ebook img

Algorithmic randomness: progress and prospects PDF

370 Pages·2020·1.679 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algorithmic randomness: progress and prospects

AlgorithmicRandomness Thelasttwodecadeshaveseenawaveofexcitingnewdevelopmentsinthetheoryof algorithmicrandomnessanditsapplicationstootherareasofmathematics.This volumesurveysmuchoftherecentworkthathasnotbeenincludedinpublished volumesuntilnow.Itcontainsarangeofarticlesonalgorithmicrandomnessandits interactionswithcloselyrelatedtopicssuchascomputabilitytheoryand computationalcomplexity,aswellaswiderapplicationsinareasofmathematics includinganalysis,probability,andergodictheory.Inadditiontobeingan indispensablereferenceforresearchersinalgorithmicrandomness,theunifiedviewof thetheorypresentedheremakesthisanexcellententrypointforgraduatestudentsand othernewcomerstothefield. Johanna N. Y. Franklin isanAssociateProfessoratHofstraUniversityin Hempstead,NY.SheearnedherPh.D.fromtheGroupinLogicandtheMethodology ofScienceattheUniversityofCalifornia,Berkeleyandhasheldpostdoctoral positionsinSingapore,Canada,andtheUnitedStates. Christopher P. Porter isanAssistantProfessorofMathematicsatDrake UniversityinDesMoines,IA.AfterreceivinghisPh.D.inthejointprogramin mathematicsandphilosophyattheUniversityofNotreDame,Portercompleted postdoctoralpositionsattheUniversityofParis7andtheUniversityofFlorida. LECTURE NOTES IN LOGIC A PublicationofTheAssociation forSymbolicLogic Thisseriesservesresearchers,teachers,andstudentsinthefieldofsymbolic logic,broadlyinterpreted.Theaimoftheseriesistobringpublicationstothe logiccommunitywiththeleastpossibledelayandtoproviderapid disseminationofthelatestresearch.Scientificqualityistheoverriding criterionbywhichsubmissionsareevaluated. EditorialBoard ZoeChatzidakis DMA,EcoleNormaleSupe´rieure,Paris PeterCholak,ManagingEditor DepartmentofMathematics,UniversityofNotreDame,Indiana LeonHorsten SchoolofArts,UniversityofBristol PaulLarson DepartmentofMathematics,MiamiUniversity PauloOliva SchoolofElectronicEngineeringandComputerScience,QueenMary UniversityofLondon MartinOtto DepartmentofMathematics,TechnischeUniversita¨tDarmstadt,Germany SlawomirSolecki DepartmentofMathematics,CornellUniversity,NewYork Moreinformation,includingalistofthebooksintheseries,canbefoundat www.aslonline.org/lecture-notes-in-logic/ LECTURE NOTES IN LOGIC 50 Algorithmic Randomness Progress and Prospects Editedby JOHANNA N. Y. FRANKLIN HofstraUniversity,NewYork CHRISTOPHER P. PORTER DrakeUniversity,Iowa association for symbolic logic UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108478984 DOI:10.1017/9781108781718 AssociationforSymbolicLogic RichardA.Shore,Publisher DepartmentofMathematics,CornellUniversity,Ithaca,NY14853 http://aslonline.org ©AssociationforSymbolicLogic2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedintheUnitedKingdombyTJInternationalLtd,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-47898-4Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. CONTENTS Preface............................................................. vii JohannaN.Y.FranklinandChristopherP.Porter Keydevelopmentsinalgorithmicrandomness...................... 1 HenryTowsner Algorithmicrandomnessinergodictheory......................... 40 JasonRute Algorithmicrandomnessandconstructive/computablemeasure theory............................................................ 58 MathieuHoyrup Algorithmicrandomnessandlayerwisecomputability.............. 115 JohannaN.Y.Franklin Relativizationinrandomness...................................... 134 GeorgeBarmpalias AspectsofChaitin’sOmega....................................... 175 ChristopherP.Porter Biasedalgorithmicrandomness.................................... 206 BenoitMonin Higherrandomness............................................... 232 DonaldM.Stull Resourceboundedrandomnessanditsapplications................. 301 Index............................................................... 349 v PREFACE Sincetheearly2000s,therehasbeenaproliferationofresearchinalgorithmic randomness,culminatinginthepublicationoftwotextbooks: Computability andRandomness,writtenbyAndre´Niesandpublishedin2009,andAlgorithmic RandomnessandComplexity,writtenbyRodneyDowneyandDenisHirschfeldt andpublishedin2010. Thesevolumesnotonlyexhaustivelycoveredthekey developmentsinthefieldfromthemiddleofthe1960sthroughthelate1990s butalsodetailedmanyofthecentraldevelopmentsfromthefirstdecadeofthe 2000s. Since the publication of these two volumes, research in algorithmic ran- domnesshascontinuedunabated,withaparticularemphasisonapplications of algorithmic randomness to other parts of mathematics in such areas as classicalanalysis,ergodictheory,andprobabilitytheory. Inadditiontothese developmentsinwhatonemightcall“appliedalgorithmicrandomness,”there havebeenkeydevelopmentsoverthissameperiodoftimeintwoareasthat werealreadyveryactiveintheearly2000s,namely,approachestorelativization inrandomnessandinteractionsbetweenalgorithmicrandomnessandleft-c.e. realnumbers. Lastly,therehasbeenaconsiderableamountofnewworkon notionsofhigherrandomness,i.e.,notionsofrandomnessdefinedinterms ofhighercomputability,aswellasresource-boundedrandomnesspublished duringthistime. The need for a single source detailing these many developments is thus apparent. Thegoalofthepresentvolumeistofillthisgapintheliterature. Theeditorsofthisvolumehavecommissionedsixsurveysbyvariousexperts inthefieldandcontributedthreesurveysoftheirown. Althoughnarrowerin scopethanboththeNiesandDowney/Hirschfeldtvolumes,thiscollectionof surveysshouldproveusefulnotonlyforseasonedresearchersinthefield,but alsoforbeginninggraduatestudentswhoareinterestedingettinguptospeed ontheworkinalgorithmicrandomnessthathasbeencarriedoutinthelast decadeaswellasfornonspecialistswhoarelookingforaccessiblepointsof entryintorecenttrendsinalgorithmicrandomness. Thesurveysinthisvolumeareorganizedasfollows. Webeginwith“Key vii viii PREFACE developmentsinalgorithmicrandomness”byJohannaFranklinandChristo- pherPorter,whichprovidesanaccountofthedevelopmentofthefield. This articleservestoprovideageneralintroductiontotheunderlyingconceptsof algorithmicrandomnessforthosenewtothesubject,emphasizingthework that serves as a background for the surveys in this volume via a historical perspective,andincludesathoroughintroductiontothenecessaryconcepts fromcomputabilitytheory. Inadditiontoadiscussionofthefundamental ideasofalgorithmicrandomnessfromthe1960sand1970s,weemphasizekey resultsinthe1980s,1990s,andearly2000s. Next, we have three articles on the interaction between algorithmic ran- domness and topics from classical analysis and ergodic theory. First, in “Algorithmicrandomnessinergodictheory,”HenryTowsnerlaysoutrecent workoninteractionsbetweenergodictheoryandvariousnotionsofalgorithmic randomness. Afterabriefreviewofthebasicsofdynamicalsystems,Towsner explainshowclassicalresultsonthetypicalpointsinergodicsystems,suchas variantsofBirkhoff’sergodictheorem,providecharacterizationsofdifferent classesofeffectivelytypicalpoints(often,thepointsthatareMartin-Lo¨fran- domorSchnorrrandom)whentheseresultsareframedintermsofcomputable transformations and particular types of effective open sets. Towsner also discussestheeffectivityoftheergodicdecompositionaswellasthecharacteri- zationoftypicalpointsinthenonergodicsetting. Inthelastseveralsections ofhispaper,Towsnerbrieflydiscussesnotionsofrandomnesswithrespectto nonuniformmeasures,notionsofrandomnessingeneralcomputablemetric spaces,andrandomnessinmoregeneraltopologicalsystems. Second, Jason Rute’s survey, “Algorithmic randomness and construc- tive/computablemeasuretheory,”providesadetailedhistoricalaccountofthe connectionsbetweenalgorithmicrandomnessandconstructivemathematics aswellasacatalogofresultsthatcharacterizevariousnotionsofalgorithmic randomnessintermsoftheoremsofclassicalanalysis. Forexample,astandard resultfromclassicalanalysisisthateverymonotonefunctionf :[0,1]→R isdifferentiableatalmosteveryx ∈ [0,1]. However,ifwerestrictourselves tocomputablefunctions,wefindthatx iscomputablyrandomifandonlyif everycomputable,monotonefunctionf :[0,1]→Risdifferentiableatx,a recentresultduetoBrattka,J.Miller,andNies. Aftersurveyingmanyresults of this flavor and discussing their connections to constructive and reverse mathematics,Ruteconcludeswithanextendeddiscussionoftheequivalence ofanumberofapproachestocomputablemeasuretheory. Third, Mathieu Hoyrup’s “Algorithmic randomness and layerwise com- putability”isanintroductiontothenotionoflayerwisecomputability,first introducedbyHoyrupandRojas. Motivatedasaformalizationofthenotionof aneffectivelymeasurablefunction,layerwisecomputablefunctionsaredefined explicitlyintermsofMartin-Lo¨frandomnessbymeansofauniversalMartin- Lo¨ftest. Hoyrupthendemonstratesthefruitfulnessofthisnotion,detailing PREFACE ix applicationstothestudyofalgorithmicrandomnesswithrespecttoaclass ofmeasures,thedecompositionofmeasures,theergodicdecomposition,and randomobjectssuchasalgorithmicallyrandomclosedsetsandalgorithmically randomBrownianmotion. The third grouping of surveys consists of more traditional topics in al- gorithmicrandomness,namely,relativerandomness,Omeganumbers,and randomnesswithrespecttononuniformprobabilitymeasuresonCantorspace. WhilethesetopicsaretreatedinbothDowneyandHirschfeldt’sandNies’s books, a number of new approaches to these topics that have changed the directionofthefieldhaveemergedsincethen. InJohannaFranklin’s“Rel- ativization in randomness,” she turns her attention to two different topics that exemplify recent work in this area: lowness for randomness and van Lambalgen’sTheorem. Afterasummaryofresultsobtainedusingthestandard relativization,sheconsidersrelativizationthroughtwodifferentlenses. The first is a study of the robustness of the class of sequences that are low for Martin-Lo¨frandomness(theK-trivials)bymeansofrecentcharacterizations usingavarietyofmethods. Hersecondfocusisthatofnewer,moreuniform approaches to relativization, namely those by Miyabe, Rute, and Kihara. Theseapproachesarestudiedviaaconsiderationoftheextenttowhichvan Lambalgen’sTheoremholdsfordifferenttypesofrandomsequencesunder thisnewrelativizationaswellasthepropertiesthatthesequencesthatarelow forthesetypesofrandomsequencesunderithave. Next, in “Aspects of Chaitin’s Omega,” George Barmpalias provides an accountoftherecentresearchonChaitin’scelebratednumberΩ. Inaddition tosurveyinganumberofstandardresultsonΩ,includingmanyresultsthat wereestablishedintheearly-tomid-2000saswellassomeofChaitin’soriginal work,Barmpaliasalsocoversawiderangeofnewerresults,includinganalogs of Chaitin’s Omega in the computably enumerable sets, various results on theratesofapproximationsofOmeganumbers,thecomputationalpowerof Omeganumbers,andprobabilitiesassociatedwithdifferentclassesofmachines andtheirrelationshipstorelativizationsofOmega. In“Biasedalgorithmicrandomness,”ChristopherPorterroundsoutthissec- tionwithasurveyofrecentworkinvolvingalgorithmicrandomnesswithrespect tononuniformprobabilitymeasuresonCantorspace,atopicthatfirstappeared inMartin-Lo¨f’spivotal1966paperandwasfurtheredbyLevinandZvonkin andthenbyKautzinhisdissertation. Thesurveydealswithtwomaintopics: (1)randomnesswithrespecttocomputableprobabilitymeasures,including transformingrandomnessfromonemeasureintorandomnessinanother,the computationalpowerofsequencesthatarerandomwithrespecttoacomputable measure,andrandomnesswithrespecttocomputable,countablysupported measures,and(2)randomnesswithrespecttononcomputablemeasures,in- cludingtheworkofReimannandSlamanoncontinuousrandomness,neutral measures,andthenotionofblindrandomnessdevelopedbyKjos-Hanssen.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.