ebook img

Algebras, Rings and Modules PDF

393 Pages·2004·1.888 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebras, Rings and Modules

Algebras, Rings and Modules Mathematics and Its Applications Managing Editor: M. HAZEWINKEL Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Volume575 Algebras, Rings and Modules Volume 1 by Michiel Hazewinkel CWI, Amsterdam, The Netherlands Nadiya Gubareni Technical University of Częstochowa, Poland and V.V. Kirichenko Kiev Taras Shevchenko University, Kiev, Ukraine KLUWER ACADEMIC PUBLISHERS NEW YORK,BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 1-4020-2691-9 Print ISBN: 1-4020-2690-0 ©2005 Springer Science + Business Media, Inc. Print ©2004 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans,electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Springer's eBookstore at: http://ebooks.springerlink.com and the Springer Global Website Online at: http://www.springeronline.com Table of Contents Preface.....................................................................ix Chapter 1. Preliminaries..................................................1 1.1 Basic concepts and examples..............................................1 1.2 Modules and homomorphisms............................................15 1.3 Classical isomorphism theorems..........................................18 1.4 Direct sums and products................................................21 1.5 Finitely generated and free modules......................................24 1.6 Notes and references.....................................................27 Chapter 2. Decompositions of rings....................................30 2.1 Two-sided Peirce decompositions of a ring................................30 2.2 The Wedderburn-Artin theorem..........................................33 2.3 Lattices. Boolean algebras and rings.....................................37 2.4 Finitely decomposable rings..............................................50 2.5 Notes and references.....................................................57 Chapter 3. Artinian and Noetherian rings.............................59 3.1 Artinian and Noetherian modules and rings..............................59 3.2 The Jordan-Ho¨lder theorem..............................................64 3.3 The Hilbert basis theorem...............................................67 3.4 The radical of a module and a ring.......................................68 3.5 The radical of Artinian rings.............................................71 3.6 A criterion for a ring to be Artinian or Noetherian.......................74 3.7 Semiprimary rings.......................................................76 3.8 Notes and references.....................................................77 Chapter 4. Categories and functors.....................................82 4.1 Categories, diagrams and functors........................................82 4.2 Exact sequences. Direct sums and direct products........................85 4.3 The Hom functors.......................................................90 4.4 Bimodules...............................................................93 4.5 Tensor products of modules..............................................94 4.6 Tensor product functor...................................................99 4.7 Direct and inverse limits................................................102 4.8 Notes and references....................................................109 v vi ALGEBRAS, RINGS AND MODULES Chapter 5. Projectives, injectives and flats...........................111 5.1 Projective modules.....................................................111 5.2 Injective modules.......................................................115 5.3 Essential extensions and injective hulls..................................125 5.4 Flat modules...........................................................131 5.5 Right hereditary and right semihereditary rings.........................135 5.6 Herstein-Small rings....................................................139 5.7 Notes and references....................................................141 Chapter 6. Homological dimensions...................................143 6.1 Complexes and homology. Free resolutions..............................143 6.2 Projective and injective resolutions. Derived functors...................146 6.3 The functor Tor........................................................150 6.4 The functor Ext........................................................153 6.5 Projective and injective dimensions.....................................155 6.6 Global dimensions......................................................158 6.7 Notes and references....................................................159 Chapter 7. Integral domains...........................................161 7.1 Principal ideal domains.................................................161 7.2 Factorial rings..........................................................164 7.3 Euclidean domains......................................................169 7.4 Rings of fractions and quotient fields....................................171 7.5 Polynomial rings over factorial rings....................................174 7.6 The Chinese remainder theorem........................................177 7.7 Smith normal form over a PID..........................................178 7.8 Finitely generated modules over a PID..................................181 7.9 The Frobenius theorem.................................................185 7.10 Notes and references...................................................187 Chapter 8. Dedekind domains..........................................189 8.1 Integral closure.........................................................189 8.2 Dedekind domains......................................................193 8.3 Hereditary domains.....................................................199 8.4 Discrete valuation rings.................................................201 8.5 Finitely generated modules over Dedekind domains.....................205 8.6 Pru¨fer rings.............................................................208 8.7 Notes and references....................................................209 Chapter 9. Goldie rings.................................................210 9.1 Ore condition. Classical rings of fractions...............................210 9.2 Prime and semiprime rings..............................................214 9.3 Goldie rings. The Goldie theorem.......................................219 9.4 Notes and references....................................................224 TABLE OF CONTENTS vii Chapter 10. Semiperfect rings.........................................226 10.1 Local and semilocal rings..............................................226 10.2 Noncommutative discrete valuation rings...............................229 10.3 Lifting idempotents. Semiperfect rings.................................233 10.4 Projective covers. The Krull-Schmidt theorem.........................237 10.5 Perfect rings...........................................................243 10.6 Equivalent categories..................................................248 10.7 The Morita theorem...................................................255 10.8 Notes and references...................................................260 Chapter 11. Quivers of rings...........................................262 11.1 Quivers of semiperfect rings............................................262 11.2 The prime radical......................................................269 11.3 Quivers (finite directed graphs)........................................272 11.4 The prime quiver of a semiperfect ring.................................281 11.5 The Pierce quiver of a semiperfect ring................................285 11.6 Decompositions of semiperfect rings....................................288 11.7 The prime quiver of an FDD-ring......................................291 11.8 The quiver associated with an ideal....................................293 11.9 The link graph of a semiperfect ring...................................296 11.10 Notes and references..................................................298 Chapter 12. Serial rings and modules.................................300 12.1 Quivers of serial rings..................................................300 12.2 Semiperfect principal ideal rings.......................................302 12.3 Serial two-sided Noetherian rings......................................304 12.4 Properties of serial two-sided Noetherian rings.........................313 12.5 Notes and references...................................................316 Chapter 13. Serial rings and their properties.........................319 13.1 Finitely presented modules ............................................ 319 13.2 The Drozd-Warfield theorem. Ore condition for serial rings............323 13.3 Minors of serial right Noetherian rings.................................325 13.4 Structure of serial right Noetherian rings...............................330 13.5 Serial right hereditary rings. Serial semiprime and right................... Noetherian rings............................................................335 13.6 Notes and references...................................................339 Chapter 14. Semiperfect semidistributive rings .....................341 14.1 Distributive modules...................................................341 14.2 Reduction theorem for SPSD-rings....................................343 14.3 Quivers of SPSD-rings................................................345 14.4 Semiprime semiperfect rings...........................................347 14.5 Right Noetherian semiprime SPSD-rings..............................351 viii ALGEBRAS, RINGS AND MODULES 14.6 Quivers of tiled orders.................................................355 14.7 Quivers of exponent matrices..........................................357 14.8 Examples..............................................................361 14.9 Notes and references...................................................362 Suggestions for further reading........................................ 365 Index......................................................................369 Name index..............................................................377 Preface Accosiativeringsandalgebrasareveryinterestingalgebraicstructures. Inastrict sense, the theory of algebras (in particular, noncommutative algebras) originated fromasingleexample,namelythequaternions,createdbySirWilliamR.Hamilton in1843. Thiswasthefirstexampleofanoncommutative”numbersystem”. During thenextfortyyearsmathematiciansintroducedotherexamplesofnoncommutative algebras, began to bring some order into them and to single out certain types of algebras for special attention. Thus, low-dimensional algebras, division algebras, and commutative algebras, were classified and characterized. The first complete results in the structure theory of associative algebras over the real and complex fields were obtained by T.Molien, E.Cartan and G.Frobenius. Modern ring theory began when J.H.Wedderburn proved his celebrated clas- sification theorem for finite dimensional semisimple algebras over arbitrary fields. Twenty years later, E.Artin proved a structure theorem for rings satisfying both the ascending and descending chain condition which generalized Wedderburn structure theorem. The Wedderburn-Artin theorem has since become a corner- stone of noncommutative ring theory. The purpose of this book is to introduce the subject of the structure theory of associativerings. Thisbookisaddressedtoareaderwhowishestolearnthistopic from the beginning to research level. We have tried to write a self-contained book which is intended to be a modern textbook on the structure theory of associative rings and related structures and will be accessible for independent study. Thebasictoolsofinvestigationaremethodsfromthetheoryofmodules,which, in our opinion, give a very simple and clear approach to both classical and new results. Other interesting tools which we use for studying rings in this book are techniquesfromthetheoryofquivers. Wedefinedifferentkindsofquiversofrings and discuss various relations between the properties of rings and their quivers. This is unusual and became possibly only recently, as the theory of quivers is a quite new arrival in algebra. Someofthetopicsofthebookhavebeenincludedbecauseoftheirfundamental importance, others because of personal preference. All rings considered in this book are associative with a nonzero identity. The content of the book is divided into two volumes. The first volume is devoted to both the standard classical theory of associative rings and to more modern results of the theory of rings. A large portion of the first volume of this book is based on the standard university course in abstract and linear algebra and is fully accessible to students in their second and third years. In particular, we do not assume knowledge of any preliminary information on the theory of rings and modules. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.