ebook img

Algebras and Smarandache Types PDF

2018·0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebras and Smarandache Types

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 Article Algebras and Smarandache Types HeeSikKim1,J.Neggers2andSunShinAhn3,∗ 1DepartmentofMathematics,ResearchInstituteofNaturalSciences,HanyangUniversity,Seoul04763,Korea; [email protected] 2DepartmentofMathematics,UniversityofAlabama,Tuscaloosa,AL35487-0350,U.S.A.;[email protected] 3SunShinAhn,DepartmentofMathematicsEducation,DonggukUniversity,Seoul04620,Korea; [email protected] ∗Correspondences:[email protected],mobile:+82-10-3783-3410;office:+82-2-2260-3410. Abstract: Ifanalgebraoftype AcontainsasubalgebrawhichisalsoanalgebraoftypeB,thenitis aSmarandacheB-type A-algebraprovidedthesubalgebraoftypeBcontainsatleasttwoelements. ThisgeneralizesthenotionofSmarandachegroup,wherethegroupoforder≥2isasubsemigroup ofasemigroup. Inthispaperweinvestigateanumberofsuchpairingsandwededuceanumberof conclusionsasaconsequence. Keywords: Smarandachealgebra,pointalgebra, p-derivedalgebra. 1. Introduction Generally,inanyhumanfield,aSmarandachestructureonaset AmeansaweakstructureW on AsuchthatthereexistsapropersubsetBof AwhichisembeddedwithastrongstructureS. In [6],W.B.VasanthaKandasamystudiedtheconceptofSmarandachegroupoids,subgroupoids,ideals of groupoids, semi-normal subgroupoids, Smarandache Bol groupoids and strong Bol groupoids andobtainedmanyinterestingresultsaboutthem. Smarandacesemigroupsareveryimportantfor thestudyofcongruences,anditwasstudiedbyR.Padilla([5]). Itwillbeveryinterestingtostudy theSmarandachestructureinBCI-algebras. In[2],Y.B.JundiscussedtheSmarandachestructurein BCI-algebras. Ifanalgebraoftype AcontainsasubalgebrawhichisalsoanalgebraoftypeB,thenit isaSmarandacheB-type A-algebraprovidedthesubalgebraoftypeBcontainsatleasttwoelements. ThisgeneralizesthenotionofSmarandachegroup,wherethegroupoforder≥2isasubsemigroup ofasemigroup. Inthispaperweinvestigateanumberofsuchpairingsandwededuceanumberof conclusionsasaconsequence. 2. Severalalgebras Supposethat(X,∗)isabinarysystem,i.e.,X×X → X, (x,y) → x∗y,istheproductmapping. If p ∈ Xisapointselectedasreferencepoint,then(X,∗,p)isapointalgebra. Example1. Let(G,·)beagroup. Thentheidentityelementeisusuallytakentobethespecialpoint pselected, writtenas(G,·,e). Wetakeallalgebrasdealtwithbelowtobepointedalgebras,withoutreallossofgenerality. Often,forsimplicity’ssakeweshallwrite p = 0,notintending0tohavetheusualmeaning. Thus(G,·,e) becomes (G,∗,0) unless it is important to distinguish the algebras (X,∗,0) which contains the subalgebra (Y,∗)withitsowndistinguishedpoint ptoproduce(Y,∗,p). Example2. (i)Let(X,∗,p)beasemigroupwithaselectedpoint pandlet(Y,∗,e)beasubsemigroupofX withaselectedpointe. Then p (cid:54)= e. (ii) Let (R,+,·) be a ring with identity. Then (R,+,0) is an abelian group. Let U be a group of units of (R,+,0). Then(U,·,1)hasadifferentpole pfrom(R,+,0) © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 2of6 Intermsoflistofaxiomstobeusedtodescribethevariousalgebratypeswenotethefollowing sectionofaxioms: (1) x∗x =0forallx ∈ X. (2) x∗0= xforallx ∈ X. (3) 0∗x = xforallx ∈ X. (4) x∗y = y∗xforallx,y ∈ X. (5) x∗y = y∗x =0⇔ x = yforallx,y ∈ X. (6) x∗y = y∗x =0⇒ x = yforallx,y ∈ X. (7) x∗y = y∗x ⇒ x = yforallx,y ∈ X. (8) 0∗x =0forallx ∈ X. (9) (x∗y)∗z = (x∗z)∗yforallx,y,z ∈ X. (10) (x∗y)∗z = x∗(z∗y)forallx,y,z ∈ X. (11) (x∗y)∗z = x∗(z∗(0∗y))forallx,y,z ∈ X. (12) (x∗y)∗z = (x∗z)∗(y∗z)forallx,y,z ∈ X. (13) (x∗y)∗(0∗y) = xforallx,y ∈ X. (14) x∗(y∗z) = (x∗y)∗zforallx,y,z ∈ X. (15) (x∗(x∗y))∗y =0forallx,y,z ∈ X. (16) ((x∗y)∗(x∗z))∗(x∗y) =0forallx,y,z ∈ X. (17) ∀x ∈ X∃y ∈ Xwithx∗y =0. (18) ∀x ∈ X∃y ∈ Xwithy∗x =0. Analgebra(X,∗,0)iscalledagroupifitsatisfies(2),(3),(14),(17),and(18). Analgebra(X,∗)is calledasemigroupifitsatisfies(14). Analgebra(X,∗,0)iscalledasemigroupwithidentityifitsatisfies (2),(3), and (14). An algebra (X,∗,0) is called a B-algebra if it satisfies (1),(2), and (11). An algebra (X,∗,0)iscalledaBG-algebraifitsatisfies(1),(2),and(13). Analgebra(X,∗,0)iscalledaBH-algebra if it satisfies (1), (2), and (6). An algebra (X,∗,0) is called a Q-algebra if it satisfies (1), (2), and (9). Analgebra(X,∗,0)iscalledaQˆ-algebraifitsatisfies(1),(2),and(10). Analgebra(X,∗,0)iscalled ad-algebraifitsatisfies(1),(5),and(8). Analgebra(X,∗,0)iscalleda BCK-algebraifitsatisfies(1), (5),(8),(15),and(16). Analgebra(X,∗,0)iscalleda gBCK-algebraifitsatisfies(1),(2),(9)and(12). Analgebra(X,∗,0)iscalledanabeliangroupifitsatisfies(2),(3),(4),(14),(17),and(18). Analgebra (X,∗,0)iscalledanabeliansemigroupifitsatisfies(4)and(14). 3. Smarandachetypes Let (X,∗) be a binary algebra. Then (X,∗) is a Smarandache-type P-algebra if it contains a subalgebra (Y,∗), where Y is non-trivial, i.e, |Y| ≥ 2, or Y contains at least two distinct elements, and (Y,∗) is itself of type P. Thus we have Smarandache-type semigroup (the type P-algebra is a semigroup),Smarandache-typegroups(thetype P-algebraisagroup),Smarandache-typeabelian groups(thetypeP-algebraisanabeliangroup). Ifanalgebraoftype Acontainsasubalgebrawhichis alsoanalgebraoftypeB,thenitisaaSmarandacheB-type A-algebraprovidedthesubalgebraoftype Bcontainsatleasttwoelements. Theorem1. If(X,∗,0)isanabeliand-algebra,thenitisatrivialalgebra. Proof. Supposethat(X,∗,0)isanabeliand-algebra. By(8),wehave0=0∗xforallx ∈ X. SinceXis abelian,0∗x = x∗0. Hence0∗x = x∗0=0.By(5),weobtainx =0. HenceX = {0}. Theorem2. If(X,∗,0)isasemigroupandd-algebra,thenitisatrivialalgebra. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 3of6 Proof. Foranyx ∈ X,wehave x∗0=x∗(0∗(x∗0)) =(x∗0)∗(x∗0) =0. By(8),wehave0∗x =0. By(5),wehavex =0. HenceX = {0}. Definition1. Let (X,∗,p) beapointedalgebra. Define x·y := x∗(p∗y), ∀x,y ∈ X. Thenthealgebra (X,·,p)iscalleda p-derivedalgebra. Example3. (i)Let(X,∗,e)beagroup. Thenthee-derivedalgebra(X,·,e)has x·y = x∗(e∗y) = x∗y, and(X,∗,e) = (X,·,e). (ii)If(X,∗,0)isad-algebra,thenx·y = x∗(0∗y) = x∗0. (iii)If(X,∗,0)isaBCK-algebra,thenx·y = x∗(0∗y) = x∗0= x. Hence(X,·,0)isaleftsemigroupwith aselectedpoint0. (iv)If(X,∗,p)isaleftsemi-groupwithaselectedpoint p,thenx·y = x∗(p∗y) = x∗p = x,i.e.,x·y = x and(X,∗,p) = (X,·,p). Definition2. AB-algebraiscalledaSmarandachegroup-typeB-algebraifitcontainsasubalgebra(Y,∗,e) whichisagroup,whereYisnon-trivial,|Y| ≥2. Noticethate∗e = 0inthegroup,whilee∗e = 0inthe B-algebra,sothate = 0,i.e.,thepoles coincidenaturally. Moreoverx∗x =0= eforallx ∈ X. Henceeveryelementinthegrouphasorder 2andthus (Y,∗,e = 0) isaBooleangroup. HenceSmarandachegroup-type B-algebraisequalto SmarandacheBooleangroup-typeB-algebra. Example4. Considerthecaseofagroup-typeQ-algebra. Let(X,∗,0)beaQ-algebraandthesubalgebrawhich isagroupis(Y,∗,e). Thene∗e = einthegroupande∗e =0intheQ-algebraisaverycommonsituationand itfollowsthatx∗x =0= e,whenceeveryelementinthegrouphasorder2. HenceSmarandachegroup-type Q-algebrasisSmarandacheBooleangroup-typeQ-algebra. Theorem3. Let(X,∗,0)beagroupandlet(Y,∗,0)beasubalgebra(notnecessaryasubgroup)whichisa B-algebra. ThenSmarandacheB-algebra-typegroupsareSmarandacheBooleangroup-typegroup. Proof. Since(X,∗,0)isagroup,0∗e = e = e∗e. Bythecancellationlawin(X,∗,0),wehavee =0. Now x ∈ Y has x∗x = eandthus x = x−1. (Y,∗,e),sothat(Y,∗,e)has x∗y−1 = x∗y ∈ Y forall x,y ∈ Y. HenceY isasubgroupof X. Butalsoforall x ∈ Y andhenceY isaBooleangroup. Thus SmarandacheB-algebra-typegroupsareSmarandacheBooleangroup-typegroup. Corollary1. SmarandachQ-algebra-typegroupsisSmarandacheBooleangroup-typegroups. Analgebra(X,∗,0)isaBQ-algebraifitsatisfies(1),(2),(11),and(9). Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 4of6 Theorem4. Let(X,∗,0)beBQ-algebra. Let(X,∗,·)beanalgebrawherex·y := x∗(0∗y). Then(X,·,0) isanabeliangroup. Proof. Since(X,∗,0)isaB-algebra,(X,·,0)isagroup.Now(x∗(0∗y))∗(0∗z) = (x∗(0∗z))∗(0∗y) by(9). Hence (x·y)·z = (x·z)·y = x·(z·y) since (X,∗,0) isagroup. Put x := 0in (x·y)·z = (x·z)·y. Then(0·y)·z =0·(z·y). Since0·y =0∗(0∗y) = y,wehavey·z = z·y,i.e.,(X,·,0)isa commutativegroup. Theorem 5. Let (X,·,0) be an abelian group. Define x∗y=x·y−1 for any x,y ∈ X. Then (X,∗,0) is a BQ-algebra. Proof. Foranyx ∈ X,x∗x = x·x−1 =0. Thus(1)holds. By(2),wehavex∗0= x·0−1 = x·0= x. Hence (2) holds. Using (X,·,0) is a commutative group, we obtain (x∗y)∗z = (x·y−1)·z−1 = (x·0−1)y−1 = (x∗z)∗y.(9)holds. Since(X,·,0)isanabeliangroup,wehave x∗(z∗(0∗y)) =x·(z·(0·y−1)−1)−1 =x·[z·((y−1)−1·0−1)]−1 =[z·(y·0)]−1 =x·[z·y]−1 =x·(y−1·z−1). But(x∗y)∗z = (x·y−1)··z−1.Henceweobtain(x∗y)∗z = x∗(z∗(0∗y)).(11)holds.Thus(X,∗,0) isaBQ-algebra. Theinterestingfacttonoteisthatweareabletotakeadvantageoftherelationshipx·y = x∗(0∗y) tounderstandbetterwhatthemeaningoftheclassof BQ-algebrais. Othersuchquestionsaround inthis settingaswell asothers. E.q., whatclassof B-algebrascorrespondstothe classofsolvable groups? Canitbeconsideredtobeoftheform: BV-algebrascorrespondstosolvablegroupswhere “V-algebras"issomenicelyidentifiableclass,astheclassforBQ-algebras? Theorem6. If(X,∗,0)isaSmarandacheB-algebra-typeQ-algebra,then(X,·,p)isaSmarandacheabelian group-type0-derivedQ-algebra,wherex·y := x∗(0∗y)foranyx,y ∈ X. Proof. Supposethat(X,∗,0)isaQ-algebraandlet(Y,∗,e)beaB-algebraandasubalgebraofX. For any x ∈ Y, x∗x = e and so x∗x = 0, so that e = 0 in any case. Hence (Y,∗,0) is a BQ-algebra. Therefore if (X,·,0) is the 0-derived algebra obtained from a Q-algebra, then (Y,·,0) is a abelian subgroup. Thusif(X,·,0)isaSmarandacheB-algebra-typeQ-algebra,then(Y,·,0)isaSmarandache abeliangrouptype0-derivedQ-algebra. Corollary 2. (X,∗,0) is a Smarandache Q-algebra-type B-algebra, then (X,·,0) is a Smarandach abelian group-type0-derived. i.e.,aSmarandacheabeliangrouptypegroup. Proof. ItissimilartoTheorem6. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 5of6 Proposition1. EveryB-algebraisaSmarandacheQ-algebra-typeB-algebra. Proof. Let (X,·,0) be a group and let x ∈ X. Then < x > the group generated by x is an abelian group, | < x > | ≥ 2 if x (cid:54)= 0. Hence if (X,∗,0) is obtained by x∗y = x·y−1, then (X,∗,0) is a B-algebra,while(< x >,∗,0)isaBQ-algebra. Thusif|x| ≥2,theneveryB-algebraisaSmarandache Q-algebra-typeB-algebra. Theorem7. Anynon-triviald-algebracannotbeaSmarandachegrouptyped-algebra. Proof. Let(X,∗,0)bead-algebraandlet(Y,∗,e)beagroupwhichisasubalgebra. Thene∗e = e =0 andx = e∗x = 0∗x = 0foranyy ∈ Y. Hence|Y| = 1. Thusanynon-triviald-algebracannotbea Smarandachegroup-typed-algebra. Theorem8. Anynon-trivialgBCK-algebracannotbeaSmarandachegroup-typegBCK-algebra. Proof. Let (X,∗,0) be a gBCK-algebra and let (Y,∗,e) be a group which is a subalgebra. Then e = e∗e =0andx∗x =0= eforanyx ∈Y. Henceo(x) =2foranyx ∈Y. Therefore(Y,∗,e =0)is trivialoraBooleangroup. Also,(x∗y)∗z = (x∗z)∗(y∗z)foranyz ∈ Xandthefactthat(Y,∗,e) isagroup,requiresz =0and|Y| =1. Thusanynon-trivialgBCK-algebracannotbeaSmarandache group-typegBCK-algebra. Theorem9. Anynon-trivialgroupcannotbeaSmarandached-algebra-typegroup. Proof. Let(X,∗,e)beagroupandlet(Y,∗,0)bead-algebrawhichisasubalgebra. Foranyx ∈ Y, x∗x = 0,0∗x = 0. Bycancellationlawinthegroup, x = 0forany x ∈ Y,i.e.,|Y| = 1. Henceany non-trivialgroupcannotbeaSmarandached-algebra-typegroup. Theorem10. AnygroupcannotgroupbeaSmarandachegBCK-algebratypegroup. Proof. Let(X,∗,e)beagrouplet(Y,∗,0)bea gBCK-algebrawhichisasubalgebra. Foranyx ∈ Y, x∗0= x = x∗eandsoe =0bycancellationlawinthegroup. Nowconsidertheaxiom(x∗y)∗z = (x∗z)∗(y∗z). Since x∗x = 0 = e,Y consistsofelementsoforder2. Thusforany x ∈ Y, x = x−1 meansYisnotonlyasubalgebrabutalsoasubgroupwhichisabelian.Hencey = z∗y.Bycancellation lawandy = e∗y,weobtainz = e =0,foranyz ∈Y,i.e.,|Y| =1. Thusanygroupcannotgroupbea SmarandachegBCK-algebratypegroup. Acknowledgments: ConflictsofInterest: Theauthordeclaresnoconflictsofinterest. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 6of6 1. S.M.Hong,Y.B.JunandM.A.Ozturk,GeneralizationsofBCK-algebras,Sci.Math.Japo.58(2003),603-611. 2. Y.B.Jun,SmarandacheBCI-algebras,Math.Japo.onlinee-2005(2005),271-276. 3. J.MengandY.B.JunBCK-algebras,KyungMoonSa.Co.,Seoul(1994). 4. J.NeggersandH.S.Kim,Ond-algebras,Math.Slovaca23(1999),19-26. 5. R. Padilla, Smarandache algebric structures, Bull. Pure Appl. Sci., Delhi 17E (1998), 119-121; http://www.gallwp.unm.edu/∼smarandache/alg-s-tx.txt. 6. W.B.VasanthaKandasamy,Smarandachegroupoids,http://www.gallwp.unm.edu/∼smarandache/Groupoids.pdf. 7. J.MengandY.B.JunBCK-algebras,KyungMoonSa.Co.,Seoul(1994). 8. J.NeggersandH.S.KimOnd-algebras,Math.Slovaca49(1999),19-26. 9. J.NeggersandH.S.Kim,B-algebras,Mate.Vesnik54(2002),21-29.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.