ALGERIAN REPUBLIC DEMOCRATIC AND POPULAR Ministry of teaching and scientific research UNIVERSITY OF SCIENCE AND TECHNOLOGY MOHAMED BOUDHIAF ORAN U.S.T.O FACULTY OF MECHANICAL ENGINEERING DEPARTEMENT OF MARINE ENGINEERING Thesis for the degree of master in energetic SIMULATION OF TURBULENT FLOW ACROSS IN-LINE TUBE BUNDLE USING DIFFERENT URANS MODELS Presented by Miss AMMOUR Dalila Supervisors Pr. ADJLOUT Lahouari Dr. ADDAD Yacine 2006-2007 Contents List of Figures.................................................................................................................4 List of Tables..................................................................................................................7 Abstract...........................................................................................................................8 Acknowledgements......................................................................................................10 Nomenclature...............................................................................................................12 1 Introduction 1.1 Introduction...........................................................................................................15 1.2 Study objectives....................................................................................................19 1.3 Outline of the thesis..............................................................................................20 2 Literature Review 2.1 Introduction...........................................................................................................21 2.2 Literature review of tube bundles.........................................................................21 2.2.1 LES of tube bundles....................................................................................21 2.2.2 Heat transfer in tube bundles......................................................................22 2.2.3 Pressure Fluctuations..................................................................................23 2.2.4 Vortex shedding..........................................................................................24 2.2.5 Vibrations………………………………………………………….……...26 3 Governing Equations 3.1 Introduction..........:..............................................................................................28 3.2 Navier-Stokes equations......................................................................................28 3.2.1 Reynolds Averaging.....................................................................................28 3.3 Classes of turbulence models...............................................................................29 3.3.1 Algebraic turbulence models…………………………………...…………29 3.3.1.1 Baldwin-Lomax model…………………………………...……….29 3.3.1.2 Cebeci-Smith model……………………………………………….30 3.3.2 One-equation turbulence models………………………...………………...30 3.3.2.1 Prandtl’s one-equation model……………...………………………30 3.3.3 Two equation turbulence models………...…………………………………31 3.3.3.1 Boussinesq eddy viscosity assumption……………………...……..31 2 3.3.3.2 K-epsilon models……………………...…………………………...32 3.3.3.3 K-omega models…………………………….……………………..33 3.3.4 V2-f models……………………………………………………………...35 3.2.5 Reynolds stress model (RSM)…………………………………………...36 3.3.6 Large Eddy simulation (LES)…………………………………………....40 3.3.7 Detached Eddy simulation (DES)…………………….………….……...42 3.3.8 Direct numerical simulation (DNS)…………………….……………….43 3.3.9 The SST-C model……………………………….……………………..43 as 3.4 Turbulence modelling of unsteady flows (URANS)………….……….………44 3.4.1 Introduction………………………………………….…………….……..44 3.4.2 Unsteady Reynolds Navier-Stokes equations………….……….……….44 3.4.2 Turbulence Modelling of Unsteady Cross Flow In-line Tube Bundle…..45 4 Numerical Simulations 4.1 Introduction.........................................................................................................46 4.1.1 Pre-processor………………………………….……………………….....46 4.1.2 Solver (Code-Saturne)……………………….…………………………..46 4.1.3 Post-Processor………………………………….………………………...47 4.2 The Finite Volume method.................................................................................49 4.3 Time Discritisation..............................................................................................51 4.4 Boundary Conditions..........................................................................................53 4.4.1 Inlet.............................................................................................................53 4.4.2 Outlet...........................................................................................................54 4.4.3 Walls and symmetries.................................................................................54 5 Results and Discussion of the simulation 5.1 Introduction……………………………………………...……………………...57 5.2 Case description………………………………………...………….…………...58 5.3 Grid generation…………………………………………………………………59 5.4 Discussion of the results………………………………..………………………60 6 Conclusions and Recommendations for future work 5.1 Final remarks.......................................................................................................92 5.2 Recommendations for future work......................................................................93 7 Bibliography.…...……………………………………………...………………….. 94 3 List of Figures 1.1 Turbulent flow around circular cylinder (Catallano et al.2003)……………………... 15 4.1 Steps of Numerical simulation of across flow in-line tube bundles…………………. 48 4.2 Notations for the spatial discritisation………………………………………………. 53 5.1 Tube arrangements…………………………………………………………………... 58 5.2 Geometry of in-line tube bundles……………………………………………………. 66 5.3 Boundary conditions of tube bundles……………………………………………….. 66 5.4 Cross sectional view of 2D grid (2X2 arrangement) N=5400 cells, y+= [13-70]…… 67 5.5 Cross sectional view of 2D grid (3X3 arrangement) N=21600 cells, y+= [13-70]….. 67 5.6 Cross sectional view of 3D grid (3X3 arrangement) in XY, YZ and XZ sections: N=604800 cells, y+= [13-70]………………………………………………………... 68 5.7 Evolution of pressure and velocity, Comparison between URANS models. (a) Pressure, (b) Velocity…..………………………………………………………... 69 5.8 2D Instantaneous Pressure Contour field in a XY cross sectional view for gap ratio 1.44. (a) k-ε model, (b) RSM, (c) k-ω SST, (d) SST-C …………………………… 70 as 5.9 2D Instantaneous velocity contour field in a XY cross Sectional view for gap ratio 71 1.44. (a) k-ε model, (b) RSM, (c) k-ω SST, (d) SST-C …………………………… as 2D Velocity vectors field in a XY cross Sectional view for gap ratio 1.44. (a) k-ε, 5.10 72 (b) RSM, (c) k-ω SST, (d) SST-C …………………………………………………. as 5.11 2D Vorticity field in a XY cross sectional view for gap ratio 1.44. (a) k-ε, (b) RSM, (c) k-ω SST, (d) SST-C ……………………………………………………………. as 73 5.12 3D mean pressure distribution in a XY cross view for P/D=1.44, Re=70000. (a) k- ω SST, (b) RSM, (c) SST-C , (d) DES, (e) LES of Imran for P/D=1.5, Re=15000.. 74 as 3D averaged velocity field in a XY cross view for P/D=1.44, Re=70000. (a) k-ω 5.13 SST, (b) RSM, (c) SST-C , (d) DES, (e) LES of Imran for P/D=1.5, Re=15000….. 75 as 5.14 Mean pressure distribution around centre tube, comparison between 2D Unsteady RANS for P/D=1.44, Re=70000 and LES of Imran (Star-V4) for P/D=1.5 76 Re=15000 and Experiment of Yahiaoui et al. (2007)……………………………….. 5.15 Mean pressure distribution around centre tube, comparison between 2DUnsteady RANS for P/D=1.44, Re=70000 and LES of Imran (Star-V4) for P/D=1.5 76 Re=15000 and Experiment of Yahiaoui et al. (2007)……………………………….. 4 5.16 Mean pressure distribution around centre tube, comparison between 3D UnsteadyRANS for P/D=1.44, Re=70000 and LES of Imran (Star-V4) for P/D=1.5 Re=15000 and Experiment of Yahiaoui et al. (2007)……………………………….. 77 5.17 Mean velocity profile, Comparison between 2D Unsteady RANS, Re=70000 and LES of Imran Re=15000 (Star-V4) and experiment of Aiba et al. (1982) in the wake of centre tubes at x=4.33cm…………………………………………………… 77 5.18 Mean velocity profile, Comparison between 2D Unsteady RSM, Re=70000 and LES of Imran at Re=15000 (Star-V4) and experiment of Aiba et al. (1982) in the wake of centre tubes at x=4.33cm…………………………………………………… 78 5.19 Mean velocity profile, Comparison between 2D Unsteady RSM, SST-C , as Re=70000 and LES of Imran (Star-V4), Re=15000 in the wake of centre tubes at 78 x=4.33cm…………………………………………………………………………….. 5.20 Mean velocity profile, Comparison between 3D URANS, Re=70000 and LES of Imran (Star-V4) at Re=45000 and experiment of Aiba et al. (1982) in the wake of 79 centre tubes at x=4.33cm…………………………………………………………….. 5.21 Mean velocity profile, Comparison between SST-C ,Re=70000 and LES of Imran as 79 (Star-V4), Re=45000 in the wake of centre tubes at x=4.33cm……………………. 80 Fluctuating Pressure DPS at location of probe 1…………………………………….. 5.22 81 Fluctuating Pressure and DPS at location of probe 3………………………………... 5.23 (a) Fluctuating Pressure and DPS at location of probe 6. (b) LES 5.24 82 (Benhamadouche)……………………………………………………………………. 83 Fluctuating Velocity and DPS at location of probe 1……………………………….. 5.25 84 Fluctuating Velocity and DPS at location of probe 3……………………………….. 5.26 85 Fluctuating Velocity and DPS at location of probe 6……………………………….. 5.27 Reynolds stresses in the wake of the centre tubes. (a) <u'u'>, (b) <v'v'>, (c) <w'w'>, 5.28 86 (d) <u'v'>…………………………………………………………………………….. Mean velocity profiles of RSM in the wake of the centre tubes. (a) <uu>, (b) <vv>, 5.29 87 (c) <uv>, (d) u/uo……………………………………………………………………. Iso-surface of parameter Q for the instantaneous flow across in-line tube bundles. 5.30 89 (a) RSM, (b) k-ω SST, (c) SST-C , DES…………………………………………... as 5.31 Comparison between Code-Saturne (in right) and Star-CD (in left). k-ω SST, 90 (a)Pressure, (b) Velocity, (c) Turbulent kinetic energy……………………………... 5 5.32 3D mean velocity vectors, (a) k-ω SST, (b) SST-C , (c) RSM, (d) DES, (e) LES as 91 (Benhamadouche)……………………………………………………………………. 6 List of Tables 3.1 Coefficients of the standard k-ε model……………………………………………..…….31 3.2 Coefficients of the k-ω SST model………………………………………………..….......33 3.3 Coefficients of the LRR model…………………………………………………..……….37 3.4 Coefficients of the SSG model………………………………...………………..………..38 5.1 Parameters of 2D and 3D grids of the present case……………………………………....60 7 Abstract The flow in tube bundles is of great interest to the power generation industry, not only for the study of performance of great exchangers. Safety studies require predictions of vibrations caused by fluid-structure interaction or large temperature fluctuations that eventually lead the thermal stripping. The cross flow in a 2D and 3D square in-line tube bundle is computed for pitch ratio of P/D=T/D=1.44 and Reynolds number of 70000. The grid generated is structured. Unsteady Reynolds Navier-Stokes models are widely used for the complex unsteady flows. In the present case URANS models are used to examine the flow predictions in in-line tube bundle. URANS models tested are standard κ – ε, Menter`s shear stress transport (MSST) [37] and the Reynolds Stress Models (RSM). Other models are used, the new SST-C [18] model as for 2D and 3D calculations moreover DES approach for 3D simulation. This case is computed by Code-Saturne based on the finite volume method. Quantitative and qualitative results are analyzed then compared with LES and experimental data. The 2D simulations fail to capture the complete flow physics hense 3D calculations on the other hand seem to produce better results of pressure and velocity profiles and agree better with LES and experiment. Good predictions are retained with the new SST-C model [18]. The three models k-ω SST, SST- as C and RSM seems to give similar predictions of the flow. Code Star-CD is used for as comparison. It gives similar results and confirms the asymmetry of the flow. When frequencies of oscillations are given. This is done by using Density Power Spectrum (DPS) and localizing the peak values (the most energetic frequency). By applying DPS to the velocity's and pressure's signals, one clear peak is obtained around the frequency 45Hz (St=0.84) similar than the LES [13]. It means that a big recirculation coexists in the bottom of the tube then the shear stress is higher in the bottom. Résumé L'écoulement dans les faisceaux de tubes est d'un grand intérêt au sein de l'industrie de production d'électricité, non seulement pour l'étude de l'exécution de grands échangeurs. Les études de sécurité exigent des prévisions de vibrations provoquées par l'interaction fluide- structure ou des grandes fluctuations de la température qui mènent par la suite au dépouillement thermique. L'écoulement dans un 2D et 3D faisceau de tubes intégré carré est simulé pour un rapport de P/D=T/D=1.44 et un nombre de Reynolds de 70000. Le maillage 8 généré est structuré. Les modèles URANS sont largement répandus pour les écoulements instables complexes. Dans le cas present les modèles URANS testés sont: κ – ε standard, (MSST) [37] de Menter et (RSM). Autres modèles sont utilisés, le nouveau model SST- C [18] pour les calculs 2D et 3D en plus de l`approche DES pour la simulation 3D. Les as conditions aux limites sont périodiques. Le cas present est simulé par Code-Saturne basé sur la méthode des volumes finis. Des résultats qualitatifs et quantitatifs sont alors analysés et comparés à la LES et aux données expérimentales. Les simulations 2D ne capturent pas complètement l'écoulement mais d`autre part les résultats des calculs 3D semblent produire de meilleurs résultats des profils de pression et de vitesse et mieux conformes à la LES et à l'expérience. De bonnes prévisions sont captées avec le nouveau modèle SST-C [18]. Les as trois modèles k-ω SST, SST-C et RSM semblent donner de mêmes prévisions de as l'écoulement. Le Code Star-CD est employé pour la comparaison. Il donne des résultats semblables et confirme l'asymétrie de l'écoulement. Quand les fréquences des oscillations sont indiquées. Ceci est fait en employant le spectre (DPS) et en localisant les valeurs de crête (la fréquence la plus énergique). En appliquant le DPS aux signaux de la vitesse et de la pression, une crête claire est obtenue autour de la fréquence 45Hz (St=0.84) vérifié avec la LES [13]. Il signifie qu'un grand recyclage coexiste au dessous du tube alors l'effort de cisaillement est plus grand au dessous. 9 Acknowledgements I would like begin my sincere gratitude to God for his help and special thanks to Professor Dominique Laurence, my supervisors Professor Adjlout Lahouari and Dr. Yacine Addad and also Dr. Sofiane Benhamadouche for their invaluable guidance and continuous advice throughout my present work. I wish to offer my thanks to Dr. Alistair Revell and Dr. Juan Uribe. They have been an endless source of encouragement and inspiration. I also offer my thanks to all the CFD team in University of Manchester, School of Mace and University of Oran USTO IGCMO in particular Dr. Aounallah Mohamed. There have many other people who have contributed to this work and to the fun environment in which it has be carried out. I'm grateful to Dr. Charles Moulinec, Nicolas Jarrin, and Dr. Imran Afgan. I can't forget to mention the help of Pat Shepherd for its support during the training course. My friends have been very important to me during this time, in particular Amel and Zahid, Hajira and there are many others, I offer a general thanks to every one else. Most importantly, for their love and inspiration, I would like to thank my family, in particular my parents, my brothers, my grandmother, Mounia, Sara and Fatima. They have constantly supported me taught me and encouraged me, and it is always a huge motivation to show them how grateful Iam. 10
Description: