ebook img

Algorithms in Signal Processors Audio and Video Applications 2010 PDF

110 Pages·2010·4.62 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algorithms in Signal Processors Audio and Video Applications 2010

Algorithms in Signal Processors Audio and Video Applications 2010 DSP Project Course using Texas Instruments TMS320C6713 DSK and TMS320DM6437 Dept. of Electrical and Information Technology, Lund University, Sweden i ii Contents I Speech Recognition Divyesh V. Vaghani, Farhan Ahmed Khan 1 1 Voice Generation in Human Body 2 2 Introduction 2 3 How To Recognize The Speech 3 3.1 Voice Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 Pitch Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 FLOW CHART 4 5 DESIGN COMPONENTS 7 II Speech Recognition Dan Liu, Hongwan Qin, Ziyang Li, Zhonghua Wang 11 1 Introduction 12 2 The algorithm 12 2.1 Speech Recognition System . . . . . . . . . . . . . . . . . . . 12 2.1.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Feature extraction . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Reference creation . . . . . . . . . . . . . . . . . . . . 13 2.2 Speech Recognition algorithm . . . . . . . . . . . . . . . . . . 13 2.2.1 Partition and Pre-emphasis . . . . . . . . . . . . . . . 13 2.2.2 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . 14 2.2.4 Schur recursion . . . . . . . . . . . . . . . . . . . . . . 14 2.2.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . 15 3 How to realize the whole speech recognition 15 3.1 MatLab Implementation . . . . . . . . . . . . . . . . . . . . . 16 3.2 DSP implementation . . . . . . . . . . . . . . . . . . . . . . . 16 4 The problem and solution 16 5 The conclusions 17 iii III MIDI Synthesizer Nauman Hafeez, Waqas Shafiq 21 1 Inroduction 22 2 Description 22 2.1 MIDI Standard . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Envelop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 ADSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Synthesis Techniques 25 3.1 FM Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Additive Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Subtractive Synthesis. . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Wavetable Synthesis . . . . . . . . . . . . . . . . . . . . . . . 32 4 Implementation 32 5 Conclusion 33 IV Pitch Estimation AravindKAnnavaramV,MohammedAzherAli,MirzaJameelBaig,Surendra Reddy U 35 1 Introduction 36 2 Different methods of pitch estimation 36 2.1 Time-domain approaches: . . . . . . . . . . . . . . . . . . . . 36 2.2 Frequency-domain approaches: . . . . . . . . . . . . . . . . . 37 3 Cepstrum analysis 37 4 The Cepstrum algorithm Implementation 39 4.1 The MatLab algorithm . . . . . . . . . . . . . . . . . . . . . 39 4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Algorithm for the DSP . . . . . . . . . . . . . . . . . . . . . 39 4.4 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.5 Absolute And Logarithm Function . . . . . . . . . . . . . . . 40 4.6 IFFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.7 Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.8 Pitch Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Simulation Results 41 6 Problems encountered 43 iv 7 Conclusion 43 V Video processing Bilgin Can, Ma Ling, Lu Fei 45 1 Introduction 46 2 Object detection 46 2.1 Moving object location . . . . . . . . . . . . . . . . . . . . . . 47 2.1.1 Image differential . . . . . . . . . . . . . . . . . . . . . 47 2.1.2 Noise reducing . . . . . . . . . . . . . . . . . . . . . . 47 2.1.3 Other optimizations . . . . . . . . . . . . . . . . . . . 47 2.2 Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.1 Canny edge detection . . . . . . . . . . . . . . . . . . 48 2.2.2 Canny implementation in real time system . . . . . . 49 2.3 Summary for object detection . . . . . . . . . . . . . . . . . . 50 3 Object identification 50 3.1 The three categories’ features . . . . . . . . . . . . . . . . . . 50 3.2 Classification implementation in real time system . . . . . . . 50 3.3 Summary for object identification . . . . . . . . . . . . . . . . 51 4 Result assessment 51 4.1 Evaluation for object detection and classification . . . . . . . 51 4.2 Performance analysis for real time system . . . . . . . . . . . 52 4.3 Assessment summary . . . . . . . . . . . . . . . . . . . . . . . 52 5 Conclusion and further work 52 VI Video Processing - Light Saber Kashif, Raheleh, Shakir, Vineel 57 1 Introduction 58 1.1 Development Kit . . . . . . . . . . . . . . . . . . . . . . . . . 58 1.2 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 1.3 Code Composer Studio . . . . . . . . . . . . . . . . . . . . . . 58 2 Background 58 2.1 Chroma Key . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3 PAL System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.4 Color space representaion . . . . . . . . . . . . . . . . . . . . 59 v 3 Implementation 59 3.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 Code Composer Studio . . . . . . . . . . . . . . . . . . . . . . 61 4 Simulation results 61 5 Conclusion and Future work 61 VII Reverberation Syed Zaki Uddin, Farooq Anwar, Mohammed Abdul Aziz, Kazi Asifuzzaman 65 1 Introduction 66 1.1 Introduction to Reverberation . . . . . . . . . . . . . . . . . . 66 1.2 Characteristics of Reverberation . . . . . . . . . . . . . . . . 66 1.3 Simulation of Reverberation . . . . . . . . . . . . . . . . . . . 67 2 Reverberator types 67 2.1 Reverberation Chamber . . . . . . . . . . . . . . . . . . . . . 67 2.2 Plate Reverberator . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3 Spring Reverberator . . . . . . . . . . . . . . . . . . . . . . . 68 2.4 Digital Reverberator . . . . . . . . . . . . . . . . . . . . . . . 68 3 Reverberation Modeling 68 3.1 Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2 Early Reflection Modeling . . . . . . . . . . . . . . . . . . . . 69 3.3 Late Reflection Modeling . . . . . . . . . . . . . . . . . . . . 69 3.4 Reverberation Algorithms . . . . . . . . . . . . . . . . . . . . 69 3.4.1 Shroeder Algorithm . . . . . . . . . . . . . . . . . . . 69 3.4.2 Moorer Algorithm . . . . . . . . . . . . . . . . . . . . 69 3.4.3 Gardner Algorithm . . . . . . . . . . . . . . . . . . . . 70 3.4.4 Dattoro Algorithm . . . . . . . . . . . . . . . . . . . . 70 3.4.5 Jot Algorithm. . . . . . . . . . . . . . . . . . . . . . . 70 4 Reverberator Design 70 4.1 Jot Reverberation Algorithm . . . . . . . . . . . . . . . . . . 70 4.2 Coefficients calculation . . . . . . . . . . . . . . . . . . . . . . 70 4.2.1 Modal Density (Dm(f)) . . . . . . . . . . . . . . . . . 72 4.2.2 Frequency and Time Density . . . . . . . . . . . . . . 72 4.2.3 Echo Density (De) . . . . . . . . . . . . . . . . . . . . 72 4.2.4 Energy Decay Curve(EDC) . . . . . . . . . . . . . . . 72 4.2.5 Reverberation Time (Tr) . . . . . . . . . . . . . . . . 72 4.2.6 Energy Decay Relief (EDR) . . . . . . . . . . . . . . . 73 4.3 Designing Jot Reverberator . . . . . . . . . . . . . . . . . . . 73 4.3.1 Delay Length (M) . . . . . . . . . . . . . . . . . . . . 73 vi 4.3.2 First order low pass Filter H(i) . . . . . . . . . . . . . 74 4.3.3 Effects of Matrix B and C . . . . . . . . . . . . . . . . 74 4.3.4 Tonal Correction Filter . . . . . . . . . . . . . . . . . 75 5 Realtime Reverbaration Implementation 75 5.1 Implementation Model . . . . . . . . . . . . . . . . . . . . . . 75 5.2 CBUFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 H(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.4 A Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.5 T(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.6 conv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 Results 80 VIII Pitch Estimation/Singstar Anil kumar Metla, Anusha Gundarapu, Yaoyi Lin 85 1 Introduction 86 1.1 Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 1.2 Introduction to the project . . . . . . . . . . . . . . . . . . . 86 2 Pitch Estimation Algorithms in Theory 88 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.1.1 Time domain Fundamental Period Pitch Detection : . 88 2.1.2 Auto-correlation Pitch Detection : . . . . . . . . . . . 89 2.1.3 Adaptive filter Pitch Detectors : . . . . . . . . . . . . 89 2.1.4 Frequency Domain Pitch Detectors : . . . . . . . . . 89 2.1.5 Pitch Detection based on models of the ear : . . . . . 89 2.2 Cepstrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.3 Auto Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 90 3 Project Implementation 93 3.1 Implementation in Matlab . . . . . . . . . . . . . . . . . . . . 93 3.2 Implementation on C6713 . . . . . . . . . . . . . . . . . . . . 93 3.3 Singstar Extension . . . . . . . . . . . . . . . . . . . . . . . . 98 4 Results 98 5 Conclusion 100 vii viii Part I Speech Recognition Divyesh V. Vaghani, Farhan Ahmed Khan Abstract ThisProjectreportdiscussesoneofthepossiblesolutiontoanalgo- rithm in speech recognition. By using the Filtering process and Auto- correlation,thecoefficientsaregivenforaspokenword. Bycomparing these with the coefficients for a small set of words. The algorithm de- cides which word it is most like. For to check the algorithm of speech recognition, we must want the MATLAB tool, After the successful result we did the whole code in C for the DSP Implementation. 1 2 Speech Recognition Figure 1: Block diagram of the system 1 Voice Generation in Human Body Thehumanvoiceisgeneratedinahumanbodybythevocalcordsfortalking, singing, laughing, crying, screaming, etc. Human voice is specifically that part of human sound production in which the vocal cords are the primary sound source. Generally speaking, the mechanism for generating the human voice can be subdivided into three parts, the lungs, the vocal cords within the larynx, and the articulators. The lung which works as a pump must produce adequate airflow and air pressure to vibrate vocal cords (this air pressure works as a fuel of the voice). The vocal cords are a vibrating valve that chops up the airflow from the lungs into audible pulses that form the laryngeal sound source. The muscles of the larynx adjust the length and tension of the vocal folds to pitch and tone. The articulators which are the parts of the vocal tract above the larynx consisting of tongue, palate, cheek, lips, etc. Articulate and filter the sound emanating from the larynx and to some degree can interact with the laryngeal airflow to strengthen it or weaken it as a sound source. The vocal cords, in combination with the articulators, are capable of producing highly intricate arrays of sound. Adult male voices are usually lower-pitched and have larger cords. The male vocal cords are between 17 mm and 25 mm in length while the female vocal cords are between 12.5 mm and 17.5 mm in length. The difference in vocal cords size between men and women means that they have differently pitched voices. 2 Introduction Speech recognition is the process of converting an acoustic signal, captured by a microphone, to a set of words. These recognized words can be the final results, as for applications such as commands & control, data entry, and document preparation. They can also serve as the input to further linguistic processing in order to achieve speech understanding. In speech recognition process the parameters used to characterize the capability of speech recognition systems. [4] Therequirementofthisprojectwasoriginallytodeterminethedifferent- different words of different-different people. However, we were more inter-

Description:
5 DESIGN COMPONENTS. 7. II Speech Recognition. Dan Liu, Hongwan Qin, Ziyang Li, Zhonghua Wang. 11. 1 Introduction. 12. 2 The algorithm. 12 32. 5 Conclusion. 33. IV Pitch Estimation. Aravind K Annavaram V, Mohammed Azher Ali, Mirza Jameel Baig, Surendra. Reddy U. 35. 1 Introduction. 36.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.