ebook img

Algorithms in Real Algebraic Geometry PDF

664 Pages·2003·3.971 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algorithms in Real Algebraic Geometry

Algorithms and Computation in Mathematics • Volume 10 Editors ArjehM.Cohen HenriCohen DavidEisenbud MichaelF.Singer BerndSturmfels Saugata Basu Richard Pollack Marie-Françoise Roy Algorithms in Real Algebraic Geometry SecondEdition With37Figures 123 SaugataBasu GeorgiaInstituteofTechnology SchoolofMathematics Atlanta,GA30332-0160 USA e-mail:[email protected] RichardPollack CourantInstituteof MathematicalSciences 251MercerStreet NewYork,NY10012 USA e-mail:[email protected] Marie-FrançoiseRoy IRMARCampusdeBeaulieu UniversitédeRennesI 35042Rennescedex France e-mail:[email protected] LibraryofCongressControlNumber:2006927110 MathematicsSubjectClassification(2000):14P10,68W30,03C10,68Q25,52C45 ISSN1431-1550 ISBN-10 3-540-33098-4 SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-33098-1 SpringerBerlinHeidelbergNewYork ISBN 3-540-00973-6 1steditionSpringer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyright LawofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtained fromSpringer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com ©Springer-VerlagBerlinHeidelberg2003,2006 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantpro- tectivelawsandregulationsandthereforefreeforgeneraluse. TypesetbytheauthorsusingaSpringerLATEXmacropackage Production:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper 46/3100YL-543210 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Algebraically Closed Fields . . . . . . . . . . . . . . . . . . . . . . 11 1.1 Definitions and First Properties . . . . . . . . . . . . . . . . . . 11 1.2 Euclidean Division and Greatest Common Divisor . . . . . . 14 1.3 Projection Theorem for Constructible Sets . . . . . . . . . . . 20 1.4 Quantifier Elimination and the Transfer Principle . . . . . . . 25 1.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Real Closed Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 Ordered, Real and Real Closed Fields . . . . . . . . . . . . . . 29 2.2 Real Root Counting . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.1 Descartes’s Law of Signs and the Budan-Fourier The- orem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.2 Sturm’s Theorem and the Cauchy Index . . . . . . . . 52 2.3 Projection Theorem for Algebraic Sets . . . . . . . . . . . . . . 57 2.4 Projection Theorem for Semi-Algebraic Sets . . . . . . . . . . 63 2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.5.1 Quantifier Elimination and the Transfer Principle . . 69 2.5.2 Semi-Algebraic Functions . . . . . . . . . . . . . . . . . . 71 2.5.3 Extension of Semi-Algebraic Sets and Functions . . . 72 2.6 Puiseux Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 81 3 Semi-Algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.2 Semi-algebraically Connected Sets . . . . . . . . . . . . . . . . . 86 3.3 Semi-algebraic Germs . . . . . . . . . . . . . . . . . . . . . . . . . 87 VI Table of Contents 3.4 Closed and Bounded Semi-algebraic Sets . . . . . . . . . . . . 93 3.5 Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . 94 3.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 99 4 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1 Discriminant and Subdiscriminant . . . . . . . . . . . . . . . . . 101 4.2 Resultant and Subresultant Coefficients . . . . . . . . . . . . . 105 4.2.1 Resultant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2.2 Subresultant Coefficients . . . . . . . . . . . . . . . . . . 110 4.2.3 Subresultant Coefficients and Cauchy Index . . . . . . 113 4.3 Quadratic Forms and Root Counting . . . . . . . . . . . . . . . 119 4.3.1 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . 119 4.3.2 Hermite’s Quadratic Form . . . . . . . . . . . . . . . . . 127 4.4 Polynomial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.4.1 Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . . . . 132 4.4.2 Hilbert’s Nullstellensatz . . . . . . . . . . . . . . . . . . . 136 4.5 Zero-dimensional Systems . . . . . . . . . . . . . . . . . . . . . . 143 4.6 Multivariate Hermite’s Quadratic Form . . . . . . . . . . . . . 149 4.7 Projective Space and a Weak Bézout’s Theorem . . . . . . . . 153 4.8 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 157 5 Decomposition of Semi-Algebraic Sets . . . . . . . . . . . . . . 159 5.1 Cylindrical Decomposition . . . . . . . . . . . . . . . . . . . . . . 159 5.2 Semi-algebraically Connected Components . . . . . . . . . . . 168 5.3 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.4 Semi-algebraic Description of Cells . . . . . . . . . . . . . . . . 172 5.5 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.6 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.7 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.8 Hardt’s Triviality Theorem and Consequences . . . . . . . . . 186 5.9 Semi-algebraic Sard’s Theorem . . . . . . . . . . . . . . . . . . . 191 5.10 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 194 6 Elements of Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.1 Simplicial Homology Theory . . . . . . . . . . . . . . . . . . . . 195 6.1.1 The Homology Groups of a Simplicial Complex . . . . 195 6.1.2 Simplicial Cohomology Theory . . . . . . . . . . . . . . 199 6.1.3 A Characterization of H1 in a Special Case. . . . . . . 201 6.1.4 The Mayer-Vietoris Theorem . . . . . . . . . . . . . . . 206 Table of Contents VII 6.1.5 Chain Homotopy . . . . . . . . . . . . . . . . . . . . . . . 209 6.1.6 The Simplicial Homology Groups Are Invariant Under Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . 213 6.2 Simplicial Homology of Closed and Bounded Semi-algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 6.2.1 Definitions and First Properties . . . . . . . . . . . . . . 221 6.2.2 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 6.3 Homology of Certain Locally Closed Semi-Algebraic Sets . . 226 6.3.1 HomologyofClosedSemi-algebraicSetsandofSignCon- ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 6.3.2 Homology of a Pair . . . . . . . . . . . . . . . . . . . . . . 228 6.3.3 Borel-Moore Homology . . . . . . . . . . . . . . . . . . . 231 6.3.4 Euler-Poincaré Characteristic . . . . . . . . . . . . . . . 234 6.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 236 7 Quantitative Semi-algebraic Geometry . . . . . . . . . . . . . 237 7.1 Morse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.2 Sum of the Betti Numbers of Real Algebraic Sets . . . . . . . 256 7.3 BoundingtheBettiNumbersofRealizationsofSignConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 7.4 Sum of the Betti Numbers of Closed Semi-algebraic Sets . . 268 7.5 Sum of the Betti Numbers of Semi-algebraic Sets . . . . . . . 273 7.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 280 8 Complexity of Basic Algorithms . . . . . . . . . . . . . . . . . . 281 8.1 Definition of Complexity . . . . . . . . . . . . . . . . . . . . . . . 281 8.2 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 8.2.1 Size of Determinants . . . . . . . . . . . . . . . . . . . . . 292 8.2.2 Evaluation of Determinants . . . . . . . . . . . . . . . . 294 8.2.3 Characteristic Polynomial . . . . . . . . . . . . . . . . . . 299 8.2.4 Signature of Quadratic Forms . . . . . . . . . . . . . . . 300 8.3 Remainder Sequences and Subresultants . . . . . . . . . . . . . 301 8.3.1 Remainder Sequences . . . . . . . . . . . . . . . . . . . . 301 8.3.2 Signed Subresultant Polynomials . . . . . . . . . . . . . 303 8.3.3 Structure Theorem for Signed Subresultants . . . . . . 307 8.3.4 Size of Remainders and Subresultants . . . . . . . . . . 314 8.3.5 Specialization Properties of Subresultants . . . . . . . 316 8.3.6 Subresultant Computation . . . . . . . . . . . . . . . . . 317 8.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 322 VIII Table of Contents 9 Cauchy Index and Applications . . . . . . . . . . . . . . . . . . . 323 9.1 Cauchy Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 9.1.1 Computing the Cauchy Index . . . . . . . . . . . . . . . 323 9.1.2 Bezoutian and Cauchy Index . . . . . . . . . . . . . . . . 326 9.1.3 Signed Subresultant Sequence and Cauchy Index on an Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 9.2 Hankel Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 9.2.1 Hankel Matrices and Rational Functions . . . . . . . . 334 9.2.2 Signature of Hankel Quadratic Forms . . . . . . . . . . 337 9.3 Number of Complex Roots with Negative Real Part . . . . . 344 9.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 350 10 Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 10.1 Bounds on Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 10.2 Isolating Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . 360 10.3 Sign Determination . . . . . . . . . . . . . . . . . . . . . . . . . . 383 10.4 Roots in a Real Closed Field . . . . . . . . . . . . . . . . . . . . 397 10.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 401 11 Cylindrical Decomposition Algorithm . . . . . . . . . . . . . . 403 11.1 Computing the Cylindrical Decomposition . . . . . . . . . . . 404 11.1.1 Outline of the Method . . . . . . . . . . . . . . . . . . . . 404 11.1.2 Details of the Lifting Phase . . . . . . . . . . . . . . . . 408 11.2 Decision Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 11.3 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . 423 11.4 Lower Bound for Quantifier Elimination . . . . . . . . . . . . . 426 11.5 Computation of Stratifying Families . . . . . . . . . . . . . . . 428 11.6 Topology of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 430 11.7 Restricted Elimination . . . . . . . . . . . . . . . . . . . . . . . . 440 11.8 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 444 12 Polynomial System Solving . . . . . . . . . . . . . . . . . . . . . . 445 12.1 A Few Results on Gröbner Bases . . . . . . . . . . . . . . . . . 445 12.2 Multiplication Tables . . . . . . . . . . . . . . . . . . . . . . . . . 451 12.3 Special Multiplication Table . . . . . . . . . . . . . . . . . . . . . 456 12.4 Univariate Representation . . . . . . . . . . . . . . . . . . . . . . 462 12.5 Limits of the Solutions of a Polynomial System . . . . . . . . 471 12.6 FindingPointsinConnectedComponentsofAlgebraicSets . 483 12.7 Triangular Sign Determination . . . . . . . . . . . . . . . . . . . 495 Table of Contents IX 12.8 Computing the Euler-Poincaré Characteristic of an Algebraic Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 12.9 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 503 13 Existential Theory of the Reals . . . . . . . . . . . . . . . . . . . 505 13.1 Finding Realizable Sign Conditions . . . . . . . . . . . . . . . . 506 13.2 A Few Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 516 13.3 Sample Points on an Algebraic Set . . . . . . . . . . . . . . . . 519 13.4 Computing the Euler-Poincaré Characteristic of Sign Condi- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 13.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 532 14 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . . 533 14.1 Algorithm for the General Decision Problem . . . . . . . . . . 534 14.2 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . 547 14.3 Local Quantifier Elimination . . . . . . . . . . . . . . . . . . . . 551 14.4 Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 557 14.5 Dimension of Semi-algebraic Sets . . . . . . . . . . . . . . . . . 558 14.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 562 15 Computing RoadmapsandConnectedComponents ofAlge- braic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 15.1 Pseudo-critical Values and Connectedness . . . . . . . . . . . . 564 15.2 Roadmap of an Algebraic Set . . . . . . . . . . . . . . . . . . . . 568 15.3 Computing Connected Components of Algebraic Sets . . . . 580 15.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 592 16 ComputingRoadmapsandConnectedComponentsofSemi- algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 16.1 Special Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 16.2 Uniform Roadmaps . . . . . . . . . . . . . . . . . . . . . . . . . . 601 16.3 Computing Connected Components of Sign Conditions . . . 608 16.4 ComputingConnectedComponentsofaSemi-algebraic Set . 614 16.5 Roadmap Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 617 16.6 Computing the First Betti Number of Semi-algebraic Sets . 627 16.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 633 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635 Index of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 Introduction Since a real univariate polynomial does not always have real roots, a very naturalalgorithmicproblem,istodesignamethodtocountthenumberofreal roots of a given polynomial (and thus decide whether it has any). The “real root counting problem” plays a key role in nearly all the “algorithms in real algebraic geometry” studied in this book. Much of mathematics is algorithmic, since the proofs of many theorems provideafinite proceduretoanswersomequestionortocalculatesomething. A classic example of this is the proof that any pair of real univariate poly- nomials (P,Q) have a greatest common divisor by giving a finite procedure forconstructingthe greatestcommondivisorof(P,Q),namelytheeuclidean remainder sequence. However, different procedures to solve a given problem differ in how much calculation is required by each to solve that problem. To understand what is meant by “how much calculation is required”, one needs a fuller understanding of what an algorithm is and what is meant by its“complexity”. Thiswillbediscussedatthebeginningofthe secondpartof the book, in Chapter 8. The first part of the book (Chapters 1 through 7) consists primarily of themathematicalbackgroundneededforthesecondpart. Muchofthisback- groundisalreadyknownandhasappearedinvarioustexts.Sincetheseresults come from many areas of mathematics such as geometry, algebra, topology andlogicwethoughtitconvenienttoprovideaself-contained,coherentexpo- sition of these topics. In Chapter 1 and Chapter 2, we study algebraically closed fields (such as thefieldofcomplexnumbersC)andrealclosedfields(suchasthefieldofreal numbers R). The concept of a real closed field was first introduced by Artin and Schreier in the 1920’s and was used for their solution to Hilbert’s 17th problem[6,7]. Theconsiderationofabstractrealclosedfieldsratherthanthe field of real numbers in the study of algorithms in real algebraic geometry is not only intellectually challenging, it also plays an important role in several complexity results given in the second part of the book. 2 Introduction Chapters 1 and 2 describe an interplay between geometry and logic for algebraically closed fields and real closed fields. In Chapter 1, the basic geo- metric objects are constructible sets. These are the subsets of Cn which are defined by a finite number of polynomial equations (P =0) and inequations (P 0). We prove that the projection of a constructible set is constructible. The(cid:0)proof is very elementary and uses nothing but a parametric version of the euclidean remainder sequence. In Chapter 2, the basic geometric objects are the semi-algebraic sets which constitute our main objects of interest in this book. These are the subsets of Rn that are defined by a finite number of polynomial equations (P = 0) and inequalities (P > 0). We prove that the projection of a semi-algebraic set is semi-algebraic. The proof, though more complicated than that for the algebraically closed case, is still quite elementary. It is based on a parametric version of real root counting tech- niques developed in the nineteenth century by Sturm, which uses a clever modification of euclidean remainder sequence. The geometric statement “the projection of a semi-algebraic set is semi-algebraic” yields, after introducing the necessary terminology, the theorem of Tarski that “the theory of real closedfieldsadmitsquantifierelimination.”Aconsequenceofthislastresultis thedecidabilityofelementaryalgebraandgeometry,whichwasTarski’sinitial motivation. In particular whether there exist real solutions to a finite set of polynomial equations and inequalities is decidable. This decidability result is quite striking, given the undecidability result proved by Matijacević [113] forasimilarquestion,Hilbert’s10-thproblem:thereis noalgorithmdeciding whether or not a general system of Diophantine equations has an integer solution. InChapter3wedevelopsomeelementarypropertiesofsemi-algebraicsets. Since we work over various real closed fields,and not only over the reals,it is necessarytoreexamineseveralnotionswhoseclassicaldefinitionsbreakdown in non-archimedean real closed fields. Examples of these are connectedness and compactness. Our proofs use non-archimedean real closed field exten- sions,whichcontaininfinitesimalelementsandcanbedescribedgeometrically as germs of semi-algebraic functions, and algebraically as algebraic Puiseux series. The real closed field of algebraic Puiseux series plays a key role in the complexity results of Chapters 13 to 16. Chapter 4 describes several algebraic results, relating in various ways propertiesofunivariateandmultivariatepolynomialstolinearalgebra,deter- minantsandquadraticforms.Ageneralthemeistoexpresssomepropertiesof univariate polynomials by the vanishing of specific polynomial expressions in theircoefficients. ThediscriminantofaunivariatepolynomialP,forexample, is a polynomial in the coefficients of P which vanishes when P has a mul- tiple root. The discriminant is intimately relatedto real root counting, since, for polynomials of a fixed degree, all of whose roots are distinct, the sign of the discriminant determines the number of real roots modulo 4. The dis- criminant is in fact the determinant of a symmetric matrix whose signature givesanalternativemethodtoSturm’sforrealrootcountingduetoHermite.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.