ebook img

Ali Sayyad Thesis 13th April PDF

221 Pages·2017·1.84 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ali Sayyad Thesis 13th April

City Research Online City, University of London Institutional Repository Citation: Sayyad, Ali (2016). Optimisation of condition number for eigenstructure problems. (Unpublished Doctoral thesis, City, University of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17326/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] OPTIMISATION OF CONDITION NUMBER FOR EIGENSTRUCTURE PROBLEMS By Ali A. Sayyad A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY CITY, UNIVERSITY OF LONDON SCHOOL OF MATHEMATICS, COMPUTER SCIENCE AND ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING SYSTEMS & CONTROL RESEARCH CENTRE NORTHAMPTON SQUARE, LONDON EC1V 0HB UNITED KINGDOM SEPTEMBER 2016 © Copyright by Ali A. Sayyad, 2016 To my wife and daughter i Abstract This thesis deals with a new solution for the problem of eigenstructure assignment in control systems design. A wide range of challenging issues is examined involving the problem of eigenstructure assignment and associated system properties through different forms of complexity which are strongly related to control system design. In this thesis, specific attention has been given to the issue of skewness of the closed- loop eigenframe of the state matrix. In fact, the aim is to develop a new methodology for determining the best angle between closed-loop eigenvectors by optimising the minimal condition number of the closed-loop eigenvector matrix. This problem is strongly linked to sensitivity of eigenvalues to parameter uncertainty, perturbations to model parameter uncertainty. The importance of this methodology can be expressed in terms of results related to the Sensitivity of eigenvalues, Relative measures of controllability and observability and also deviations from strong stability to overshooting behaviour. Among this variety of eigenstructure assignment methods, special consideration has been paid to Geometric Theory [4], [5], which introduces an alternative solution to the assignability of spectrum of controllability subspaces (cs) based on an eigenvector approach and then develops a new pole assignment algorithm based on open- loop/closed-loop spectra as a practical application of this approach. In order to tackle the problem of measuring the skewness of angles between closed-loop eigenvalues, some measures for Eigenframe skewness have been defined in general and so the necessary and efficient conditions have been derived for the angle between some subspaces in a direct sum decomposition to be maximized. This has been done via three metrics; Condition Number, Determinant of Gram Matrix and Singular Values. The thesis presents the parametrisation of closed-loop eigenframes result by the method generated in [4]. Within this thesis, a non-smooth algorithm has been developed in order to select the most orthogonal closed-loop eigenframe and so the influence of selected closed-loop spectra. Also, the parametrisation of controllability subspaces in a standard direct sum decomposition using matrix fraction description (MFD) has been derived. Within this thesis the construction and ii the existence of controllability subspaces connected to (A,B)-invariant subspaces, has also been studied. In addition, an algebraic description of the total system behaviour which leads to an algebraic characterisation of the total input, state and output behaviour in an implicit formulation is given based on properties of MFD descriptions, a topic which remains open for future studies. iii Table of contents Abstract .................................................................................................................................. ii Table of Contents ................................................................................................................ iv Acknowledgments ............................................................................................................ viii 1 Introduction ........................................................................................................................ 1 1.1 Introduction ................................................................................................................... 1 1.2 Objectives ...................................................................................................................... 3 1.3 Main achievements....................................................................................................... 5 1.4 Summary of upcoming chapters ................................................................................ 6 2 Mathematics and Control background ........................................................................ 12 2.1 Introduction ................................................................................................................. 12 2.2 Mathematics background .......................................................................................... 12 2.2.1 Vector space .......................................................................................................... 12 2.2.2 Subspace ................................................................................................................ 13 2.2.3 Orthogonal and orthonormal vectors ............................................................... 13 2.2.4 Unitary Matrix ..................................................................................................... 13 2.2.5 Vector Matrix........................................................................................................ 13 2.2.6 Matrix norms ........................................................................................................ 14 2.2.7 Hadamard’s inequality theorem ....................................................................... 15 2.2.8 Gramian (Gram) Matrix ...................................................................................... 15 2.2.9 Condition Number .............................................................................................. 16 2.2.10 Vandermonde matrix ........................................................................................ 16 2.2.11 The Jordan Canonical Form of a Matrix ......................................................... 17 2.3 Control background ................................................................................................... 17 2.3.1 Matrix Fraction Description (MFD) .................................................................. 17 2.3.2 Minimal bases of matrix pencils and coprime matrix descriptions ............. 23 2.3.3 Construction of minimal bases of matrix pencils and coprime fraction descriptions using Toeplitz matrix ............................................................................ 25 2.4 Conclusion ................................................................................................................... 32 iv 3 Literature review on Eigenstructure assignment: Basic concepts and background results .................................................................................................................................... 34 3.1 Introduction ................................................................................................................. 34 3.2 Background on Eigenvalues and Eigenvectors ...................................................... 35 3.2.1 Rectilinear motions .............................................................................................. 35 3.2.2 Summary of spectral characterisation .............................................................. 37 3.2.3 Controllability and Observability issues .......................................................... 38 3.3 Forced Rectilinear motions and closed loop Eigenstructure ............................... 40 3.3.1 Physical problems ................................................................................................ 40 3.3.2 Characterisation of Transmission ...................................................................... 41 3.3.3 Feedback and closed-loop Eigenvalues ............................................................ 43 3.3.4 The problem of Eigenspace assignment ........................................................... 45 3.4 Review of results on Eigenstructure assignment ................................................... 48 3.4.1 Early results .......................................................................................................... 48 3.4.2 State feedback results .......................................................................................... 50 3.4.3 Output feedback results...................................................................................... 51 3.4.4 Combined state and output feedback approach ............................................. 53 3.4.5 Approach that reduces controllers complexity ............................................... 54 3.4.6 Results obtained from a subspace theme ......................................................... 55 3.4.7 Parametric state feedback results ...................................................................... 55 3.4.8 Parametric output feedback results ................................................................... 56 3.4.9 Perturbation Theory ............................................................................................ 57 3.4.10 Other approaches ............................................................................................... 64 3.5 Summary and Conclusion ......................................................................................... 66 4 Basic concepts of Eigenstructure assignment from geometric theory ................... 70 4.1 Introduction ................................................................................................................. 70 4.2 Motion along eigenvectors and the A-invariant subspaces of linear system ................................................................................................................................. 72 4.3 Rectilinear motion of Non-autonomous system in the input output state spaces and the concept of (A,B)- invariance ........................................................ 74 v 4.4 Simple rectilinear motion and the one-dimensional (A,B)-invariant subspaces ........................................................................................................................... 75 4.5 Rectilinear motion in r-dimensional (A,B)-invariance subspaces, characteristic decomposition of (A,B)- invariant subspaces ...................................... 77 4.6 Controllability Subspaces .......................................................................................... 83 4.7 Conclusion ................................................................................................................... 86 5 Decomposition of state space into controllability subspaces ................................. 87 5.1 Introduction ................................................................................................................. 87 5.2 (A,B)- invariant subspaces intersecting with B ............................................... 87 5.3 Algebraic characterization of Controllability Subspaces ..................................... 92 5.3.1 Problem statement ............................................................................................... 93 5.3.2 Minimal dimension Controllability Subspaces ............................................... 96 5.4 Assignability of the spectrum of a Controllability subspace ............................... 99 5.4.1 Problem statement ............................................................................................... 99 5.4.2 Assigning the spectrum of a Controllability Subspace ................................ 100 5.4.3 Eigenvalue placement algorithm based on mobility of open to closed loop spectra ..................................................................................................... 104 5.4.4 Numerical example ........................................................................................... 107 5.5 Selection of the most orthogonal eigenvectors and sensitivity of closed-loop system based on the open loop – closed loop spectra method .......... 112 5.5.1 Problem statement ............................................................................................. 112 5.6 Conclusion ................................................................................................................ 115 6 Measurement of angle between subspaces in direct sum decomposition.......... 116 6.1 Introduction .............................................................................................................. 116 6.2 Problem statement and preliminary results ......................................................... 117 6.3 Measuring the degree of orthogonality ................................................................. 120 6.3.1 The Gramian ....................................................................................................... 120 6.3.2 Condition Number ............................................................................................ 124 6.3.3 The Spread of Singular Values ........................................................................ 129 6.4 Numerical example .................................................................................................. 133 6.5 Conclusion ................................................................................................................. 137 vi 7 Parameterisation of ordered minimal bases of Controllability Subspaces ........ 139 7.1 Introduction ............................................................................................................... 139 7.2 Implicit system description .................................................................................... 140 7.2.1 Duality issues and behavior ............................................................................. 143 7.2.2 Computation of Input- State generator pairs Problem statement .............. 147 7.2.3 Closed-loop Eigenvectors and frequency transmission ............................... 148 7.2.4 Pole assignment by output feedback and closed-loop Eigenvectors ......... 149 7.2.5 Poles and Zeros .................................................................................................. 152 7.2.6 Design of state feedback controllers using Eigenvector parametrisation . 154 7.2.7 Selection of an independent Eigenframe and resulting state feedback ..... 156 7.2.8 Parametrisation of ordered minimal bases and the selection of Eigenframes ................................................................................................................. 159 7.3 Conclusion ................................................................................................................. 170 8 Minimsation of the angle between closed-loop Eigenvectors via non- smooth Algorithm ............................................................................................................. 172 8.1 Introduction ............................................................................................................... 172 8.2 Non-smooth optimisiation problem definitions .................................................. 174 8.3 Generalized gradient of k (A(x)) ...................................................................... 176 8.3.1 k (A) ................................................................................................................... 176 8.3.2 k (A(x))with A(x)=V(x)TV(x) ........................................................................ 178 8.4 Smoothing approximation ..................................................................................... 180 8.5 Non-smooth Optimization Algorithm ................................................................. 182 8.6 Numerical examples ................................................................................................ 185 8.7 Conclusion ................................................................................................................. 192 9 Conclusion and Future Research ................................................................................ 193 9.1 Achievements, Results ............................................................................................. 193 9.2 Future Research ........................................................................................................ 198 References........................................................................................................................... 201 Appendix_1 ........................................................................................................................ 209 vii Acknowledgements I would like to express my utmost gratitude to my supervisors Professor Karcanias and Professor Halikias. Professor Karcanias who has been a most inspiring, yet demanding supervisor with a great insights in the field of Control Design Theory which have been invaluable during the work of this thesis. His constant support and guidance during my time of research have been priceless and have made this present thesis possible. I would like also to thank Professor Halikias for his tremendous support and assistance in various sections of this thesis. His outstanding knowledge in both theory and programming aspects enabled me to achieve desired results throughout the time of research. Finally, I would like to thank my family, Maryam and Diba, for their unconditional love, support and encouragement all these years. This thesis is dedicated to them for helping be what I am today. London, United Kingdom Ali A. Sayyad September 2016 viii

Description:
ℂ is a vector space of dimension .mn, magnitudes control action. vectors 's or groups of the other vectors to be simple (A,B)- invariant subspace of has been discussed by Warren and Eckberg (1975) [71] and it was D. Meyer, Matrix analysis and applied linear algebra, SIAM, Apr.2000.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.