ebook img

Algebraic Topology: The Abel Symposium 2007 PDF

417 Pages·2009·8.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Topology: The Abel Symposium 2007

ABEL SYMPOSIA Edited by the Norwegian Mathematical Society · Nils A. Baas Eric M. Friedlander · Bjørn Jahren Paul Arne Østvær Editors Algebraic Topology The Abel Symposium 2007 Proceedings of the Fourth Abel Symposium, − Oslo, Norway, August 5 10, 2007 Editors NilsA.Baas EricM.Friedlander DepartmentofMathematics DepartmentofMathematics NTNU UniversityofSouthernCalifornia 7491Trondheim 3620VermontAvenue Norway LosAngeles,CA90089-2532 e-mail:[email protected] USA e-mail:[email protected] BjørnJahren PaulArneØstvær DepartmentofMathematics DepartmentofMathematics UniversityofOslo UniversityofOslo P.O.Box1053Blindern P.O.Box1053Blindern 0316Oslo 0316Oslo Norway Norway e-mail:[email protected] e-mail:[email protected] ISBN978-3-642-01199-3 e-ISBN:978-3-642-01200-6 DOI:10.1007/978-3-642-01200-6 SpringerDodrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2009926010 (cid:2)c Springer-VerlagBerlinHeidelberg2009 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names,registered names, trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface to the Series The Niels Henrik Abel Memorial Fund was established by the Norwegian gov- ernment on January 1, 2002. The main objective is to honor the great Norwegian mathematicianNielsHenrikAbelbyawardinganinternationalprizeforoutstand- ing scientific work in the field of mathematics. The prize shall contribute towards raising the status of mathematics in society and stimulate the interest for science amongschoolchildrenandstudents.Inkeepingwiththisobjectivetheboardofthe Abel fundhas decided to finance one or two Abel Symposiaeach year. The topic may be selected broadly in the area of pure and applied mathematics. The Sym- posiashouldbeatthehighestinternationallevel,andservetobuildbridgesbetween thenationalandinternationalresearchcommunities.TheNorwegianMathematical Societyisresponsiblefortheevents.Ithasalsobeendecidedthatthecontributions fromthese Symposiashouldbepresentedina seriesofproceedings,andSpringer Verlaghasenthusiasticallyagreedtopublishtheseries.TheboardoftheNielsHen- rikAbelMemorialFundisconfidentthattheserieswillbeavaluablecontribution tothemathematicalliterature. RagnarWinther ChairmanoftheboardoftheNielsHenrikAbelMemorialFund v Preface The2007AbelSymposiumtookplaceattheUniversityofOslofromAugust5to August10,2007.Theaimofthesymposiumwastobringtogethermathematicians whoseresearcheffortshaveledtorecentadvancesinalgebraicgeometry,algebraic -theory,algebraictopology,andmathematicalphysics.Thecommonthemeofthis (cid:0)symposiumwasthedevelopmentofnewperspectivesandnewconstructionswitha categoricalflavor.Asthe lecturesatthesymposiumandthepapersofthisvolume demonstrate,theseperspectivesandconstructionshaveenabledabroadeningofvis- tas, a synergybetweenonce-differentiatedsubjects, andsolutionsto mathematical problemsbotholdandnew. This symposium was organized by two complementary groups: an external organizing committee consisting of Eric Friedlander (Northwestern,University of Southern California), Stefan Schwede (Bonn) and Graeme Segal (Oxford) and a local organizing committee consisting of Nils A. Baas (Trondheim), Bjørn Ian Dundas(Bergen),BjørnJahren(Oslo)andJohnRognes(Oslo). The webpage of the symposium can be found at http://abelsymposium.no/ symp2007/info.html Theinterestedreaderwillfindtitlesandabstractsofthetalkslistedhere Monday6th Tuesday7th Wednesday8th Thursday9th 09.30 10.30 F.Morel S.Stolz J.Lurie N.Strickland 11.00 12.00 M.Hopkins A.Merkurjev J.Baez U.Jannsen 13.30 14.20 R.Cohen M.Behrens H.Esnault C.Rezk 14.40 15.30 L.Hesselholt M.Rost B.Toe¨n M.Levine 16.30 17.20 M.Ando U.Tillmann D.Freed 17.40 18.30 D.Sullivan V.Voevodsky aswellasafewonlinelecturenotes.Moreover,onewillfindhereusefulinformation aboutourgracioushostcity,Oslo. The present volume consists of 12 papers written by participants (and their collaborators).Wegiveaverybriefoverviewofeachofthesepapers. vii viii Preface “Theclassifyingspaceofatopological2-group”byJ.C.BaezandD.Stevenson: Recentworkinhighergaugetheoryhasrevealedtheimportanceofcategorisingthe theoryofbundlesandconsideringvariousnotionsof2-bundles.Thepresentpaper givesasurveyonrecentworkonsuchgeneralizedbundlesandtheirclassification. “String topology in dimensions two and three” by M. Chas and D. Sullivan describessomeapplicationsofstringtopologyinlow dimensionsforsurfacesand 3-manifolds.TheauthorsrelatetheirresultstoatheoremofW.JacoandJ.Stallings and a group theoretical statement equivalent to the three-dimensional Poincare conjecture. Thepaper“Floerhomotopytheory,realizingchaincomplexesbymodulespectra, andmanifoldswithcorners”,byR.Cohen,extendsideasoftheauthor,J.D.S.Jones and G. Segal on realizing the Floer complex as the cellular complex of a natural stable homotopy type. Crucial in their work was a framing condition on certain moduli spaces, and Cohen shows that by replacing this by a certain orientability withrespecttoageneralizedcohomologytheory ,thereisanaturaldefinitionof (cid:0) Floer –homology. (cid:2) In“(cid:2)R(cid:0)elativeCherncharactersfornilpotentideals”byG.Cortin˜asandC.Weibel, theequalityoftworelativeCherncharactersfrom -theorytocyclichomologyis shown in the case of nilpotent ideals. This import(cid:0)ant equality has been assumed withoutproofinvariouspapersinthepast20years,includingrecentinvestigations ofnegative -theory. H. Esnau(cid:0)lt’s paper “Algebraic differential characters of flat connections with nilpotent residues” shows that characteristic classes of flat bundles on quasi- projective varieties lift canonically to classes over a projective completion if the localmonodromyatinfinityisunipotent.Thisshouldfacilitatethecomputationsin somesituations,foritissometimeseasiertocomputesuchcharacteristicclassesfor flatbundlesonquasi-projectivevarieties. “NormvarietiesandtheChainLemma(afterMarkusRost)”byC.Haesemeyer and C. Weibel gives detailed proofs of two results of Markus Rost known as the “Chain Lemma”and the “Normprinciple”.The authorsplace these two resultsin thecontextoftheoverallproofoftheBloch–Katoconjecture.Theproofsarebased onlecturesbyRost. In“OntheWhiteheadspectrumof thecircle”L. Hesselholtextendsthe known computations of homotopy groups WhTop of the Whitehead spectrum of (cid:2) thecircle.Thisproblemisoffundam(cid:3)e(cid:0)n(cid:4)talimp(cid:4)o(cid:5)rta(cid:6)(cid:6)nceforunderstandingthehome- omorphismgroupsofmanifolds,inparticularthoseadmittingRiemannianmetrics of negative curvature. The author achieves complete and explicit computations for . J(cid:7).F. J(cid:8)ardine’s paper “Cocycle categories” presents a new approach to defining (cid:0) andmanipulatingcocyclesinrightpropermodelcategories.Thesecocyclemethods provide simple new proofs of homotopy classification results for torsors, abelian sheaf cohomology groups, group extensions and gerbes. It is also shown that the algebraicK-theorypresheafofspacesisasimplicialstackassociatedtoa suitably definedparabolicgroupoid. Preface ix “Asurveyofellipticcohomology”byJ.Lurieisanexpositoryaccountoftherela- tionship between elliptic cohomologyand derived algebraic geometry.This paper lies attheintersectionofhomotopytheoryandalgebraicgeometry.Precursorsare kept to a minimum, making the paper accessible to readers with a basic back- groundinalgebraicgeometry,particularlywiththetheoryofellipticcurves.Amore comprehensiveaccountwithcompletedefinitionsandproofs,willappearelsewhere. “On Voevodsky’s algebraic -theory spectrum” by I. Panin, K. Pimenov and O. Ro¨ndigs resolves some -th(cid:0)eoreticquestionsin the modernsetting of motivic homotopy theory. They sho(cid:0)w that the motivic spectrum , which represents algebraic -theoryinthemotivicstablehomotopycategory(cid:9),h(cid:10)a(cid:11)sauniqueringstruc- tureover(cid:0)theintegers.Forgeneralbaseschemesthisstructurepullsbacktogivea distinguishedmonoidalstructurewhichtheauthorshaveemployedintheirproofof amotivicConner–Floydtheorem. The paper “Chern character, loop spaces and derived algebraic geometry” authored by B. Toe¨n and G. Vezzosi presents work in progress dealing with a categorised version of sheaf theory. Central to their work is the new notion of “derivedcategoricalsheaves”,whichcategorisesthenotionofcomplexesofsheaves ofmodulesonschemes.Ideasoriginatinginderivedalgebraicgeometryandhigher categorytheoryareusedtointroduce“derivedloopspaces”andtoconstructaChern characterforcategoricalsheaveswithvaluesincyclichomology.Thisworkcanbe seenasanattempttodefinealgebraicanalogsofelliptic objectsandcharacteristic classes. “Voevodsky’slecturesonmotiviccohomology2000/2001”consistsoffourparts, each dealingwith foundationalmaterialrevolvingaroundthe proofof the Bloch– Kato conjecture. A motivic equivariant homotopy theory is introduced with the specificaimofextendingnon-additivefunctors,suchassymmetricproducts,from schemestothemotivichomotopycategory.ThetextiswrittenbyP.Deligne. We gratefully acknowledge the generous support of the Board for the Niels Henrik Abel Memorial Fund and the Norwegian Mathematical Society. We also thank Ruth Allewelt and Springer-Verlagfor constantencouragementand support duringtheeditingoftheseproceedings. Trondheim,LosAngelesandOslo NilsA.Baas March2009 EricM.Friedlander BjørnJahren PaulArneØstvær Contents TheClassifyingSpaceofaTopological2-Group 1 JohnC.BaezandDannyStevenson (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) StringTopologyinDimensionsTwoandThree 33 MoiraChasandDennisSullivan (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) Floer HomotopyTheory, Realizing Chain Complexesby ModuleSpectra,andManifoldswithCorners 39 RalphL.Cohen (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) RelativeChernCharactersforNilpotentIdeals 61 G.Cortin˜asandC.Weibel (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) AlgebraicDifferentialCharactersofFlat ConnectionswithNilpotentResidues 83 He´le`neEsnault (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) NormVarietiesandtheChainLemma(AfterMarkusRost) 95 ChristianHaesemeyerandChuckWeibel (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) OntheWhiteheadSpectrumoftheCircle 131 LarsHesselholt (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) CocycleCategories 185 J.F.Jardine (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) ASurveyofEllipticCohomology 219 J.Lurie (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) OnVoevodsky’sAlgebraic -TheorySpectrum 279 IvanPanin,KonstantinPimen(cid:0)ov,andOliverRo¨ndig(cid:12)(cid:12)s(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) xi xii Contents Chern Character, Loop Spaces and Derived Algebraic Geometry 331 BertrandTo(cid:12)e¨(cid:12)n(cid:12)(cid:12)a(cid:12)n(cid:12)d(cid:12)(cid:12)G(cid:12)(cid:12)a(cid:12)b(cid:12)(cid:12)r(cid:12)ie(cid:12)(cid:12)le(cid:12)(cid:12)V(cid:12)(cid:12)e(cid:12)z(cid:12)z(cid:12)o(cid:12)s(cid:12)i(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) Voevodsky’sLecturesonMotivicCohomology2000/2001 355 PierreDeligne (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)

Description:
The 2007 Abel Symposium took place at the University of Oslo in August 2007. The goal of the symposium was to bring together mathematicians whose research efforts have led to recent advances in algebraic geometry, algebraic K-theory, algebraic topology, and mathematical physics. A common theme of th
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.