Algorithms and Data Structures Kurt Mehlhorn • Peter Sanders Algorithms and Data Structures The Basic Toolbox Prof.Dr.KurtMehlhorn Prof.Dr.PeterSanders Max-Planck-InstitutfürInformatik UniversitätKarlsruhe Saarbrücken Germany Germany [email protected] [email protected] ISBN978-3-540-77977-3 e-ISBN978-3-540-77978-0 DOI10.1007/978-3-540-77978-0 LibraryofCongressControlNumber:2008926816 ACMComputingClassification(1998):F.2,E.1,E.2,G.2,B.2,D.1,I.2.8 (cid:2)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:KünkelLopkaGmbH,Heidelberg Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Toallalgorithmicists Preface Algorithmsareattheheartofeverynontrivialcomputerapplication.Thereforeevery computerscientistandeveryprofessionalprogrammershouldknowaboutthebasic algorithmictoolbox:structuresthatallowefficientorganizationandretrievalofdata, frequentlyusedalgorithms,andgenerictechniquesformodeling,understanding,and solvingalgorithmicproblems. This book is a concise introduction to this basic toolbox, intended for students andprofessionalsfamiliarwithprogrammingandbasicmathematicallanguage.We haveusedthebookinundergraduatecoursesonalgorithmics.Inourgraduate-level courses, we make most of the book a prerequisite, and concentrate on the starred sectionsandthemoreadvancedmaterial.Webelievethat,evenforundergraduates, aconciseyetclearandsimplepresentationmakesmaterialmoreaccessible,aslong asitincludesexamples,pictures,informalexplanations,exercises,andsomelinkage totherealworld. Mostchaptershavethesamebasicstructure.Webeginbydiscussingaproblem asitoccursinareal-lifesituation.Weillustratethemostimportantapplicationsand thenintroducesimplesolutionsasinformallyaspossibleandasformallyasneces- sarytoreallyunderstandtheissuesathand.Whenwemovetomoreadvancedand optionalissues,thisapproachgraduallyleadstoamoremathematicaltreatment,in- cludingtheoremsandproofs.Thisway,thebookshouldworkforreaderswithawide rangeofmathematicalexpertise.Therearealsoadvancedsections(markedwitha*) wherewerecommendthatreadersshouldskipthemonfirstreading.Exercisespro- videadditionalexamples,alternativeapproachesandopportunitiestothinkaboutthe problems. It is highly recommended to take a look at the exercises even if there is notimetosolvethemduringthefirstreading.Inordertobeabletoconcentrateon ideasratherthanprogrammingdetails,weusepictures,words,andhigh-levelpseu- docodetoexplainouralgorithms.Asection“implementationnotes”linkstheseab- stractideastoclean,efficientimplementationsinrealprogramminglanguagessuch asC++andJava.Eachchapterendswithasectiononfurtherfindingsthatprovides aglimpseatthestateoftheart,generalizations,andadvancedsolutions. Algorithmicsisamodernandactiveareaofcomputerscience,evenatthelevel of the basic toolbox. We have made sure that we present algorithms in a modern VIII Preface way,includingexplicitlyformulatedinvariants.Wealsodiscussrecenttrends,such as algorithm engineering, memory hierarchies, algorithm libraries, and certifying algorithms. Wehavechosentoorganizemostofthematerialbyproblemdomainandnotby solutiontechnique.Thefinalchapteronoptimizationtechniquesisanexception.We findthatpresentationbyproblemdomainallowsamoreconcisepresentation.How- ever,itisalsoimportantthatreadersandstudentsobtainagoodgraspoftheavailable techniques.Therefore,wehavestructuredthefinalchapterbytechniques,andanex- tensive index provides cross-references between different applications of the same technique. Bold page numbers in the Index indicate the pages where concepts are defined. Karlsruhe,Saarbrücken, KurtMehlhorn February,2008 PeterSanders Contents 1 Appetizer:IntegerArithmetics .................................. 1 1.1 Addition................................................. 2 1.2 Multiplication:TheSchoolMethod .......................... 3 1.3 ResultChecking .......................................... 6 1.4 ARecursiveVersionoftheSchoolMethod .................... 7 1.5 KaratsubaMultiplication ................................... 9 1.6 AlgorithmEngineering..................................... 11 1.7 ThePrograms ............................................ 13 1.8 ProofsofLemma1.5andTheorem1.7 ....................... 16 1.9 ImplementationNotes...................................... 17 1.10 HistoricalNotesandFurtherFindings ........................ 18 2 Introduction................................................... 19 2.1 AsymptoticNotation....................................... 20 2.2 TheMachineModel ....................................... 23 2.3 Pseudocode .............................................. 26 2.4 DesigningCorrectAlgorithmsandPrograms .................. 31 2.5 AnExample–BinarySearch................................ 34 2.6 BasicAlgorithmAnalysis .................................. 36 2.7 Average-CaseAnalysis..................................... 41 2.8 RandomizedAlgorithms.................................... 45 2.9 Graphs .................................................. 49 2.10 PandNP ................................................ 53 2.11 ImplementationNotes...................................... 56 2.12 HistoricalNotesandFurtherFindings ........................ 57 3 RepresentingSequencesbyArraysandLinkedLists ............... 59 3.1 LinkedLists.............................................. 60 3.2 UnboundedArrays ........................................ 66 3.3 *AmortizedAnalysis ...................................... 71 3.4 StacksandQueues ........................................ 74 X Contents 3.5 ListsVersusArrays........................................ 77 3.6 ImplementationNotes...................................... 78 3.7 HistoricalNotesandFurtherFindings ........................ 79 4 HashTablesandAssociativeArrays.............................. 81 4.1 HashingwithChaining..................................... 83 4.2 UniversalHashing......................................... 85 4.3 HashingwithLinearProbing................................ 90 4.4 ChainingVersusLinearProbing ............................. 92 4.5 *PerfectHashing.......................................... 92 4.6 ImplementationNotes...................................... 95 4.7 HistoricalNotesandFurtherFindings ........................ 97 5 SortingandSelection ........................................... 99 5.1 SimpleSorters............................................ 101 5.2 Mergesort–anO(nlogn)SortingAlgorithm .................. 103 5.3 ALowerBound........................................... 106 5.4 Quicksort ................................................ 108 5.5 Selection................................................. 114 5.6 BreakingtheLowerBound ................................. 116 5.7 *ExternalSorting ......................................... 118 5.8 ImplementationNotes...................................... 122 5.9 HistoricalNotesandFurtherFindings ........................ 124 6 PriorityQueues................................................ 127 6.1 BinaryHeaps............................................. 129 6.2 AddressablePriorityQueues ................................ 133 6.3 *ExternalMemory ........................................ 139 6.4 ImplementationNotes...................................... 141 6.5 HistoricalNotesandFurtherFindings ........................ 142 7 SortedSequences .............................................. 145 7.1 BinarySearchTrees ....................................... 147 7.2 (a,b)-TreesandRed–BlackTrees............................ 149 7.3 MoreOperations .......................................... 156 7.4 AmortizedAnalysisofUpdateOperations..................... 158 7.5 AugmentedSearchTrees ................................... 160 7.6 ImplementationNotes...................................... 162 7.7 HistoricalNotesandFurtherFindings ........................ 164 8 GraphRepresentation .......................................... 167 8.1 UnorderedEdgeSequences ................................. 168 8.2 AdjacencyArrays–StaticGraphs ........................... 168 8.3 AdjacencyLists–DynamicGraphs .......................... 170 8.4 TheAdjacencyMatrixRepresentation ........................ 171 8.5 ImplicitRepresentations.................................... 172 Contents XI 8.6 ImplementationNotes...................................... 172 8.7 HistoricalNotesandFurtherFindings ........................ 174 9 GraphTraversal ............................................... 175 9.1 Breadth-FirstSearch....................................... 176 9.2 Depth-FirstSearch ........................................ 178 9.3 ImplementationNotes...................................... 188 9.4 HistoricalNotesandFurtherFindings ........................ 189 10 ShortestPaths ................................................. 191 10.1 FromBasicConceptstoaGenericAlgorithm .................. 192 10.2 DirectedAcyclicGraphs ................................... 195 10.3 NonnegativeEdgeCosts(Dijkstra’sAlgorithm) ................ 196 10.4 *Average-CaseAnalysisofDijkstra’sAlgorithm ............... 199 10.5 MonotoneIntegerPriorityQueues ........................... 201 10.6 ArbitraryEdgeCosts(Bellman–FordAlgorithm)............... 206 10.7 All-PairsShortestPathsandNodePotentials................... 207 10.8 Shortest-PathQueries...................................... 209 10.9 ImplementationNotes...................................... 213 10.10 HistoricalNotesandFurtherFindings ........................ 214 11 MinimumSpanningTrees....................................... 217 11.1 CutandCycleProperties ................................... 218 11.2 TheJarník–PrimAlgorithm................................. 219 11.3 Kruskal’sAlgorithm ....................................... 221 11.4 TheUnion–FindDataStructure.............................. 222 11.5 *ExternalMemory ........................................ 225 11.6 Applications.............................................. 228 11.7 ImplementationNotes...................................... 231 11.8 HistoricalNotesandFurtherFindings ........................ 231 12 GenericApproachestoOptimization ............................. 233 12.1 LinearProgramming–aBlack-BoxSolver.................... 234 12.2 GreedyAlgorithms–NeverLookBack....................... 239 12.3 DynamicProgramming–BuildingItPiecebyPiece ............ 243 12.4 SystematicSearch–WheninDoubt,UseBruteForce........... 246 12.5 LocalSearch–ThinkGlobally,ActLocally ................... 249 12.6 EvolutionaryAlgorithms ................................... 259 12.7 ImplementationNotes...................................... 261 12.8 HistoricalNotesandFurtherFindings ........................ 262 A Appendix ..................................................... 263 A.1 MathematicalSymbols..................................... 263 A.2 MathematicalConcepts .................................... 264 A.3 BasicProbabilityTheory ................................... 266 A.4 UsefulFormulae .......................................... 269 XII Contents References......................................................... 273 Index ............................................................. 285