ebook img

Algorithmic and Geometric Topics Around Free Groups and Automorphisms PDF

159 Pages·2017·1.659 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algorithmic and Geometric Topics Around Free Groups and Automorphisms

Advanced Courses in Mathematics - CRM Barcelona Javier Aramayona Volker Diekert Christopher J. Leininger Pedro V. Silva Armin Weiß Algorithmic and Geometric Topics Around Free Groups and Automorphisms Advanced Courses in Mathematics CRM Barcelona Centre de Recerca Matemàtica Managing Editor: Enric Ventura More information about this series at http://www.springer.com/series/5038 Javier Aramayona • Volker Diekert Christopher J. Leininger • Pedro V. Silva Armin Weiß Algorithmic and Geometric Topics Around Free Groups and Automorphisms Editors for this volume: Juan González-Meneses, Universidad de Sevilla Martin Lustig, Université d’Aix-Marseille Enric Ventura, Universitat Politècnica de Catalunya Javier Aramayona Volker Diekert Universidad Autónoma de Madrid - ICMAT Institut für Formale Methoden Madrid, Spain der Informatik Universität Stuttgart Christopher J. Leininger Stuttgart, Germany Department of Mathematics University of Illinois Urbana-Champaign Pedro V. Silva Urbana, IL, USA Centro de Matemática Universidade do Porto Armin Weiß Porto, Portugal Institut für Formale Methoden der Informatik Universität Stuttgart Stuttgart, Germany ISSN 2297-0304 ISSN2297- 0312 (electr onic) Advanced Courses in Mathematics - CRM Barcelona ISBN 978-3-319-60939-3 ISBN 978-3-319-60940-9 (eBook) DOI 10.1007/978-3-319-60940-9 Library of Congress Control Number: 2017955841 Mathematics Subject Classification (2010): 20E05, 20E08, 20E36, 20M35, 20F67, 68Q45 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This book is published under the trade name Birkhäuser, www.birkhauser-science.com The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Foreword The Research Programme on Automorphisms of Free Groups: Algorithms, Ge- ometry and Dynamics was organized and took place at the Centre de Recerca Matema`tica (CRM), Bellaterra, Barcelona, from September to December 2012. It wascoordinatedbyJuanGonza´lez-Meneses(UniversidaddeSevilla,Spain),Martin Lustig (Universit´e Aix-Marseille III, Marseille, France), Alexandra Pettet (Uni- versity of British Columbia, Vancouver, Canada), and Enric Ventura (Universitat Polit`ecnica de Catalunya, Barcelona, Catalonia). Duringtheseintensefourmonthsseveralscientificeventstookplace,including the Summer School on Automorphisms of Free Groups (held from September 25th to 29th, 2012), the international Conference on Automorphisms of Free Groups (heldfromNovember12thto16th,2012),twoworkshops,andaweeklyseminar,all ofthemwiththeactiveparticipationofmanyvisitorsinvitedtoattendfromseveral countries abroad. Of course, in addition, all participants had numerous occasions for informal but fruitful conversations among themselves, discussing mathematical ideas which, in many cases, gave rise to new and interesting results, published later in regular mathematical research journals. Altogether, it was a very exciting and stimulating experience, which contributed to the development of our research area, and gave extra opportunities to researchers and young students to work and interact with each other, in a very dynamic and productive research atmosphere. In the present volume of the series Advanced Courses in Mathematics CRM Barcelona,wepresentanextendedandelaboratedversionofthenotescorresponding tothethreecoursestaughtattheSummerSchoolonAutomorphismsofFreeGroups, by internationally recognized experts in the area. In the first chapter, entitled “An Automata-Theoretic Approach to the Study of Fixed Points of Endomorphisms”, professor Pedro Silva presents the basic definitions and results on automata theory, and an interesting review of their important role in several parts of group theory. Particularly interesting is the relationbetweenautomataandendomorphismsofvirtuallyfreegroups;thechapter compiles a brief history of the study of (finite and infinite) fixed points of group endomorphisms, and discusses the case of virtually free groups with the help of automata. The second chapter, “Context-Free Groups and Bass–Serre Theory”, by pro- fessors Volker Diekert and Armin Weiß, also concentrates on virtually free groups, v vi Foreword but from a more language theoretic point of view: by the classical Muller–Schupp theorem, the family of (finitely generated) virtually free groups happens to be the same as that of context-free groups, and this allows the authors to investigate them with techniques from language theory (automata, regular and context-free languages, rewriting systems, etc.). From this chapter we would like to point to an introduction to Bass–Serre theory using rewriting systems, and a self-contained access to the Muller–Schupp theorem without using Stallings’ structure theorem or the accessibility result by Dunwoody. Finally, the third and last chapter is entitled “Hyperbolic Structures on Sur- faces and Geodesic Currents”. Switchingintoamore geometric territory, professors Javier Aramayona and Christopher J. Leininger give an account of Bonahon’s descriptionofThurston’scompactificationofTeichmu¨llerspaceintermsofgeodesic currents on surfaces: it is explained why a surface equipped with a complete hy- perbolic structure is isometric to the quotient of H2 by a Fuchsian group; then, after reviewing some basic features of Teichmu¨ller spaces and measured geodesic laminations, and after some words about the “classical” construction of Thurston’s compactification, the authors introduce geodesic currents, and develop Bonahon’s interpretation of the compactification of Teichmu¨ller space, giving then some gen- eralizations of the notion of geodesic currents to other settings (such as negatively curved metrics on surfaces, flat metrics on surfaces, and free groups). We would like to express our gratitude to CRM for hosting and supporting our research programme. We also convey our warm thanks to the CRM Director, Joaquim Bruna, and to the secretaries and staff of the center for providing great facilities, and a very pleasant working environment. Our gratitude also to the lecturers and authors of these notes, Pedro Silva, Volker Diekert, Armin Weiß, Javier Aramayona, and Christopher J. Leininger for the enthusiasm and energy showed during the courses, for their careful preparation of these notes, and for their patience in the process of publication. Finally, our special thanks also to those who attended the courses, young and senior, for their interest, their active participation, and their enthusiasm towards mathematics. Sevilla, Juan Gonza´lez-Meneses, Marseille, Martin Lustig, Barcelona, Enric Ventura. April 2017. Contents 1 An Automata-Theoretic Approach to the Study of Fixed Points of Endomorphisms 1 By Pedro Silva 1.1 Languages and Automata . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Words and Languages . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.4 Rewriting Systems . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Automata in Group Theory . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Free Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Virtually Free Groups . . . . . . . . . . . . . . . . . . . . . 10 1.2.3 Hyperbolic Groups . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.4 Automatic Groups . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.5 Self-Similar Groups. . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Fixed Points of Endomorphisms . . . . . . . . . . . . . . . . . . . . 17 1.3.1 A Brief Introduction . . . . . . . . . . . . . . . . . . . . . . 17 1.3.2 Fixed Points of Transductions . . . . . . . . . . . . . . . . . 18 1.3.3 Virtually Free Group Endomorphisms . . . . . . . . . . . . 21 1.4 Fixed Points in the Boundary . . . . . . . . . . . . . . . . . . . . . 23 1.4.1 A Brief Introduction . . . . . . . . . . . . . . . . . . . . . . 23 1.4.2 A Model for the Boundary of Virtually Free Groups . . . . 24 1.4.3 Uniformly Continuous Endomorphisms. . . . . . . . . . . . 28 1.4.4 Fixed Points in the Boundary of Virtually Free Groups . . 29 1.4.5 Classification of the Infinite Fixed Points . . . . . . . . . . 34 1.5 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 Context-Free Groups and Bass–Serre Theory 43 By Volker Diekert and Armin Weiß 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 vii viii Contents 2.2.1 Rewriting Systems . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.2 Presentations of Monoids and Groups . . . . . . . . . . . . 46 2.2.3 Preliminaries on Graphs . . . . . . . . . . . . . . . . . . . . 47 2.3 Formal Language Theory for Groups . . . . . . . . . . . . . . . . . 50 2.3.1 Regular Languages . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.2 The Chomsky Hierarchy . . . . . . . . . . . . . . . . . . . . 53 2.3.3 Context-Free Languages . . . . . . . . . . . . . . . . . . . . 55 2.4 Bass–Serre Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.1 Britton Reductions over Graphs of Groups . . . . . . . . . 67 2.4.2 Bass–Serre Tree. . . . . . . . . . . . . . . . . . . . . . . . . 69 2.4.3 Groups Acting on Trees . . . . . . . . . . . . . . . . . . . . 69 2.4.4 Finite Vertex Groups. . . . . . . . . . . . . . . . . . . . . . 72 2.4.5 Embedding into Semidirect Products . . . . . . . . . . . . . 73 2.5 Pregroups and Geodesic Rewriting Systems . . . . . . . . . . . . . 75 2.5.1 Finite Graphs of Groups and Pregroups . . . . . . . . . . . 78 2.6 Graphs and Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.6.1 Cayley Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.6.2 Quasi-Isometries and Treewidth. . . . . . . . . . . . . . . . 89 2.7 Cuts and Structure Trees . . . . . . . . . . . . . . . . . . . . . . . 90 2.7.1 Cuts in Graphs of Finite Treewidth . . . . . . . . . . . . . 91 2.7.2 Optimally Nested Cuts . . . . . . . . . . . . . . . . . . . . 93 2.7.3 The Structure Tree . . . . . . . . . . . . . . . . . . . . . . . 98 2.7.4 Actions on the Structure Tree . . . . . . . . . . . . . . . . . 99 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3 Hyperbolic Structures on Surfaces and Geodesic Currents 111 By Javier Aramayona and Christopher J. Leininger 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.2 Hyperbolic Structures on Surfaces . . . . . . . . . . . . . . . . . . 112 3.3 Teichmu¨ller Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.3.1 Length Functions . . . . . . . . . . . . . . . . . . . . . . . . 116 3.3.2 Fenchel–Nielsen Coordinates . . . . . . . . . . . . . . . . . 117 3.3.3 Measured Laminations and Thurston’s Compactification of T(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.4 Geodesic Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.4.1 Measured Laminations as Measures on G(S˜) . . . . . . . . 122 3.4.2 Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.4.3 Alternative Definition of Geodesic Currents . . . . . . . . . 123 3.4.4 The Flow-Box Topology on Curr(S) . . . . . . . . . . . . . 126 3.4.5 Intersection Number Between Geodesic Currents . . . . . . 127 3.4.6 Projective Currents . . . . . . . . . . . . . . . . . . . . . . 129 3.4.7 Determining Currents from Intersection Numbers . . . . . . 131 Contents ix 3.4.8 Liouville Currents . . . . . . . . . . . . . . . . . . . . . . . 133 3.4.9 Teichmu¨ller Space . . . . . . . . . . . . . . . . . . . . . . . 134 3.4.10 Thurston’s Compactification . . . . . . . . . . . . . . . . . 135 3.5 Geodesic Currents in Other Settings . . . . . . . . . . . . . . . . . 136 3.5.1 Liouville Measures for Riemannian Metrics . . . . . . . . . 137 3.5.2 From Liouville Measure to Liouville Current . . . . . . . . 140 3.5.3 Mo¨bius Currents . . . . . . . . . . . . . . . . . . . . . . . . 141 3.5.4 Quadratic Differentials . . . . . . . . . . . . . . . . . . . . . 143 3.5.5 Free Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.