Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 Article Algebras and Smarandache Types HeeSikKim1,J.Neggers2andSunShinAhn3,∗ 1DepartmentofMathematics,ResearchInstituteofNaturalSciences,HanyangUniversity,Seoul04763,Korea; [email protected] 2DepartmentofMathematics,UniversityofAlabama,Tuscaloosa,AL35487-0350,U.S.A.;[email protected] 3SunShinAhn,DepartmentofMathematicsEducation,DonggukUniversity,Seoul04620,Korea; [email protected] ∗Correspondences:[email protected],mobile:+82-10-3783-3410;office:+82-2-2260-3410. Abstract: Ifanalgebraoftype AcontainsasubalgebrawhichisalsoanalgebraoftypeB,thenitis aSmarandacheB-type A-algebraprovidedthesubalgebraoftypeBcontainsatleasttwoelements. ThisgeneralizesthenotionofSmarandachegroup,wherethegroupoforder≥2isasubsemigroup ofasemigroup. Inthispaperweinvestigateanumberofsuchpairingsandwededuceanumberof conclusionsasaconsequence. Keywords: Smarandachealgebra,pointalgebra, p-derivedalgebra. 1. Introduction Generally,inanyhumanfield,aSmarandachestructureonaset AmeansaweakstructureW on AsuchthatthereexistsapropersubsetBof AwhichisembeddedwithastrongstructureS. In [6],W.B.VasanthaKandasamystudiedtheconceptofSmarandachegroupoids,subgroupoids,ideals of groupoids, semi-normal subgroupoids, Smarandache Bol groupoids and strong Bol groupoids andobtainedmanyinterestingresultsaboutthem. Smarandacesemigroupsareveryimportantfor thestudyofcongruences,anditwasstudiedbyR.Padilla([5]). Itwillbeveryinterestingtostudy theSmarandachestructureinBCI-algebras. In[2],Y.B.JundiscussedtheSmarandachestructurein BCI-algebras. Ifanalgebraoftype AcontainsasubalgebrawhichisalsoanalgebraoftypeB,thenit isaSmarandacheB-type A-algebraprovidedthesubalgebraoftypeBcontainsatleasttwoelements. ThisgeneralizesthenotionofSmarandachegroup,wherethegroupoforder≥2isasubsemigroup ofasemigroup. Inthispaperweinvestigateanumberofsuchpairingsandwededuceanumberof conclusionsasaconsequence. 2. Severalalgebras Supposethat(X,∗)isabinarysystem,i.e.,X×X → X, (x,y) → x∗y,istheproductmapping. If p ∈ Xisapointselectedasreferencepoint,then(X,∗,p)isapointalgebra. Example1. Let(G,·)beagroup. Thentheidentityelementeisusuallytakentobethespecialpoint pselected, writtenas(G,·,e). Wetakeallalgebrasdealtwithbelowtobepointedalgebras,withoutreallossofgenerality. Often,forsimplicity’ssakeweshallwrite p = 0,notintending0tohavetheusualmeaning. Thus(G,·,e) becomes (G,∗,0) unless it is important to distinguish the algebras (X,∗,0) which contains the subalgebra (Y,∗)withitsowndistinguishedpoint ptoproduce(Y,∗,p). Example2. (i)Let(X,∗,p)beasemigroupwithaselectedpoint pandlet(Y,∗,e)beasubsemigroupofX withaselectedpointe. Then p (cid:54)= e. (ii) Let (R,+,·) be a ring with identity. Then (R,+,0) is an abelian group. Let U be a group of units of (R,+,0). Then(U,·,1)hasadifferentpole pfrom(R,+,0) © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 2of6 Intermsoflistofaxiomstobeusedtodescribethevariousalgebratypeswenotethefollowing sectionofaxioms: (1) x∗x =0forallx ∈ X. (2) x∗0= xforallx ∈ X. (3) 0∗x = xforallx ∈ X. (4) x∗y = y∗xforallx,y ∈ X. (5) x∗y = y∗x =0⇔ x = yforallx,y ∈ X. (6) x∗y = y∗x =0⇒ x = yforallx,y ∈ X. (7) x∗y = y∗x ⇒ x = yforallx,y ∈ X. (8) 0∗x =0forallx ∈ X. (9) (x∗y)∗z = (x∗z)∗yforallx,y,z ∈ X. (10) (x∗y)∗z = x∗(z∗y)forallx,y,z ∈ X. (11) (x∗y)∗z = x∗(z∗(0∗y))forallx,y,z ∈ X. (12) (x∗y)∗z = (x∗z)∗(y∗z)forallx,y,z ∈ X. (13) (x∗y)∗(0∗y) = xforallx,y ∈ X. (14) x∗(y∗z) = (x∗y)∗zforallx,y,z ∈ X. (15) (x∗(x∗y))∗y =0forallx,y,z ∈ X. (16) ((x∗y)∗(x∗z))∗(x∗y) =0forallx,y,z ∈ X. (17) ∀x ∈ X∃y ∈ Xwithx∗y =0. (18) ∀x ∈ X∃y ∈ Xwithy∗x =0. Analgebra(X,∗,0)iscalledagroupifitsatisfies(2),(3),(14),(17),and(18). Analgebra(X,∗)is calledasemigroupifitsatisfies(14). Analgebra(X,∗,0)iscalledasemigroupwithidentityifitsatisfies (2),(3), and (14). An algebra (X,∗,0) is called a B-algebra if it satisfies (1),(2), and (11). An algebra (X,∗,0)iscalledaBG-algebraifitsatisfies(1),(2),and(13). Analgebra(X,∗,0)iscalledaBH-algebra if it satisfies (1), (2), and (6). An algebra (X,∗,0) is called a Q-algebra if it satisfies (1), (2), and (9). Analgebra(X,∗,0)iscalledaQˆ-algebraifitsatisfies(1),(2),and(10). Analgebra(X,∗,0)iscalled ad-algebraifitsatisfies(1),(5),and(8). Analgebra(X,∗,0)iscalleda BCK-algebraifitsatisfies(1), (5),(8),(15),and(16). Analgebra(X,∗,0)iscalleda gBCK-algebraifitsatisfies(1),(2),(9)and(12). Analgebra(X,∗,0)iscalledanabeliangroupifitsatisfies(2),(3),(4),(14),(17),and(18). Analgebra (X,∗,0)iscalledanabeliansemigroupifitsatisfies(4)and(14). 3. Smarandachetypes Let (X,∗) be a binary algebra. Then (X,∗) is a Smarandache-type P-algebra if it contains a subalgebra (Y,∗), where Y is non-trivial, i.e, |Y| ≥ 2, or Y contains at least two distinct elements, and (Y,∗) is itself of type P. Thus we have Smarandache-type semigroup (the type P-algebra is a semigroup),Smarandache-typegroups(thetype P-algebraisagroup),Smarandache-typeabelian groups(thetypeP-algebraisanabeliangroup). Ifanalgebraoftype Acontainsasubalgebrawhichis alsoanalgebraoftypeB,thenitisaaSmarandacheB-type A-algebraprovidedthesubalgebraoftype Bcontainsatleasttwoelements. Theorem1. If(X,∗,0)isanabeliand-algebra,thenitisatrivialalgebra. Proof. Supposethat(X,∗,0)isanabeliand-algebra. By(8),wehave0=0∗xforallx ∈ X. SinceXis abelian,0∗x = x∗0. Hence0∗x = x∗0=0.By(5),weobtainx =0. HenceX = {0}. Theorem2. If(X,∗,0)isasemigroupandd-algebra,thenitisatrivialalgebra. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 3of6 Proof. Foranyx ∈ X,wehave x∗0=x∗(0∗(x∗0)) =(x∗0)∗(x∗0) =0. By(8),wehave0∗x =0. By(5),wehavex =0. HenceX = {0}. Definition1. Let (X,∗,p) beapointedalgebra. Define x·y := x∗(p∗y), ∀x,y ∈ X. Thenthealgebra (X,·,p)iscalleda p-derivedalgebra. Example3. (i)Let(X,∗,e)beagroup. Thenthee-derivedalgebra(X,·,e)has x·y = x∗(e∗y) = x∗y, and(X,∗,e) = (X,·,e). (ii)If(X,∗,0)isad-algebra,thenx·y = x∗(0∗y) = x∗0. (iii)If(X,∗,0)isaBCK-algebra,thenx·y = x∗(0∗y) = x∗0= x. Hence(X,·,0)isaleftsemigroupwith aselectedpoint0. (iv)If(X,∗,p)isaleftsemi-groupwithaselectedpoint p,thenx·y = x∗(p∗y) = x∗p = x,i.e.,x·y = x and(X,∗,p) = (X,·,p). Definition2. AB-algebraiscalledaSmarandachegroup-typeB-algebraifitcontainsasubalgebra(Y,∗,e) whichisagroup,whereYisnon-trivial,|Y| ≥2. Noticethate∗e = 0inthegroup,whilee∗e = 0inthe B-algebra,sothate = 0,i.e.,thepoles coincidenaturally. Moreoverx∗x =0= eforallx ∈ X. Henceeveryelementinthegrouphasorder 2andthus (Y,∗,e = 0) isaBooleangroup. HenceSmarandachegroup-type B-algebraisequalto SmarandacheBooleangroup-typeB-algebra. Example4. Considerthecaseofagroup-typeQ-algebra. Let(X,∗,0)beaQ-algebraandthesubalgebrawhich isagroupis(Y,∗,e). Thene∗e = einthegroupande∗e =0intheQ-algebraisaverycommonsituationand itfollowsthatx∗x =0= e,whenceeveryelementinthegrouphasorder2. HenceSmarandachegroup-type Q-algebrasisSmarandacheBooleangroup-typeQ-algebra. Theorem3. Let(X,∗,0)beagroupandlet(Y,∗,0)beasubalgebra(notnecessaryasubgroup)whichisa B-algebra. ThenSmarandacheB-algebra-typegroupsareSmarandacheBooleangroup-typegroup. Proof. Since(X,∗,0)isagroup,0∗e = e = e∗e. Bythecancellationlawin(X,∗,0),wehavee =0. Now x ∈ Y has x∗x = eandthus x = x−1. (Y,∗,e),sothat(Y,∗,e)has x∗y−1 = x∗y ∈ Y forall x,y ∈ Y. HenceY isasubgroupof X. Butalsoforall x ∈ Y andhenceY isaBooleangroup. Thus SmarandacheB-algebra-typegroupsareSmarandacheBooleangroup-typegroup. Corollary1. SmarandachQ-algebra-typegroupsisSmarandacheBooleangroup-typegroups. Analgebra(X,∗,0)isaBQ-algebraifitsatisfies(1),(2),(11),and(9). Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 4of6 Theorem4. Let(X,∗,0)beBQ-algebra. Let(X,∗,·)beanalgebrawherex·y := x∗(0∗y). Then(X,·,0) isanabeliangroup. Proof. Since(X,∗,0)isaB-algebra,(X,·,0)isagroup.Now(x∗(0∗y))∗(0∗z) = (x∗(0∗z))∗(0∗y) by(9). Hence (x·y)·z = (x·z)·y = x·(z·y) since (X,∗,0) isagroup. Put x := 0in (x·y)·z = (x·z)·y. Then(0·y)·z =0·(z·y). Since0·y =0∗(0∗y) = y,wehavey·z = z·y,i.e.,(X,·,0)isa commutativegroup. Theorem 5. Let (X,·,0) be an abelian group. Define x∗y=x·y−1 for any x,y ∈ X. Then (X,∗,0) is a BQ-algebra. Proof. Foranyx ∈ X,x∗x = x·x−1 =0. Thus(1)holds. By(2),wehavex∗0= x·0−1 = x·0= x. Hence (2) holds. Using (X,·,0) is a commutative group, we obtain (x∗y)∗z = (x·y−1)·z−1 = (x·0−1)y−1 = (x∗z)∗y.(9)holds. Since(X,·,0)isanabeliangroup,wehave x∗(z∗(0∗y)) =x·(z·(0·y−1)−1)−1 =x·[z·((y−1)−1·0−1)]−1 =[z·(y·0)]−1 =x·[z·y]−1 =x·(y−1·z−1). But(x∗y)∗z = (x·y−1)··z−1.Henceweobtain(x∗y)∗z = x∗(z∗(0∗y)).(11)holds.Thus(X,∗,0) isaBQ-algebra. Theinterestingfacttonoteisthatweareabletotakeadvantageoftherelationshipx·y = x∗(0∗y) tounderstandbetterwhatthemeaningoftheclassof BQ-algebrais. Othersuchquestionsaround inthis settingaswell asothers. E.q., whatclassof B-algebrascorrespondstothe classofsolvable groups? Canitbeconsideredtobeoftheform: BV-algebrascorrespondstosolvablegroupswhere “V-algebras"issomenicelyidentifiableclass,astheclassforBQ-algebras? Theorem6. If(X,∗,0)isaSmarandacheB-algebra-typeQ-algebra,then(X,·,p)isaSmarandacheabelian group-type0-derivedQ-algebra,wherex·y := x∗(0∗y)foranyx,y ∈ X. Proof. Supposethat(X,∗,0)isaQ-algebraandlet(Y,∗,e)beaB-algebraandasubalgebraofX. For any x ∈ Y, x∗x = e and so x∗x = 0, so that e = 0 in any case. Hence (Y,∗,0) is a BQ-algebra. Therefore if (X,·,0) is the 0-derived algebra obtained from a Q-algebra, then (Y,·,0) is a abelian subgroup. Thusif(X,·,0)isaSmarandacheB-algebra-typeQ-algebra,then(Y,·,0)isaSmarandache abeliangrouptype0-derivedQ-algebra. Corollary 2. (X,∗,0) is a Smarandache Q-algebra-type B-algebra, then (X,·,0) is a Smarandach abelian group-type0-derived. i.e.,aSmarandacheabeliangrouptypegroup. Proof. ItissimilartoTheorem6. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 5of6 Proposition1. EveryB-algebraisaSmarandacheQ-algebra-typeB-algebra. Proof. Let (X,·,0) be a group and let x ∈ X. Then < x > the group generated by x is an abelian group, | < x > | ≥ 2 if x (cid:54)= 0. Hence if (X,∗,0) is obtained by x∗y = x·y−1, then (X,∗,0) is a B-algebra,while(< x >,∗,0)isaBQ-algebra. Thusif|x| ≥2,theneveryB-algebraisaSmarandache Q-algebra-typeB-algebra. Theorem7. Anynon-triviald-algebracannotbeaSmarandachegrouptyped-algebra. Proof. Let(X,∗,0)bead-algebraandlet(Y,∗,e)beagroupwhichisasubalgebra. Thene∗e = e =0 andx = e∗x = 0∗x = 0foranyy ∈ Y. Hence|Y| = 1. Thusanynon-triviald-algebracannotbea Smarandachegroup-typed-algebra. Theorem8. Anynon-trivialgBCK-algebracannotbeaSmarandachegroup-typegBCK-algebra. Proof. Let (X,∗,0) be a gBCK-algebra and let (Y,∗,e) be a group which is a subalgebra. Then e = e∗e =0andx∗x =0= eforanyx ∈Y. Henceo(x) =2foranyx ∈Y. Therefore(Y,∗,e =0)is trivialoraBooleangroup. Also,(x∗y)∗z = (x∗z)∗(y∗z)foranyz ∈ Xandthefactthat(Y,∗,e) isagroup,requiresz =0and|Y| =1. Thusanynon-trivialgBCK-algebracannotbeaSmarandache group-typegBCK-algebra. Theorem9. Anynon-trivialgroupcannotbeaSmarandached-algebra-typegroup. Proof. Let(X,∗,e)beagroupandlet(Y,∗,0)bead-algebrawhichisasubalgebra. Foranyx ∈ Y, x∗x = 0,0∗x = 0. Bycancellationlawinthegroup, x = 0forany x ∈ Y,i.e.,|Y| = 1. Henceany non-trivialgroupcannotbeaSmarandached-algebra-typegroup. Theorem10. AnygroupcannotgroupbeaSmarandachegBCK-algebratypegroup. Proof. Let(X,∗,e)beagrouplet(Y,∗,0)bea gBCK-algebrawhichisasubalgebra. Foranyx ∈ Y, x∗0= x = x∗eandsoe =0bycancellationlawinthegroup. Nowconsidertheaxiom(x∗y)∗z = (x∗z)∗(y∗z). Since x∗x = 0 = e,Y consistsofelementsoforder2. Thusforany x ∈ Y, x = x−1 meansYisnotonlyasubalgebrabutalsoasubgroupwhichisabelian.Hencey = z∗y.Bycancellation lawandy = e∗y,weobtainz = e =0,foranyz ∈Y,i.e.,|Y| =1. Thusanygroupcannotgroupbea SmarandachegBCK-algebratypegroup. Acknowledgments: ConflictsofInterest: Theauthordeclaresnoconflictsofinterest. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0117.v1 6of6 1. S.M.Hong,Y.B.JunandM.A.Ozturk,GeneralizationsofBCK-algebras,Sci.Math.Japo.58(2003),603-611. 2. Y.B.Jun,SmarandacheBCI-algebras,Math.Japo.onlinee-2005(2005),271-276. 3. J.MengandY.B.JunBCK-algebras,KyungMoonSa.Co.,Seoul(1994). 4. J.NeggersandH.S.Kim,Ond-algebras,Math.Slovaca23(1999),19-26. 5. R. Padilla, Smarandache algebric structures, Bull. Pure Appl. Sci., Delhi 17E (1998), 119-121; http://www.gallwp.unm.edu/∼smarandache/alg-s-tx.txt. 6. W.B.VasanthaKandasamy,Smarandachegroupoids,http://www.gallwp.unm.edu/∼smarandache/Groupoids.pdf. 7. J.MengandY.B.JunBCK-algebras,KyungMoonSa.Co.,Seoul(1994). 8. J.NeggersandH.S.KimOnd-algebras,Math.Slovaca49(1999),19-26. 9. J.NeggersandH.S.Kim,B-algebras,Mate.Vesnik54(2002),21-29.