept.ofPhysicsandAstronomy,McMasterUniv.,Hamilton,Ontario,L884M1,Canada 0 2 RevisedversionApril2015;InoriginalformDec2014 n u J ABSTRACT 6 We use cosmological hydrodynamic simulations to consistently compare the assembly of 1 dwarf galaxies in both Λ dominated, Cold (CDM) and Self–Interacting (SIDM) dark mat- ] ter models. The SIDM model adopts a constant cross section of 2 cm2/g, a relatively large O valuetomaximizeitseffects.ThesearethefirstSIDMsimulationsthatarecombinedwitha C description of stellar feedback that naturally drives potential fluctuations able to create dark matter cores. Remarkably, SIDM fails to significantly lower the central dark matter density . h withinthecentral500pcathalopeakvelocitiesV <30kms−1.Thisisduetothefactthat max p thecentralregionsofverylow–massfieldhaloshaverelativelylowcentralvelocitydispersion - o and densities, leading to time scales for SIDM collisions greater than a Hubble time. CDM r haloswithVmax<30kms−1haveinefficientstarformation,andhenceweaksupernovafeed- st back. At a fixed 2 cm2/g SIDM cross section, the DM content of very low mass CDM and a SIDMhalosdiffersbynomorethanafactoroftwowithin100-200pc.Atlargerhalomasses [ (∼ 1010 M ), the introduction of baryonic processes creates field dwarf galaxies with dark (cid:12) 2 matter cores and central DM+baryon distributions that are effectively indistinguishable be- v tweenCDMandSIDM.BothmodelsareinbroadagreementwithobservedLocalGroupfield 7 galaxiesacrosstherangeofmassesexplored.TosignificantlydifferentiateSIDMfromCDM 9 atthescaleoffaintdwarfgalaxies,avelocitydependentcrosssectionthatrapidlyincreases 4 tovalueslargerthan2cm2/gforhaloswithV <25-30kms−1needstobeintroduced. max 0 0 Keywords: Galaxies:formation–Cosmology–darkmatter,Galaxies:dwarf. . 1 0 5 1 1 INTRODUCTION cosmictimescales.Thisprocesscreateslargecores,morespherical : v halos,andasignatureflatradialprofileoftheDMvelocitydisper- InthispaperweusehighresolutionSPH+N-Bodycosmological i sion (Spergel & Steinhardt 2000; Burkert 2000). A SIDM model X simulationstofocusontwomainquestions:Canweidentifyaclear with fixed cross section and elastic collisions represents the sim- difference between Cold Dark Matter and Self–Interacting Dark r plestmodelinalargeclassofplausible“darksector”DMmodels. a Matter(CDMandSIDMrespectively)predictionsforthestructural However,significantlymorecomplexinteractionsarepossible,in- andobservablepropertiesofdwarfgalaxies?Howdotheproperties cludingYukawapotentials(Fengetal.2009,2010;Loeb&Weiner of CDM and SIDM halos differ at halo masses below 1010 M , (cid:12) 2011),andcoolingoratomicdarkmatter(Cyr-Racine&Sigurdson wherestarformation(SF)becomesveryinefficientandtheeffect 2013;Schutz&Slatyer2015;Buckleyetal.2014).Thedynamics oftheunderlyingDMcomponentshoulddominate? of SIDMwas firstimplemented incosmological simulationsas a SIDMwasoriginallyintroducedasasolutionforthesocalled fluid(Mooreetal.2000)andthenaselasticcollisionsbetweenpar- “core-cusp” problem, the excess of dark matter predicted by the ticles(Spergel&Steinhardt2000;Burkert2000;Dave´etal.2001; CDMmodelatthecenteroffieldandsatellitedwarfgalaxiescom- Col´ınetal.2002;Strigarietal.2007;Martinezetal.2009;Koda& paredtoobservations(Mooreetal.1999b;Ohetal.2008;Walker Shapiro2011;Vogelsbergeretal.2012). &Pen˜arrubia2011;Adamsetal.2014).IntheSIDMmodeldark matterparticlecollisionsisotropizethecoresofgalaxiesandtrans- Numerical studies combined with observations (the elliptic- fermassoutwardfromthedensecentralregionsofDMhalosover ityofgalaxyclusters,theabundanceofandthecoresizeoffield dwarfgalaxies)haveconstrainedthecrosssectionofSIDMtobe oftheorderof∼0.1–1cm2/g(Loeb&Weiner2011;Rochaetal. (cid:63) E-mail:(FG);[email protected] 2013; Peter et al. 2013; Zavala et al. 2013). However, a variable ©2012RAS 2 Bastidas-Fryetal. SIDM cross section (a decreasing function of the DM particles’ cialindeterminingthecollisionrate,boostingitinsmallhalos(that relativevelocity)canpreservetheellipticityanddensityofgalaxy have intrinsic low σ). Our subset of DM-only simulations is also clusterswhileproducingcoresindwarfgalaxies(Peteretal.2013, oneofthefirsttocompareverysmallfieldandsatellitegalaxiesat butseeNewmanetal.(2013)forevidenceforDMcoresinclus- similarmassandspatialresolution.Thecentraldensityoffieldand ters).Whileweakeningexistingconstraints,avariableSIDMcross satellitedwarfs(thatmovefastthroughadenseDMenvironment) sectioniswellmotivatedby“hiddensector”particlephysicsmod- may then be significantly different, but it has not been properly els(Tulin etal. 2013).Further crucialconstraints onlarge SIDM comparedyet. crosssections(Elbertetal.2014)comefromthenecessityofform- In this work we adopt a constant velocity cross section of 2 ingcoresinveryfaintgalaxieswithoutevaporatingthesatellitesof cm2/gintheSIDMruns(arelativelylargevaluetomaximizeitsef- MW-likehalosandgalaxysizedhalosinclustersastheyinteract fects)andacommondescriptionofSFandfeedbackinbothCDM withadenseDMenvironment(Gnedin&Ostriker2001;Vogels- andSIDMmodels.TheSFandfeedbackprescriptionshavebeen bergeretal.2012). showntoformCDMgalaxieswithSFefficiency,photometric,and Unfortunately, a large fraction of the astrophysically driven kinematic properties close to those of real ones (Oh et al. 2011; supportfornon-standardDMmodelshascomesofarfromsimpli- Munshi et al. 2013; Christensen et al. 2014a; Shen et al. 2014; fiedsimulationsthatlackthecomplexitiesof“baryonphysics”and Brooks&Zolotov2014).Thesesimulationsarethefirsthighres- followonlythetheassemblyoftheDMcomponent(seethereview olutionsimulationstocomparetheassemblyofdwarfgalaxiesin by Brooks2014).ThenecessitytocoupleaDMmodelwithbaryon CDMvsSIDMcosmologiesincludingadescriptionofSFandsu- physicscomesfromtheexistenceof“bulgelessgalaxies”,aprob- pernovafeedbackthatcreatesrealisticgalaxieswhilecreatingDM lemthatrequirestheremovaloflowangularmomentumgasfrom cores through “DM dynamical heating.” Other recent numerical galaxies(Binneyetal.2001;vandenBoschetal.2001;Governato work(Vogelsbergeretal.2014)focusedonsmallgalaxiesinSIDM etal.2010)throughfeedbackprocesses(Brooketal.2011).Fur- andexploredtheroleplayedbyavariablecrosssection,however, thermotivationforincludingbaryonphysicsincludesthenecessity the feedback recipe implemented in their work does not generate toquenchSFingalaxysatellites(Klypinetal.1999;Mooreetal. DMcores. 1999a;D’Onghia&Burkert2003),especiallyiftheSIDMpower In§2wedescribethesimulationandthecodeused.In§3we spectrum is similar to CDM at small scales and subhalos survive presenttheresults,whicharethendiscussedin§4. evaporation(asfoundbyZavalaetal.2013). Crucially, analytical and numerical work have shown that feedback lowers the central DM density in galaxies, creating gas outflows and repeated fluctuations in the gravitational potential (Mashchenkoetal.2008;DelPopolo2009;Governatoetal.2010; 2 METHODOLOGY Pontzen & Governato 2012; Di Cintio et al. 2014; Teyssier et al. 2013;Velliscigetal.2014).Thisresultsinirreversibleenergytrans- 2.1 ChaNGA,starformationandburstyfeedbackwith fer to the DM (see also review by Pontzen & Governato 2014). outflows Theseoutflows,generatedbyaburstySF,havestrongobservational The simulations were run in a full cosmological context and to support(vanderWeletal.2011;Martinetal.2012;Lundgrenetal. a redshift of zero using the N-body Treecode + Smoothed Par- 2012;Dom´ınguezetal.2014;Geach2015).BurstySFHhavealso beenrobustlyassociatedwiththebuildupofthestellarcontentof ticle Hydrodynamics (SPH) code CHANGA (Jetley et al. 2008; galaxiesinthe108–1010M range(Tolstoyetal.2009;Kauffmann Quinnetal.2013;Menonetal.2014)2. CHANGA includesstan- (cid:12) 2014).TheabilityoffeedbacktodynamicallyheattheDMcanpo- dardphysicsmodulespreviouslyusedinGASOLINE(Wadsleyetal. 2004, 2008; Stinson et al. 2012) including a treatment of metal tentiallyremovetheneedforSIDMatgalacticscales.Asaresult linecooling,selfshielding,cosmicUVbackground,starformation, itisfundamentaltoidentifytheuniquedifferencesbetweenCDM “blastwave”SNfeedbackandthermalfeedbackfromyoungstars andSIDMwhenbothmodelsincludeanexplicittreatmentofthe (Stinsonetal.2006,2012).TheSPHimplementationincludesther- physicsofgalaxyformation. maldiffusion(Shenetal.2010)andeliminatesartificialgassurface ThisstudyisabletofollowtheevolutionoffieldSIDMhalos atmassesbelow∼1010M (V 1<40kms−1).Thisisanim- tension through the use of a geometric mean density in the SPH (cid:12) max forceexpression(Ritchie&Thomas2001;Governatoetal.2015; portantregimeas(1)observationaldataarebecomingrobust(e.g., Menon et al. 2014). This update better simulates shearing flows Papastergis et al. 2015), and (2) feedback processes become less withKelvin-Helmholtzinstabilities.Forconsistencywithourpre- efficientwithdecliningV (Governatoetal.2012;Pen˜arrubia max viousworkcomparingCDMandWDMscenarios,weadoptedthe et al. 2012; Di Cintio et al. 2014). The most recent simulations samefeedbackandSFparametersasinGovernatoetal.(2015).A (Madau et al. 2014; Governato et al. 2015; On˜orbe et al. 2015) showcoreformationwhenonly105.7−6 M ofstarshaveformed. KroupaIMFisassumed(Kroupa2001)andthedensitythreshold (cid:12) forSFissetat100amu/cm3.Limitingstarformationtodensegas Also, itis often naively assumed thatSIDM will form DM cores regions is a realistic approach and concentrates feedback energy atalldwarfmasses.However,atthesesmallhalomassesthetrend (Brook et al. 2012; Christensen et al. 2014b; Agertz & Kravtsov oflaterassemblyepochofthefirstprogenitor(Lietal.2008),and 2014).100%ofSNenergyiscoupledtothesurroundinggas. consequentially lower central densities (Avila-Reese et al. 2005), willaffectthetimescaleandextentofSIDMcoreformationinfield galaxiesbeyondsimplescalingcalculations.Furthermore,therela- tivevelocityofahaloandthesurroundingDMbackgroundiscru- 2 CHANGAispartoftheAGORAgroup,aresearchcollaborationwith thegoalofcomparetheimplementationofhydrodynamicsincosmolog- 1 whereVmaxisdefinedasthepeakoftherotationcurve,withVrot = ical codes (Kim et al. 2014). CHANGA is available here: http://www- (GM/r)1/2. hpcc.astro.washington.edu/tools/changa.html ©2012RAS,MNRAS000,1–13 DwarfGalaxiesinSIDMvsCDM 3 Name Physics DM/gasparticlemassM(cid:12) ForceSoftening(pc) halomassrange(M(cid:12)) h516CDM SFandDM-only 1.6104/3.3103 86 109-5×1010 h516SIDM SFandDM-only 1.6104/3.3103 86 109-5×1010 h2003CDM SFandDM-only 0.67104/1.4103 64 4×108-1×1010 h2003SIDM SFandDM-only 0.67104/1.4103 64 4×108-1×1010 40Thieves-CDM DM-only 0.81104 64 4×108-2.7×1010 40Thieves-SIDM DM-only 0.81104 64 4×108-2.7×1010 40Thieves-SIDM.hr DM-only 0.24104 64 1.25×108-2.7×1010 h148CDM DM-only 1.93104 86 109-2×1012 h148SIDM DM-only 1.93104 86 109-2×1012 Table1.SIMULATIONSANDPHYSICSPARAMETERSEXPLOREDINOURSIMULATIONS.AllSIDMrunsadoptσSIDM = 2[cm2g−1].Themassrange showshaloswithatleast50,000DMparticleswithintheirvirialradius.Themainhalosineachvolumearestudiedwithseveralmillionparticleseach.The DM-onlysubsampleisoneofthefirsttosimulateasampleoffieldandsatellitehalosatsimilarmassandspatialresolution.Thisapproachallowedustostudy theeffectoftheenvironmentontheDMdistributionofthehalosinthetwopopulations. 2.2 SIDMImplementationandAnalyticalExpectations ferenthaloscanbereadilyunderstoodsettingN = 1ineq.1and (cid:112) v = v (wherev = max GM(<r)/r)toobtainachar- The SIDM implementation closely follows the standard Monte max max acteristicmaximumtimescaleonwhichagivendensityisstable, Carloapproachdescribedinpreviousworks(Dave´etal.2001;Vo- 1 gelsbergeretal.2012),andhereisonlybrieflysummarized,while τ = . (2) testsarepresentedinAppendixA.SIDMinteractionsaremodeled SI ρvmaxσdm undertheassumptionthateachsimulatedDMparticlerepresentsa After a collision, the change in momentum is usually enough to patchofDMphase-spacedensityandthattheprobabilityofcolli- fullyejecttheparticle(Kahlhoeferetal.2014),sodarkmatterden- sionsisderivedfromthecollisiontermintheBoltzmannequation. sitiesmustdropoverafewτ . SI Collisionsarethenelasticandexplicitlyconserveenergyandmo- Oneimportantconclusiontodrawfromeq.3isthatnotevery mentum.Foradetaileddiscussionsee(Rochaetal.2013)andalso SIDMmodelwillnecessarilyformsignificantcoresinthesmallest (Yoshidaetal.2000;D’Onghia&Burkert2003;Kaplinghatetal. halos.Lowhalopeakvelocitiesandlowcentraldensities(atafixed 2014). The number of interactions N that occur in a region with radius)mayresultinτ comparabletothelifetimeofahaloand SI localDMdensityρinatime∆tis therefore in the preservation of cusps. Another important conse- quenceisthatinSIDMthecentraldensitiesofverysmallsatellite haloscouldbedifferentiatedfromthoseoftheirfieldcounterparts N =ρvσdm∆t (1) bytheinteractionwiththeDMhaloofamoremassivehostasthe orbital velocity is much higher than the internal velocities of the In practice to simulate interactions for discrete N-body DM satellite. We test these analytical predictions in the next section, particlesweuseequationoneastheimpliedprobabilityforapar- where we present results of simulations that resolve the internal ticletoscatter.Thisassumptionisvalidas∆tapproacheszeroor structure of DM halos smaller than most previous SIDM studies. numericallywhere∆tischosentobemuchsmallerthanneeded Observational evidence of DM cores in small field halos where toavoidmultiplecollisions.Ateachtimestepournumericalcode baryonicprocessesmaybeinefficient(V <20-30kms−1and max calculatestherelativevelocityanddensityρusingthesamefunc- in satellite galaxies (which move at 100-200 km s−1in a ∼ 200- tionalSPHkernelasinhydrocalculationsofeachDMparticlein 1000×ρ DMfield)canthenprovideusefullowerlimitstothe crit relationtoits32nearestneighbors.Thesevaluesareusedtocal- SIDMcrosssection. culatetheprobabilitythattheDMparticleinteractswithoneofits neighbors.SimilartoVogelsbergeretal.(2012),ascatteringevent mayoccurateachtimestepbetweenparticlesiandjifauniform 3 CDMANDSIDMSIMULATIONS randomvariableintheinterval(0,1)islessthanP /2(theprob- ij abilityisdividedbytwoinordertoaccountforthefactthateach In all simulations we assumed a Λ dominated cosmology (Ω = 0 setofparticlesarecomparedtoeachothertwice).Whileproducing 0.26Λ=0.76,σ =0.77,n=0.96)andusedthe“zoom-in”tech- 8 similarresults,thisapproachdiffersslightlyfromtheoneadopted niquetoachievehighresolutionintheregionsofinterest(Katz& inRochaetal.(2013),wherecollisionsaredefinedbetweenDM White1993).Thegravitationalforcesplinesofteninglengthisin particle pairs and the probability of interaction P(i|j) is explicitly therange64-86pc(Poweretal.2003)andthesmoothinglength =P(j|i).Whenaparticlecollisionisdetectedweisotropicallyand forthegascomponentisallowedtoshrinkto0.1theforcesoften- elasticallyscattertheparticlestorandomangles. ing.Simulationsstartatz =120−100.Thecombinationofsim- TheinteractioncrosssectionσforallSIDMrunsinthiswork ulations(seeTable1)allowustocomparetheeffectsofSIDMand was set to the relatively large value of 2 g/cm2, close to the up- baryonphysicsonarangecoveringalmostfourordersofmagni- perlimitforconstantσ,inordertomaximizeitseffectscompared tudeinhalomassesandavarietyofenvironmentsfromthefieldto to that of baryon physics. The way in which SIDM reshapes dif- thedenseregionwithinthevirialradiusofalargefielddiskgalaxy. ©2012RAS,MNRAS000,1–13 4 Bastidas-Fryetal. 40Thieves h148 M M -3pc108 CD SID Cencitrrcallesd are k M / c) τ p SI=1 00 Gyr 5107 ( τ SI=5 Gyr 1 2 10 10 V /km s-1 max Figure 1. DM-ONLY SIMULATIONS: The DM density measured at 500 pcasafunctionofhalomaximumvelocityanddarkmattermodel.Blue Figure2.THERELATIVEDMCONTENTASAFUNCTIONOFRADIUSIN crosses:CDM,redcrosses:SIDM.Circledsymbolscorrespondtoisolated DM-ONLYSIMULATIONS:TheratioofthecumulativeDMcontentmea- halos,non-circledsymbolsshowthesatellitesoftheMW-sized,h148halo. suredforasetofsmallhalosoverthe0-1.5kpcradialrange(fromthe40- At small halo masses the central densities of CDM and SIDM halos do Thievesrun).EachCDMhalowasmatchedwithits’twin’halointheSIDM notdiffersubstantially,whileatlargervelocities/halomassesSIDM-only simulation.Thesplinekernelforceresolutionis64pc.Verticallinesmark haloshavelowercentraldensitiesthantheirCDM-onlycounterparts.This 150and500pc(2.3and5softeninglengths).Withouradoptedcrosssec- differencecanbeunderstoodintermsofthedottedlineswhichshowthe tionof2cm2/gsmallCDMandSIDMbecomeprogressivelydifficultto maximumtimescaleτSIatwhichcollisionsaresignificantintheSIDMcase differentiate,withDMcontentatagivenradiusbeingwithinafactoroftwo (seetextfordetails).Thisresultshowsthatfixedcrosssectionscommonly inthetwocosmologies.Detectingsuchadifferenceinfielddwarfscould adoptedatthescaleoflargersystems(0.1-2cm2/g)wouldnotbesufficient requireanextgenerationtelescope(M.Walker,privatecommunication).A toformkpcsizedcoresinthesmallestobservablefieldhaloswithVmax< SIDMwithavariablecrosssectioncouldshowamoresignificantdifference 30kms−1.IntheVmax30-60kms−1rangeSIDMsatelliteshavecentral comparedtoCDM. densitieslowerbyafactortwocomparedtotheirfieldcounterparts,due theaddedboosttoSIDMcollisionscomingfromsatellitesorbitingathigh velocityinthedenseDMhaloofthehost. at least 50,000 DM particles within the virial radius. To comple- mentthisdataset,ahighresolutionsimulationofamassivehalos anditssystemofsatelliteshasbeenincluded(h148).Thehalosin Cosmological simulations of well resolved halos with mass < 1010 M (corresponding to a halo peak velocity V < 30 thissimulationhavemassandspatialresolutionsimilartotheir‘40 (cid:12) max kms−1)areparticularlyrelevantforSIDM,asbaryoniceffectsat Thieves’counterpartsandmassandspatialresolutionbetterbyfac- tortwocomparedtorecentworkVogelsbergeretal.(2012);Zavala thesescalesshouldbelimited(Governatoetal.2012;Pen˜arrubia et al. (2013). In Appendix 1 we verified that our results and the etal.2012).Basedonequation(2),theabilityofSIDMtolower Monte Carlo implementation of SIDM collisions are not affected thecentraldensityofhalosdependsontheDMρandthetypical byresolutioneffects. particlevelocity,whichislowerinlessmassivehalos.Interestingly, InFigure1weshowthedensitymeasuredat500pc(aradius previousCDMsimulationshavesuggestedthatthecentraldensity atwhichtherotationcurvesofmanydwarfgalaxieshavebeenre- of small mass field halos decreases with their halo mass (Avila- solved,e.g.,Ohetal.2011)forallresolvedhalosinourh148(×) Reeseetal.2005;Lietal.2008).InaSIDMscenario,extending and “the 40 Thieves” (+) DM-only simulations as a function of this trend to very small halos could prevent the formation of low V . We then over plot lines of fixed τ for 1 Gyr and 5 Gyr. densitycentralcoresbyincreasingthetimescaleofDM-DMcolli- max SI SIDMandCDMshowidenticalcentralDMdensitiesifthetypical sions. scaleforDMinteractionsislongerthan5Gyr.Atlargerpeakve- locities (and halo masses) with shorter timescales for interaction, theSIDMdensitiesdecreasecomparedtotheirCDMcounterparts 3.1 DM-onlySimulations:Environmentaleffectsandcuspy and fall in a valley between the 1 and 5 Gyr lines, matching re- halosatV <30kms−1 max sultsfrompreviousworks(Rochaetal.2013;Vogelsbergeretal. To study the structure of a significant sample of DM halos in a 2012).Inotherwords,SIDMinteractionsforcetheDMdensityto rangeofenvironmentswesimulatedfourdifferentregionswiththe dropuntil,goingtosmallerandsmallerhalomasses,theinterac- zoomed-inapproach(Katz&White1993).Thefirstthreeregions tiontimescalerisestoasignificantfractionoftheHubbletimeand (Table1)arecenteredonfilamentarystructureswithadensityclose SIDM (with a σ = 2 cm2/g) is not effective anymore. Figure 2 toaveragemeasuredinsideasphereof5Mpcinradius.Thelargest showstheSIDMvsCDMratiooftheenclosedmassasafunction one of them is nicknamed ‘The Forty Thieves’ and includes sev- ofradiusforpairedhalosfromthe‘40Thieves’run.Atradiicur- eraltensofhaloswithV <30kms−1,equivalenttoamass rentlytestedbyobservations(100-500pc),butentirelyneglecting max range108-1010M ,wheretheminimummassreferstohaloswith baryonicphysics,thedifferencebetweenthetwomodelsdecreases (cid:12) ©2012RAS,MNRAS000,1–13 DwarfGalaxiesinSIDMvsCDM 5 80 1023 70 1024 ) ) 1 60 3 − − m1025 h2003 SIDM+baryons s m c h2003 CDM+baryons k50 (g h2003 CDM ( ρ 1026 σv h516 CDM 40 h516 SIDM+baryons 1027 h516 CDM+baryons 2003 SIDM 30 h516 SIDM 1021801 100 101 21001 100 101 R (kpc) R (kpc) Figure3.RADIALPROFILES.Left:TheradialdensityprofileoftheDMcomponentforhalos/galaxiesh516andh2003.Right:ThevelocitydispersionofDM componentinthesamehalos/galaxies.h516-CDM:blue.h516-SIDM:red.h2003-CDM:cyan.h2003-SIDM:magenta.Dashed:DM-onlyruns.Bothdensity anddispersionprofilesbecomesimilarinCDMvsSIDMoncebaryonicprocessesareintroduced. theDM-onlyhalosmatchthoserecentlypublishedin(Elbertetal. 2014),whichatV ∼35kms−1formsignificantcores(seealso max nextsectionwheretheeffectofbaryonsintheselargersystemsis included).Thisresultconfirmsoursimpleanalyticalexpectations and shows that even with a significant constant SIDM cross sec- tion,DMcoresrapidlybecomesmallerthanourresolvedscale(∼ 100-200pcortwicethesplinekernelsoftening)infieldhaloswith virial mass < 1010 M and V < 30 km s−1. Confirming the (cid:12) max resultsfromLietal.(2008)andextendingthemtomuchsmaller halo masses and higher resolution we verified that the increased τ at small halo masses comes not only from a lower σ but SI DM alsofromlowercuspdensities,possiblyduethelaterepochofcol- lapseofthecentralregionsofahalo.WeverifiedtheDMdensity within the central 250 pc decreases by a factor of eight in CDM haloswithmassfrom108 M comparedtohalosof1010 M .If (cid:12) (cid:12) welookattheaveragedensitiesasafunctionofV ,anotherdif- max ferenceemergesbetweentheSIDMfield(circledredcrosses)and satellites(redcrosses),withsatellitehalosshowingcentraldensi- tieslowerbyaboutfactoroftwocomparedtofieldhalosofsimilar V .Thisimportantenvironmentaldifferencecouldbeduetothe max Figure4. STELLAR MASS/HALO MASS RELATION: TheStellarMass- satellitesformingtheircentralregionsearlier,ortothesignificant HaloMassrelationforthesimulatedgalaxies.Dashedlinesandsolidlines boosttoρandvmaxineq.3duetotheirorbiting1)insidethedense showtherelationobtainedfromLocalGroupdata(Brook&DiCintio2014; haloofamuchmoremassivehostand2)atamuchhigherspeed Garrison-Kimmeletal.2014)Therelationsareextrapolatedbelow∼106.5 thantheirinternalvelocitydispersion.Oursimulationswereableto M(cid:12)duetosampleincompleteness(dottedlines).Circlesshowtherawdata, highlightthisdifferenceasoursimulationsresolvefieldandsatel- soliddotsshowthesimulationdatacorrectingforobservationalandsim- liteshaloswithsignificantlylowerpeakvelocities(10-20kms−1) ulationbiases(Munshietal.2013)inmeasuringstellarandhalomasses. thaninpreviousworks. Overallthesimulationsproducetherightamountofstars.Themostmas- sivehaloconvertsabout1%ofgasintostars.TherapiddropinSFefficiency ThemainresultfromthissectionisthatevidenceofDMcores athalomassesbelow1010M(cid:12)isduetotheintroductionof’earlyfeedback’ inrealgalaxieswithVmax <30kms−1wouldconstraintheSIDM (seetext). crosssectiontovaluesσ>>2cm2/gwhenthetypicalDMvelocity dispersionislow.IfsignificantDMcoresarefoundinthesegalax- ies, their existence would give support to models with a variable rapidly. A factor of two in the DM content within 100-500pc of SIDMcrosssectionthatishigher(20cm2/g,seeeq.2)atsmallhalo faintfielddwarfs,couldberevealedbylargespectroscopicsamples massesandthendeclinesrapidlyatthescaleofgroupsandgalaxy oftheassociatedstellarpopulations(M.Walker,privatecommuni- clusters as constraints at scale support small cross sections σ < cation).WealsoverifiedthatatlargerV thedensityprofilesof 1cm2/g.Weplantofurtherexploretherelativeeffectofstronger max ©2012RAS,MNRAS000,1–13 6 Bastidas-Fryetal. Run HaloMass Vmax StellarMass HImass ID CDM/SIDM kms−1 CDM/SIDM CDM/SIDM h516 4.1×1010 58.4 6.2/4.9×107 3.3/2.0×108M(cid:12) h516b 1.1×1010 33.0 9.8/14.7×106 1.6/0.94×108M(cid:12) h2003 1.1×1010 30.5 3.1/3.4×106 5.0/16.6×106M(cid:12) Table2.THETOTALHALOMASS,STELLARANDHIMASSESANDVmax (INKMS−1)forsomerepresentativehalosintheCDMrunswithSFand theirSIDMcounterparts.z=0stellarmassesweremeasuredwithin2.5kpc. h516bisthesecondmostmassivehalointheh516run. 108 h516 h2003 M b b -3pc CD M + f M + f k D D C I M S / ) c p 0 0107 5 ( Figure6.THESLOPEαOFTHEDMDENSITYPROFILEINSIDMAND CDM OVER DIFFERENT MASS RANGES: blueand cyan: CDM,red and magenta:SIDM,solidlines:baryon+DMruns,dashedlines:DM-onlyruns. Top:haloh516.TheDMslopeevolvesrapidlyandinasimilarwayinboth 101 102 CDMandSIDM,asdynamicalheatingisveryefficientatthisscale.Middle: V /km s-1 haloh2003.(blue:CDM,red:SIDM).Bottom:acollectionoffieldhalos max withtotalmass<109M(cid:12)fromoursimulations.SFefficiencyistoolow andtheSIDMinteractionrateistoolowtocreatecores. Figure5.EFFECTSOFBARYONSPHYSICS:ThecentraldensityofCDM- onlyhalos(blue)vstheirSIDM(red)counterpartsrunwithbaryonphysics andburstyfeedback.LinesconnecttheDM-onlyrunsofh516andh2003 Multi-wavelengthevidenceforoutflows,analysisofthestellarpop- totheircounterpartswithbaryons.ForourchoiceoftheSIDMinteraction ulationsintheSDSSdwarfsandrealisticCMDs(Governatoetal. crosssectionandforhaloswithVmax>50kms−1(correspondingtostel- 2015) give strong support to our implementation of SF. This ap- larmasseslargerthan108M(cid:12))thecentralmassofCDMandSIDMhalos proachdiffersfromtheSIDMstudyofVogelsbergeretal.(2014) issimilar,butsignificantlylowerthanthepredictionsofCDM-onlyruns. wherelessburstyfeedbackstillremovesgasfromgalaxycenters, DuetolowDMinteractionratesandlackofburstyoutflows,atlowerhalo butdoesnotcreatesubstantialDMcores.Thebaryoniccontentof massesbothcosmologiesgivesimilarpredictions:cuspycentralDMpro- files.LargerSIDMcrosssectionswouldbeabletodifferentiatethevarious thegalaxiesinourstudyaresummarizedinTable2. modelsinhaloswithVmax<20kms−1asDMcoreswouldthenformin Figure3(leftpanel)comparesthedensityprofilesoftheDM galaxieswerebaryonphysicsdonotplayamajorrole. component of galaxies h516 and h2003. In DM-only simulations halos with masses > 1010 M have cuspy profiles (halo h2003: (cid:12) cyan dashed, halo h516: blue dotted). Once baryon physics and SIDM interactions on satellites compared to field halos in future outflows are introduced, flatter DM profiles are created in both work. SIDM and CDM cosmologies. The blue dashed (CDM-only) vs blue (CDM+SF) lines and the red (SIDM+SF) show results for h516.Thecyandashed(CDM-only)vscyansolid(CDM+SF)lines 3.2 SimulationswithSF:SIDMsimilartoCDMwhen and the magenta (SIDM+SF) lines show results for h2003, the BaryonPhysicsarerelevant. smallerhalo.InbothCDMandSIDMmodelsthecentralcuspypro- Wefocusedourhydrodynamicalsimulationsonthelargestgalax- fileshavebeensignificantlyflattenedinside1kpc.h516,themost iesformedinthefilamentaryregions‘h516’and‘h2003’.Theseare massive halo studied with the inclusion of SF, is the one where twowellstudiedfields:h2003isthesamehalosimulatedinGov- the central DM density decreases the most. This result is consis- ernatoetal.(2015)whileh516isthemainhaloofGovernatoetal. tentwithpreviousfindings(Governatoetal.2012;DiCintioetal. (2010)andofthe“7dwarfs”galaxiessamplestudiedinShenetal. 2014),showingthattheefficiencyofcoreformationpeaksinhalos (2014) and Madau et al. (2014). The SF parameters in our study withV ∼50kms−1. max wereidenticalforallCDMandSIDMsimulations.Theyalsocor- Figure3(rightpanel)comparesinsteadthevelocitydispersion respondtothefiducial“g5”runsinGovernatoetal.(2015),where profilesoftheDMcomponentinhalosh516andh2003.Asforthe weexploredtheeffectsofdifferentfeedbackandSFrecipesinthe densityprofiles,DM-onlyrunsofdifferentcosmologieshavedif- context of comparing the formation of dwarfs in CDM vs Warm ferentlocalDMvelocitydistributionprofiles:CDMhalosshowa scenarios.HereweemphasizethatourSFimplementationcreates decreasing dispersion closer the halo center while the SIDM ha- repeatedstarburtsandgasoutflowswithsignificantloadingfactors losshowaratherflatprofile.Thisdifference,aresultoftheenergy (gasmassejectedfromthecenterdividedbystarformationrate). transfertothecenterofthehaloduetocollisionalprocesses,had ©2012RAS,MNRAS000,1–13 DwarfGalaxiesinSIDMvsCDM 7 10 10 10 10 5 5 5 5 pc] 0 pc] 0 pc] 0 pc] 0 [k [k [k [k 5 5 5 5 10 CDM 10 10 kpc 10 10 10 kpc 10 5 0 5 10 10 5 0 5 10 10 5 0 5 10 10 5 0 5 10 10−4 10−3 10−2 10−6 10−5 10−4 10−3 Gas Surface Density [g cm−2] Stellar Surface Density [g cm−2] 10 10 10 10 5 5 5 5 pc] 0 pc] 0 pc] 0 pc] 0 [k [k [k [k 5 5 5 5 10 SIDM 10 10 10 10 5 0 5 10 10 5 0 5 10 10 5 0 5 10 10 5 0 5 10 Figure7.THEPROJECTEDCOLORDENSITYMAPOFTHEBARYONDISTRIBUTIONINGALAXYH516.Top:CDM.Bottom:SIDM.Leftpanels:projected gasdensityatz=0seenedge-onandface-on.Rightpanels:Stellarprojecteddensityatz=0.Thestellardisksarerelativelythickerthaninearliersimulations (Governatoetal.2010),aneffectoftheintroductionof‘earlyfeedback’fromyoungstars.Weverifiedthatinbothmodelsthestellardistributionisexponential, withasimilardiscscalelengthandlackofacentraldensespheroid. beenconsideredastrongsignatureofSIDM.Howeverthisdiffer- encebetweenSIDMandCDM(toppanel).IntheSIDM-onlyrun, enceiserasedbytheintroductionofburstyfeedback,thatcreates theDMcoreformsmoreslowlythanwhentheeffectofbaryonsare significantDMcoresintheCDMhalos.‘Dynamicalheating’also included.TheeffectofbaryonfeedbackontheDMprofileisclearly causesthevelocitydispersionprofilesofallhalostoflattenout. detectableassoonasabout106M ofstarshavebeencreated(see (cid:12) Figure 4 shows the stellar mass/halo mass ratio of the halos alsoGovernatoetal.2015;Pen˜arrubiaetal.2012).Ingalaxieswith we simulated with the inclusion of baryon physics, showing that presentdaystellarmassesbelow107−8M(cid:12),theeffectof‘dynam- theyfollowthestellarmass/halomassrelationinferredusinglocal icalheating’inducedbyfeedbackisprogressivelyreduced(Gover- data and the abundance matching technique (Brook & Di Cintio natoetal.2012,2015;DiCintioetal.2014).Attheradialscaleof 2014; Garrison-Kimmel et al. 2014). This is particularly relevant 500pctheCDMandSIDMhalosofh2003showDMprofilesthat asproducingthecorrectamountstarsisnecessarytoestimatethe startcuspyandthenslowlydevelopaflatterprofile.InbothSIDM minimum mass at which baryonic processes can originate cores. andCDMtheprocessismoregradualcomparedtomoremassive Afterthispaperwassubmitted(On˜orbeetal.2015)publishedre- systems,duetoanumberoffactors(starformationratesarelower sultsfromasimulatedCDMhaloofsimilartotalmass,whichalso and τSI is longer). However, the inclusion of baryonic processes formedabut106M instars,leadingtoacoredDMprofile. againmakesthegalaxyevolvesimilarlyinCDMvsSIDM.Byred- (cid:12) shiftz<1thedifferenceinDMslopesisnotsignificantenoughto Figure5showstheDMcentraldensitiesasafunctionofhalo discriminate between SIDM and CDM. Halo h2003 was also re- peakvelocityonceSFisincluded.ThecomparisonwithFigure1is striking:whereatV >30kms−1CDMwasclearlydifferenti- centlyruninaWDMcosmology(Governatoetal.2015).Similar max totheCDMcasetheWDMcuspturnedintoacoreovertime,dueto atedfromSIDM,nowthecentraldensityofCDMandSIDMhalos isalmostidenticaloverthewhole10to50kms−1range.Thisresult burstyfeedback.Byz=0thecentralDMdistributionofhaloh2003 issimilarinCDM,WDM(Governatoetal.2015)andSIDM(this clearlyillustrateshowpredictionsformDM-onlyrunscanbecom- work). pletely superseded by the addition of the complex baryon – DM interactions. Atevensmallermasses,theevolutionoftheDMslopeαwith In Figure 6 we investigate how the slope of the DM profile theinclusionofbaryonicprocesses(continuouslines)confirmsthe (measuredat500pc)evolveswithtimeinasampleoffieldhalos results from the DM-only runs (dashed lines). SF at such small witharangeofmasses.Asthemechanismsofcoreformationdif- scales is strongly inhibited by the cosmic UV field. Similarly, at fer(potentialfluctuationslinkedtoSFvsSIDMcollisions)thetime such small masses the SIDM interaction timescale becomes long evolutionoftheDMslopemayalsobesignificantlydifferent.We compared to the Hubble time and the survival time of the halo. havefoundthattheevolutionofthesystemscanberoughlydivided HencethecentralDMslopemeasuredat500pcisnotsignificantly inthreestellarmassranges.Presentdaysystemswithstellarmasses differentinSIDMvsCDMhalos,aspredictedbytheempiricalcal- largerthan108 M (V >50kms−1asinclassicfielddwarfs) culationsintheprevioussection.ThefailureofSIDMtoformsub- (cid:12) max hadcoredDMprofilessinceredshift>4,withnosignificantdiffer- stantialDMcoresinveryfaintdwarfswithhosthaloswithmass ©2012RAS,MNRAS000,1–13 8 Bastidas-Fryetal. Figure8.THESFRASAFUNCTIONOFCOSMICTIME.Leftpanel:haloh516inCDMandSIDMcosmologies.Bothgalaxieshaveextended,gasrichdisks andnegligiblebulges.Rightpanel:theburstinessofmodelsh516andh2003inCDMandSIDM,measuredatdifferenttimescales(seetextforadefinition). SFdoesnotdiffersignificantlyinCDMvsSIDM,andappearstobemostlyregulatedbyfeedbackandaccretionrates. < 1010 M had not been explored in previous numerical works, extendedstellarsystemsandroughlyconsistentwithobservational (cid:12) where high resolution simulations mostly focused on halos more data.Thehalflightradiusforh516b(Table1)isforexample,2.0 massivethan1010M . kpcinSIDM,vs1.8kpcinCDM.Thisisadifferentoutcomecom- (cid:12) Overall,theinclusionofSFandbaryonicprocesseserasethe paredtotheresultsofalessburstySFscenarioastheonestudied differencesseenintheDM-onlyruns.Atthescaleofdwarfgalax- in Vogelsberger et al. (2014), which followed galaxies in a simi- ieswithV ∼30-50kms−1.energytransfertotheDMmakes larmassrangetoours.IntheirsimulationstheSIDMdistribution peak theDMdistributionatthecenterofgalaxiesflatterthananNFW islessconcentratedcomparedtotheCDMone,leading“todwarf profile and almost identical in CDM vs SIDM . As a result cur- galaxieswithlargerstellarcoresandsmallerstellarcentraldensi- rentconstraintsontheSIDMcrosssectionfromdwarfsizedfield ties.”InoursimulationsthedynamicalcouplingofbaryonstoDM, comeoutconsiderablyweakenedandwillhavetobereconsidered. drivenbyfastandrepeatedoutflows,shapesthestellardistribution Moreover,wepredict(seeFigure1)thataSIDMcrosssection> andleadstoasimilarbaryondistributionandcontent. 10cm2/gwouldnecessarytocreateDMcoresinsmallerhaloswith V < 10 km s−1. As the shapes of galaxy clusters require a Furthermore,withtheadoptedSFprescription,thestarforma- max SIDM cross section smaller than 1 cm2/g (Peter et al. 2013). If tionhistories(SFH)ofthegalaxiesformedintheCDMmodellook coresexistindwarfgalaxies,theseresultsargueinfavorofavari- verysimilartotheSIDMcounterparts.Thisismostlikelydueto ableSIDMcrosssection(seealsoVogelsbergeretal.(2012)). twomainreasons:1)theassemblyrateofbothDMandbaryons, being driven by the large scale structure remains unchanged in SIDMand2)thereisnodifferenceinthecentralDMdistribution betweenthetwomodelsasitisrespondsquicklytotheeffectsof 3.3 StarFormationHistoriesandAssemblyofthebaryonic feedback.Asanexample,Figure8showstheSFHofhaloh516in component theCDMandSIDMmodels,whichshowaverysimilartimeevolu- Inthissectionweanalyzethez = 0baryonicdistributionofthe tion,peaking5GyrsaftertheBigBang.Overall,SIDMandCDM galaxiesthatformstarsinoursimulations,whilefocusingonthe halos have almost identical DM masses by z=0 and the SF effi- twomainhalos:h2003andh516.WeverifiedthatinbothCDMand ciencyissimilar,within20%inthetwomodels.Thisresultdiffers SIDMcosmologiesthestellarmassofgalaxyh516followsanex- from the CDM vs WDM comparison in Governato et al. (2015), ponentialprofilewithnospheroidalcomponent.Theprojectedgas wheretheWDMversionofh2003formedonlyhalfthestarsdue andstellardensitiesofgalaxyh516areshowninFigure7,show- to the delayed assembly of the halo (see also Col´ın et al. 2015). ingasimilardistributioninCDMvsSIDM.Bothstellardiscsare However,changesonthetimescaleandintensityoftheindividual thickanddynamicallyhot(Figure7)andmoreextendedthanthe SF events could be driven by subtle effects and still differentiate CDMversionofh516describedinChristensenetal.(2014a),an betweenCDMandSIDM,forexampleashallowerdensityprofile effectoftheintroductionofearlyfeedback(Trujillo-Gomezetal. coulddrivemoregasinstabilitiesthatleadtoradialinflowsandin- 2013;Rosˇkaretal.2014).Confirmingthevisualimpressionfrom creasetheburstinessofSF,or,ontheotherhand,lowerDMdensi- Figure7,weverifiedthattheradialdistributionofstarsatz=0does tiescouldslowdownthecollapseofgasandreduceSFintheSIDM notchangesignificantlyintheCDMgalaxiesvstheirSIDMcoun- scenario.WequantifiedtheburstinessofSFinSIDMvsCDMby terparts, both following a trend for larger systems to have more measuring the dispersion in star formation rates (SFR) measured ©2012RAS,MNRAS000,1–13 DwarfGalaxiesinSIDMvsCDM 9 Figure9.THE ROTATION CURVES Vc ofhalosh516andh2003inCDM(blueandcyan)andSIDM(redandmagenta)comparedwiththeobservational constraintsfromasampleofLocalGroupfielddwarfs(Wolfetal.2010;McConnachie2012;Weiszetal.2014).Theintroductionoffeedbackprocesses lowersVcouttoatleast2kpc,wheremassdecompositionbasedonHIkinematicsarecrucial.(Vcisdefinedas=(GM/r)1/2).Softeningis64pcforh2003 and86pcforh516. in ∆T intervals, where ∆T was varied from 106 to 109 uncertaintiesremainontheobservationalestimates).Atthesame SFR SFR years(forasimilarapproachbutdifferentdefinitionofburstiness, time,SIDM-onlyrunswitharangeofcrosssections(Elbertetal. seeHopkinsetal.2014).Measuring∆T overhundredsofran- 2014)showabetteragreementwithobservationalestimatesasthe SFR domlysampledintervals,burstySFatagiventimescaleshowsasa centralDMdensitiesarelower.However,therightpanelofFigure largedispersioniftheSFrateatatimeT+∆T differssubstan- 7showsthatoncebaryonphysicsareintroduced,thecentralmass SFR tiallyfromtheSFRataprevioustimeT.TherightpanelofFigure distribution(DM+baryons)ofCDMdwarfsmatchestheobserva- 8showsthattheburstinessmeasuredoverdifferenttimescaleswas tional data, equally well, without requiring SIDM. Recent works similarforbothhaloh516andh2003inbothmodels.Bothh516 have compared dwarf galaxies in the Local Group (Brook & Di andh2003showaSFratedominatedbysmalltimescalefluctua- Cintio2014;Sawalaetal.2015)andMWsatellitesZolotovetal. tions,withasimilardependenceontimescaleandhalomass,with (2012); Arraki et al. (2014) with simulations. They have shown thelessmassivehaloshavingaburstierSFatalltimescales(are- howtheintroductionoffeedback(andtidalprocessesforsatellites) sultseenalsoinsimulationswithdifferentfeedbackmodels,e.g., generatesarealisticM –M relation,asgalaxiesatafixed star halo Hopkins et al. 2014). Observations of nearby stellar populations M are hosted by more massive halos than when a universal star andcomparisonswithsimulations(Tolstoyetal.2009;Kauffmann NFWprofileisassumedintheanalysis3.Thisresultshowshow 2014;Governatoetal.2015;Weiszetal.2014)stronglysupporta theperceiveddiscrepancybetweentheobservednumberdensityof burstybuildupofthestellarcontentofdwarfgalaxies.Weverified fieldgalaxiesasafunctionofV andthatoftheunderlyinghalo max that our set of simulations qualitatively reproduce the fraction of populationisnaturallyaccountedforinaCDMcontextwherefeed- starsformedinburstsasestimatedinKauffmann(2014)):20-50% backisintroducedandthecentraltotaldensityislowered.Ingood with a larger fraction formed in the less massive system. Bursts agreementwithresultsfromoursimulations,therevisedabundance weredefinedasperiodswithSF>2−4×<SFH >andduration matchingfromBrook&DiCintio(2014)predictthatfieldgalax- of107-108 years.AburstierimplementationofourSFmodel(as iesarehostedinhaloswithmass>5×109 M ,withmostha- (cid:12) onethatneglectedHIselfshielding)wouldberuledoutbyexces- losbelowthatthresholdbeingdevoidofstars.Ourresultsprovide sivestructureinthestellarCMD,asdiscussedinGovernatoetal. direct evidence that SIDM-only simulations mimic the effects of (2015). feedback,butalsothatwhenburstyfeedbackisintroduced,SIDM galaxies are essentially indistinguishable from their CDM coun- Overall,Withinoursmallsampleofgalaxies,wedonotfind terparts.BothSIDMandCDMmodelscreategalaxieswithmass evidenceoflargedifferencesinthebaryoniccontentanddistribu- distributionsandobservablepropertiesinbroadagreementwiththe tioningalaxiesformedinaCDMvsSIDMmodel. observedones. Finally, Figure 9 show the rotation curves V (defined as c (cid:112) GM(<r)/r)ofourgalaxiesh516andh2003comparedtoes- timatesfromasampleoflocaldwarfs(emptysquares,fromWolf 3 inahalomodelwithacentralmassdensitylowerthanNFWtheVcirc etal.2010;Weiszetal.2014).Theleftpanelshowsthewellknown measuredat∼1kpctranslatestothesameVpeakandhencehalomassof resultthathalosformedinCDM-onlysimulationshavehighercen- anNFWhalo.Asaconsequence,anobservedVcirc translatestohigher tralmassdensitiesthatmostobserveddwarfs(althoughsignificant halohostmassthanwhenamoreconcentratedNFWhaloisassumed. ©2012RAS,MNRAS000,1–13 10 Bastidas-Fryetal. 4 CONCLUSIONS observablepropertiesinbroadagreementwithobservationaldata. Asaresult,whilecertainlynotexcluded,SIDMisnotnecessaryto Westudiedasetofcosmologicalsimulationsoffielddwarfgalax- solvetheproblemoftheexcessofDMatthecenterofsimulated iesinCDMandSIDM.TheSIDMsimulationsincludeforthefirst dwarf galaxies with V > 30 km s−1. Furthermore, because timeadescriptionofburstySFandfeedbackthatcreatespotential max the effect of SIDM becomes negligible at very small galaxy/halo fluctuations able to lower the central DM density of halos where massesevenwitharelativelylargeconstantvelocitycrosssection atleast106 M ofstarshaveformed.Theforceresolutionofour (cid:12) (2cm2/g),SIDMwithavelocitydependentcrosssectionwillbe- simulations(64-86pcwithasplinekernelsoftening)allowsusto come necessary if even very faint dwarf galaxies are observed to resolvewithmanythousandsofparticlesthecentralregionsofha- havedarkmattercores.Thisworkhighlightshowsimulationsthat los(andmillionstothevirialradius)downtohalomasseswhere a)includerealisticSFandfeedbackprocessesandb)studyalarge theimpactofstarformationwillnotplayamajorroleandwhere sample of faint dwarfs are necessary to take advantage of astro- the effect of SIDM alone dominates. A relatively large value (2 physicalconstraintsonDMmodels. cm2/gfortheSIDMcrosssectionwaschosentomaximizeitsdif- ferencefromtheCDMmodel.WehavealsorunasetofDM-only simulationsthatallowedustostudytheevolutionofauniformres- olution set of DM halos down to masses of only few times 108 M (equivalent to V < 20 km s−1) both in the field and in ACKNOWLEDGMENTS (cid:12) max thedenseenvironmentofamoremassivehost.Ourresultscanbe ABFwasfundedbyWashingtonNASASpaceGrantConsortium, summarizedbythreemainfindings: NASA Grant NNX10AK64H. FG and TQ were funded by NSF grant AST-0908499. FG acknowledges support from NSF grant • OnceSFandresultingfeedbackisintroduced,thecentralDM AST-0607819 and NASA ATP NNX08AG84G. AP is supported massdistributionandvelocitydispersionbecomessimilarforCDM byaRoyalSocietyUniversityResearchFellowship.Someresults andSIDMgalaxieswithstellarmassesinthe106–108 M range (cid:12) wereobtainedusingtheanalysissoftwarepynbody,(Pontzenetal. and circular velocity 25-50 km/sec (Fig.3). At the scale of 0.5–2 2013).ChaNGawasdevelopedwithsupportfromNationalScience kpc the total matter content is in good agreement with observa- FoundationITRgrantPHY-0205413totheUniversityofWashing- tionalestimatesofLocalGroupdwarfs.Thisresultdiffersstarkly ton,andNSFITRgrantNSF-0205611totheUniversityofIllinois. fromthepredictionsofDM–onlysimulations,orsimulationswhere WethankHaiboYu,SeanTulin,MattWalkerandLucioMayerfor energyfeedbackdoesnotleadtocoreformation(Boylan-Kolchin stimulatingdiscussionsandacarefulreadingofthemanuscript.We etal.2011;Garrison-Kimmeletal.2014). thanktherefereeforconstructivecomments. • Analyticalexpectationsandsimulationsshowthatwithafixed SIDMcrosssectionof2cm2/gtheDMcentraldensityandinternal velocities of halos with mass below 109 M are too low to have (cid:12) a significant number of DM–DM interactions. Such SIDM halos REFERENCES remaincuspywhenobservedatascaleof500pc,andshowanen- closedDMmasscontentlowerbyaboutonlyafactor2compared AdamsJ.J.etal.,2014,ApJ,789,63 totheirCDMcounterparts(Fig.1&2).Thisresultposesaninter- AgertzO.,KravtsovA.V.,2014,ArXiv1404.2613 esting lower limit to the SIDM cross section in halos associated ArrakiK.S.,KlypinA.,MoreS.,Trujillo-GomezS.,2014,MN- withgalaxieswithstellarmassesbelow106M .IfkpcsizedDM RAS,438,1466 (cid:12) coresarefoundinthesegalaxies,theirexistencewouldgivesupport Avila-ReeseV.,Col´ınP.,Gottlo¨berS.,FirmaniC.,MaulbetschC., tomodelswithavariableSIDMcrosssectionthatishigh(∼10- 2005,ApJ,634,51 20cm2/g,seeeq.2)atsmallhalomassesandthendeclinesrapidly BinneyJ.,GerhardO.,SilkJ.,2001,MNRAS,321,471 atthescaleofgalaxiesandclusters.Largecrosssectionsatdwarf Boylan-KolchinM.,BullockJ.S.,KaplinghatM.,2011,MNRAS, scalesarealsosuggestedbyDM-onlystudies(Elbertetal.2014). 415,L40 SuchlargecrosssectionsmayhaveadetectableeffectontheSFHs BrookC.B.,DiCintioA.,2014,ArXiv1410.3825 ofdwarfsizedsystems,butcouldalsomakegalaxysatelliteseasier BrookC.B.etal.,2011,MNRAS,415,1051 todisrupt.Oursimulationsalsohighlighttherelativeenvironmental Brook C. B., Stinson G., Gibson B. K., Wadsley J., Quinn T., effectsoftheenhancedinteractionrateatthecenterofverysmall 2012,MNRAS,424,1275 satellitescomparedtotheirfieldcounterparts,duetorapidorbital BrooksA.M.,2014,AdPhysik10.1002/andp.201400068,10 velocities in the dense halos of a massive host. This relative dif- BrooksA.M.,ZolotovA.,2014,ApJ,786,87 ferenceoffersthepotentialofusingfaintgalaxiestoconstrainthe BuckleyM.R.,ZavalaJ.,Cyr-RacineF.-Y.,SigurdsonK.,Vogels- crosssectionofSIDMasafunctionoftheDMvelocity. bergerM.,2014,Phys.Rev.D,90,043524 • Onceregulatedbyfeedback,theSFHs(Fig.7),stellarandgas BurkertA.,2000,ApJ,534,L143 contentandspatialdistributiondonotdiffersubstantiallyinCDM ChristensenC.R.,BrooksA.M.,FisherD.B.,GovernatoF.,Mc- vs SIDM model, both forming gas rich galaxies with bulgeless Cleary J., Quinn T. R., Shen S., Wadsley J., 2014a, MNRAS, diskswhichresemblerealones. 440,L51 Christensen C. R., Governato F., Quinn T., Brooks A. M., Shen These results lead to potentially important implications for S.,McClearyJ.,FisherD.B.,WadsleyJ.,2014b,MNRAS,440, SIDM models. As baryons lead to a drastic change in the mass 2843 distribution of central regions of typical dwarf galaxies with V Col´ınP.,Avila-ReeseV.,Gonza´lez-SamaniegoA.,Vela´zquezH., c ∼ 30-60 km/sec, many of the current bounds on the SIDM cross 2015,ApJ,803,28 sectionatdifferentmassscaleswillneedtobere-examined.After Col´ınP.,Avila-ReeseV.,ValenzuelaO.,FirmaniC.,2002,ApJ, theintroductionofrealisticdescriptionsofSFandfeedback.Both 581,777 CDM and SIDM form dwarf galaxies with DM distribution and Cyr-RacineF.-Y.,SigurdsonK.,2013,Phys.Rev.D,87,103515 ©2012RAS,MNRAS000,1–13