ebook img

Algorithmic Aspects of Machine Learning PDF

162 Pages·2018·1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algorithmic Aspects of Machine Learning

AlgorithmicAspectsofMachineLearning Thisbookbridgestheoreticalcomputerscienceandmachinelearningbyexploring whatthetwosidescanteacheachother.Itemphasizestheneedforflexible,tractable modelsthatbettercapturenotwhatmakesmachinelearninghardbutwhatmakesit easy.Theoreticalcomputerscientistswillbeintroducedtoimportantmodelsin machinelearningandtothemainquestionswithinthefield.Machinelearning researcherswillbeintroducedtocutting-edgeresearchinanaccessibleformatand willgainfamiliaritywithamodernalgorithmictoolkit,includingthemethodof moments,tensordecompositions,andconvexprogrammingrelaxations. Thetreatmentgoesbeyondworst-caseanalysistobuildarigorousunderstanding abouttheapproachesusedinpracticeandtofacilitatethediscoveryofexcitingnew waystosolveimportant,long-standingproblems. ankur moitraistheRockwellInternationalAssociateProfessorof MathematicsattheMassachusettsInstituteofTechnology.Heisaprincipal investigatorintheComputerScienceandArtificialIntelligenceLab(CSAIL)anda corememberoftheTheoryofComputationGroup,MachineLearning@MIT,andthe CenterforStatistics.Theaimofhisworkistobridgethegapbetweentheoretical computerscienceandmachinelearningbydevelopingalgorithmswithprovable guaranteesandfoundationsforreasoningabouttheirbehavior.Heistherecipientofa PackardFellowship,aSloanFellowship,aNationalScienceFoundationCAREER Award,anNSFComputingandInnovationFellowship,andaHertzFellowship. ToDianaandOlivia,thesunshineinmylife Algorithmic Aspects of Machine Learning ANKUR MOITRA MassachusettsInstituteofTechnology UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314-321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107184589 DOI:10.1017/9781316882177 ©AnkurMoitra2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedintheUnitedStatesofAmericabySheridanBooks,Inc. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Moitra,Ankur,1985–author. Title:Algorithmicaspectsofmachinelearning/AnkurMoitra, MassachusettsInstituteofTechnology. Description:Cambridge,UnitedKingdom;NewYork,NY,USA:Cambridge UniversityPress,2018.|Includesbibliographicalreferences. Identifiers:LCCN2018005020|ISBN9781107184589(hardback)| ISBN9781316636008(paperback) Subjects:LCSH:Machinelearning–Mathematics.|Computeralgorithms. Classification:LCCQ325.5.M652018|DDC006.3/1015181–dc23 LCrecordavailableathttps://lccn.loc.gov/2018005020 ISBN978-1-107-18458-9Hardback ISBN978-1-316-63600-8Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pagevii 1 Introduction 1 2 NonnegativeMatrixFactorization 4 2.1 Introduction 4 2.2 AlgebraicAlgorithms 11 2.3 StabilityandSeparability 16 2.4 TopicModels 22 2.5 Exercises 27 3 TensorDecompositions:Algorithms 29 3.1 TheRotationProblem 29 3.2 APrimeronTensors 31 3.3 Jennrich’sAlgorithm 35 3.4 PerturbationBounds 40 3.5 Exercises 46 4 TensorDecompositions:Applications 48 4.1 PhylogeneticTreesandHMMs 48 4.2 CommunityDetection 55 4.3 ExtensionstoMixedModels 58 4.4 IndependentComponentAnalysis 65 4.5 Exercises 69 5 SparseRecovery 71 5.1 Introduction 71 5.2 IncoherenceandUncertaintyPrinciples 74 5.3 PursuitAlgorithms 77 v vi Contents 5.4 Prony’sMethod 80 5.5 CompressedSensing 83 5.6 Exercises 88 6 SparseCoding 89 6.1 Introduction 89 6.2 TheUndercompleteCase 92 6.3 GradientDescent 96 6.4 TheOvercompleteCase 101 6.5 Exercises 106 7 GaussianMixtureModels 107 7.1 Introduction 107 7.2 Clustering-BasedAlgorithms 111 7.3 DiscussionofDensityEstimation 115 7.4 Clustering-FreeAlgorithms 118 7.5 AUnivariateAlgorithm 123 7.6 AViewfromAlgebraicGeometry 127 7.7 Exercises 131 8 MatrixCompletion 132 8.1 Introduction 132 8.2 NuclearNorm 135 8.3 QuantumGolfing 139 Bibliography 143 Index 150 Preface The monograph is based on the class Algorithmic Aspects of Machine LearningtaughtatMITinfall2013,spring2015,andfall2017.Thankyouto allthestudentsandpostdocswhoparticipatedinthisclassandmadeteaching itawonderfulexperience. vii

Description:
This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy. Theoretical computer scientists will be in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.