ebook img

Algebras, Lattices, Varieties PDF

495 Pages·2020·5.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebras, Lattices, Varieties

Mathematical Surveys and Monographs Volume 268 Algebras, Lattices, Varieties Volume II Ralph S. Freese Ralph N. McKenzie George F. McNulty Walter F. Taylor Algebras, Lattices, Varieties Volume II Mathematical Surveys and Monographs Volume 268 Algebras, Lattices, Varieties Volume II Ralph S. Freese Ralph N. McKenzie George F. McNulty Walter F. Taylor EDITORIAL COMMITTEE Ana Caraiani Natasa Sesum Michael A. Hill Constantin Teleman Bryna Kra (chair) Anna-Karin Tornberg 2020 Mathematics Subject Classification. Primary 08-02, 08Bxx, 03C05, 06Bxx. For additional informationand updates on this book, visit www.ams.org/bookpages/surv-268 Library of Congress Cataloging-in-Publication Data Names: McKenzie, Ralph, author. | McNulty, George F., 1945- author. | Taylor, W. (Walter), 1940-author. Title: Algebras,lattices,varieties/RalphN.McKenzie,GeorgeF.McNulty,WalterF.Taylor. Description: Providence,RhodeIsland: AmericanMathematicalSociety: AMSChelseaPublish- ing, 2018-| Series: | Originally published: Monterey, California : Wadsworth & Brooks/Cole AdvancedBooks&Software,1987. |Includesbibliographicalreferencesandindexes. Identifiers: LCCN2017046893|ISBN9781470467975(paperback)|9781470471293(ebook) Subjects: LCSH: Algebra, Universal. | Lattice theory. | Varieties (Universal algebra) | AMS: General algebraic systems – Algebraic structures – Algebraic structures. | General algebraic systems–Varieties–Varieties. |Mathematicallogicandfoundations–Modeltheory–Equa- tional classes, universal algebra. | Order, lattices, ordered algebraic structures – Lattices – Lattices. | Order, lattices, ordered algebraic structures – Modular lattices, complemented lattices–Modularlattices,complementedlattices. Classification: LCCQA251.M432018|DDC512–dc23 LCrecordavailableathttps://lccn.loc.gov/2017046893 Volume2ISBN:978-1-4704-6797-5 Volume2ISBN(Electronic): 978-4704-7129-3 Volume3ISBN:978-1-4704-6798-2 Volume3ISBN(Electronic): 978-1-4704-7130-9 Copying and reprinting. Individual readersofthispublication,andnonprofit librariesacting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication ispermittedonlyunderlicensefromtheAmericanMathematicalSociety. Requestsforpermission toreuseportionsofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. For moreinformation,pleasevisitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. (cid:2)c 2022bytheAmericanMathematicalSociety. Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica. (cid:2)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttps://www.ams.org/ 10987654321 272625242322 Thisvolumeisdedicatedtoourteachers— RobertP.Dilworth,J.DonaldMonk,AlfredTarski,andGarrettBirkhoff Contents ListofFigures ix PrefaceforVolumesIIandIII xi Acknowledgments xvii Chapter6. TheClassificationofVarieties 1 6.1. Introduction 1 6.2. PermutabilityofCongruences 13 6.3. GeneratingCongruenceRelations 22 6.4. CongruenceSemidistributiveVarieties 26 6.5. CongruenceModularity 40 6.6. CongruenceRegularityandUniformity 50 6.7. LinearMal’tsevConditions,Derivations,StrongMal’tsevConditions 62 6.8. TaylorClassesofVarieties 81 6.9. CongruenceIdentities 95 6.10. Relationships 119 6.11. Hamiltonian,Semidegenerate,andAbelianVarieties 134 Chapter7. EquationalLogic 145 7.1. TheSetUp 145 7.2. TheDescriptionof ΘModΣ: TheCompletenessTheorem 151 7.3. EquationalTheoriesthatarenotFinitelyAxiomatizable 169 7.4. EquationalTheoriesthatareFinitelyAxiomatizable 196 7.5. FirstInterlude: AlgebraicLatticesasCongruenceLattices 211 7.6. TheLatticeofEquationalTheories 225 7.7. SecondInterlude: theRudimentsofComputability 251 7.8. UndecidabilityinEquationalLogic 254 7.9. ThirdInterlude: ResidualBounds 277 7.10. AFiniteAlgebraofResidualCharacterℵ 281 1 7.11. UndecidablePropertiesofFiniteAlgebras 294 Chapter8. RudimentsofModelTheory 313 8.1. TheFormalismofElementaryLogic 313 8.2. UltraproductsandtheCompactnessTheorem 327 8.3. ApplicationsoftheCompactnessTheorem 336 8.4. Jónsson’sLemmaforCongruenceDistributiveVarieties 355 8.5. DefinableCongruencesandBaker’sFiniteBasisTheorem 373 8.6. BooleanPowers 377 vii viii CONTENTS 8.7. UniversalClassesandQuasivarieties 396 8.8. SentencesTrueinReducedProducts 410 8.9. ElementaryChains,Amalgamation,andInterpolation 421 8.10. SentencesPreservedunderHomomorphicImages 435 8.11. SentencesPreservedunderSubdirectProducts 438 Bibliography 443 Index 467 List of Figures 6.1 ThePermutabilityParallelogram 5 6.2 Thetermtreefor 𝐻(𝐵(𝑥,𝐵(𝑥,𝑦)),𝑧,𝐵(𝑦,𝐵(𝑥,𝑦))) 6 6.3 Adigraphrepresentationfor 𝐻(𝐵(𝑥,𝐵(𝑥,𝑦)),𝑧,𝐵(𝑦,𝐵(𝑥,𝑦))) 7 6.4 Adigraphrepresentationfor𝑡 7 3 6.5 TheCongruenceLatticeofPolin’sAlgebra 16 6.6 Twoslendertermsforrepresentingtranslations 23 6.7 TheIntervalabovetheMeetoftwoCoatomsof𝐂𝐨𝐧𝐒. 35 6.8 Day’sPentagoninCon 𝐅 (𝑥,𝑦,𝑧,𝑢) 42 𝒱 6.9 Gumm(Modular)DifferenceTerm 46 6.10 Kiss’s4-VariableDifferenceTerm 47 6.11 TheShiftingLemma 49 6.12 TheLattice𝐋 97 14 6.13 ThePentagon,𝐍 ,Labeled. 98 5 6.14 TheLattice𝐋 ,Labeled 98 14 6.15 Con(𝐏× 𝐏) 99 𝛽 6.16 Desargues’Configurationin3Dimensions 107 6.17 TheCongruenceLatticeof𝐏× 𝐏 115 𝛾 6.18 𝐂𝐨𝐧(𝐅 (1)) 116 𝒫 6.19 RelationshipsbetweenClassesofVarieties 120 6.20 ASubalgebraof𝐀 ×𝐀 127 0 1 7.1 TheGaloisConnectionUnderlyingEquationalLogic 148 7.2 Lyndon’sAlgebra𝐋 172 7.3 Lee’sAlgebra𝐋∗ 173 7.4 The𝜏-DecomposableSubalgebra 183 7.5 TheEvaluationTreeofthePolynomial𝑔(𝑥) 184 7.6 McKenzie’sautomaticalgebra𝐑 191 7.7 Murskiı̌’salgebra𝐌 192 7.8 Anillustrationof𝜋 (𝑥 ,𝑦 ,𝑥 ,𝑦 ) 205 𝑚 0 0 1 1 7.9 ProofoftheDefiniteAtomsProperty 208 7.10 Analgebraiclatticewithapinchpoint 224 ix x LISTOFFIGURES 7.11 Thelatticeofequationaltheoriesofbands,withadetailofthetop 234 7.12 TheLattice𝐌 278 𝑛 7.13 McKenzie’sAutomaticAlgebra𝐑 279 7.14 TheSubdirectlyIrreducibleAlgebra𝐒 280 8 7.15 Thealgebra𝐐 282 ℤ 7.16 Theeightelementflatalgebra𝐀 287 7.17 Machineoperations 299 8.1 Thelattice𝐋 358 8.2 Thelattice𝐅 359 8.3 𝐿∖𝐼[𝑞 ,𝑝 ] 361 4 7 8.4 Thesublattice𝐆of𝐅 362 8.5 Thelattice𝐋 366 𝑓 8.6 Thelattice𝐋 366 𝐶4 8.7 Thelattice𝐋 ;itiscircular 369 𝑛 8.8 Thelattice𝐖 370 𝑛 8.9 Certaindenumerablesublatticesof𝐖 371 8.10 Subdirectfactorsofthebottomlattice 372 8.11 Twosquaresandtwotriangles 384 8.12 TheGaloisConnectionUnderlyingtheStudyofQuasivarieties 403 8.13 Thedirectedgraph𝐇 407 8.14 Anorientedcycleandadirectedpath 407

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.