ebook img

Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining PDF

132 Pages·2022·15.751 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining

Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining RIVER PUBLISHERS SERIES IN AUTOMATION, CONTROL AND ROBOTICS SeriesEditors SRIKANTAPATNAIK ISHWARK.SETHI SOAUniversity OaklandUniversity Bhubaneswar,India USA QUANMINZHU UniversityoftheWestofEngland UK Advisor TAREKSOBH UniversityofBridgeport USA Indexing: All books published in this series are submitted to the Web of Science BookCitationIndex(BkCI),toCrossRefandtoGoogleScholar. The “River Publishers Series in Automation, Control and Robotics” is a series of comprehensive academic and professional books which focus on the theory and applicationsofautomation,controlandrobotics.Theseriesfocusesontopicsranging from the theory and use of control systems, automation engineering, robotics and intelligentmachines. Books published in the series include research monographs, edited volumes, handbooksandtextbooks.Thebooksprovideprofessionals,researchers,educators, andadvancedstudentsinthefieldwithaninvaluableinsightintothelatestresearch anddevelopments. Topics covered in the series include, but are by no means restricted to the following: • RobotsandIntelligentMachines • Robotics • ControlSystems • ControlTheory • AutomationEngineering Foralistofotherbooksinthisseries,visitwww.riverpublishers.com The NEC and You Perfect Together: Algorithms and Applications fAo rCAomcapdreehmeincsSiveea Srctuhd, yR eocf othme mendation and QuaNnatittiaotnivael EAlescstoricciaalt CioondRe ule Mining Gregory P. Bierals Emmanouil Amolochitis Electrical Design Institute, USA UniversityofAalborg Denmark River Publishers Published2018byRiverPublishers RiverPublishers Alsbjergvej10,9260Gistrup,Denmark www.riverpublishers.com DistributedexclusivelybyRoutledge 4ParkSquare,MiltonPark,Abingdon,OxonOX144RN 605ThirdAvenue,NewYork,NY10017,USA Algorithms and Applications for Academic Search, Recommendation and QuantitativeAssociationRuleMining/byEmmanouilAmolochitis. ©2018RiverPublishers.Allrightsreserved.Nopartofthispublicationmay bereproduced,storedinaretrievalsystems,ortransmittedinanyformorby anymeans,mechanical,photocopying,recordingorotherwise,withoutprior writtenpermissionofthepublishers. RoutledgeisanimprintoftheTaylor&FrancisGroup,aninforma business ISBN978-87-93609-64-8(print) While every effort is made to provide dependable information, the publisher, authors, and editors cannot be held responsible for any errors oromissions. Contents Abstract ix Acknowledgements xi ListofFigures xiii ListofTables xvii 1 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 AlgorithmicMotivationandObjectives . . . . . . . . . . . 3 1.3 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 AlgorithmicChallenges . . . . . . . . . . . . . . . . . . . 11 2 AcademicSearchAlgorithms 17 2.1 CollectingDatafromScientificPublications . . . . . . . . . 17 2.2 TopicSimilarityUsingGraphs . . . . . . . . . . . . . . . . 18 2.2.1 GraphConstruction . . . . . . . . . . . . . . . . . . 18 2.2.2 TypeIGraph . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 TypeIIGraph . . . . . . . . . . . . . . . . . . . . . 19 2.3 TopicSimilarityUsingGraphs . . . . . . . . . . . . . . . . 20 2.4 SystemArchitecture . . . . . . . . . . . . . . . . . . . . . 20 2.5 HeuristicHierarchy . . . . . . . . . . . . . . . . . . . . . . 21 2.5.1 TermFrequencyHeuristic . . . . . . . . . . . . . . 22 2.5.2 DepreciatedCitationCountHeuristic . . . . . . . . 26 2.5.3 MaximalWeightedCliquesHeuristic . . . . . . . . 28 2.6 Experiments’Design . . . . . . . . . . . . . . . . . . . . . 29 2.7 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . 32 2.7.1 ComparisonswithACMPortal . . . . . . . . . . . . 33 2.7.2 ComparisonwithotherHeuristicConfigurations . . 34 v vi Contents 2.7.3 ComparisonwithOtherAcademicSearch Engines . . . . . . . . . . . . . . . . . . . . . . . . 43 2.7.4 CanPubSearchPromoteGoodPublications “Buried”inACMPortalResults? . . . . . . . . . . 49 2.7.5 Run-timeOverhead . . . . . . . . . . . . . . . . . . 52 3 RecommenderSystems 53 3.1 SystemArchitectureOverview . . . . . . . . . . . . . . . . 53 3.1.1 AMOREWebService . . . . . . . . . . . . . . . . 54 3.1.2 AMOREBatchProcess. . . . . . . . . . . . . . . . 55 3.2 RecommenderEnsemble . . . . . . . . . . . . . . . . . . . 60 3.2.1 RecommendationApproach . . . . . . . . . . . . . 60 3.2.2 Content-BasedRecommender . . . . . . . . . . . . 60 3.2.3 Item-BasedRecommender . . . . . . . . . . . . . . 62 3.2.4 User-BasedRecommender . . . . . . . . . . . . . . 64 3.2.5 FinalHybridParallelRecommenderEnsemble . . . 64 3.2.6 ExperimentswithOtherBaseRecommender Algorithms . . . . . . . . . . . . . . . . . . . . . . 65 3.3 ComputationalResults . . . . . . . . . . . . . . . . . . . . 65 3.4 UserandSystemInterfaces . . . . . . . . . . . . . . . . . . 74 4 QuantitativeAssociationRulesMining 77 4.1 WhyQuantitativeAssociationRules? . . . . . . . . . . . . 77 4.2 AlgorithmOverview . . . . . . . . . . . . . . . . . . . . . 78 4.3 AlgorithmDesign . . . . . . . . . . . . . . . . . . . . . . 79 4.4 RecommenderPost-Processor . . . . . . . . . . . . . . . . 82 4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.2 Post-ProcessingAlgorithm . . . . . . . . . . . . . . 82 4.5 SyntheticDatasetGenerator . . . . . . . . . . . . . . . . . 83 4.6 ConfigurationParameters. . . . . . . . . . . . . . . . . . . 84 4.7 ItemDemandElasticity. . . . . . . . . . . . . . . . . . . . 84 4.8 DatasetGenerationProcess. . . . . . . . . . . . . . . . . . 84 4.8.1 GenerationCycle . . . . . . . . . . . . . . . . . . . 86 4.8.2 UpdateCycle . . . . . . . . . . . . . . . . . . . . . 87 4.9 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . 88 4.9.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.9.2 QARMResultsUsingSyntheticallyGenerated Datasets . . . . . . . . . . . . . . . . . . . . . . . . 88 Contents vii 4.9.3 QARMResultsUsingMovielensDataset . . . . . . 95 4.9.4 QARMResultsUsingPost-Processor . . . . . . . . 95 5 ConclusionsandFutureDirections 101 References 105 Index 111 AbouttheAuthor 113 Abstract Inthebook,wepresentnovelalgorithmsforacademicsearch,recommenda- tion,andassociationruleminingthathavebeendevelopedandoptimizedfor different commercial as well as academic purpose systems. Along with the designandimplementationofalgorithms,amajorpartoftheworkpresented inthebookinvolvesthedevelopmentofnewsystemsbothforcommercialas well as for academic use. In the first part of the book, we introduce a novel hierarchical heuristic scheme for re-ranking academic publications retrieved from standard digital libraries. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score, and a graph-theoretic computed score that relatesthepaper’sindextermswitheachother.Inordertoevaluatetheperfor- manceoftheintroducedalgorithms,ameta-searchenginehasbeendesigned and developed that submits user queries to standard digital repositories of academic publications and re-ranks the top-n results using the introduced hierarchical heuristic scheme. On the second part of the book, we describe thedesignofnovelrecommendationalgorithmswithapplicationindifferent types of e-commerce systems. The newly introduced algorithms are a part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services’ provider. The initial version of the system uses a novel hybrid recommender (user, item, and content based) and provides daily recommendations to all active subscribersoftheprovider(currentlymorethan30,000).Therecommenders thatwearepresentingarehybridbynature,usinganensembleconfiguration of different content, user, as well as item-based recommenders in order to providemoreaccuraterecommendationresults.Inthethirdpartofthebook, we present the design of a quantitative association rule mining algorithm. Quantitative association rules refer to a special type of association rules of the form: antecedent implies consequent consisting of a set of numerical or quantitativeattributes.Theintroducedminingalgorithmprocessesaspecific numberofuserhistoriesinordertogenerateasetofassociationruleswitha minimally required support and confidence value. The generated rules show ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.