ABEL SYMPOSIA Edited by the Norwegian Mathematical Society · Nils A. Baas Eric M. Friedlander · Bjørn Jahren Paul Arne Østvær Editors Algebraic Topology The Abel Symposium 2007 Proceedings of the Fourth Abel Symposium, − Oslo, Norway, August 5 10, 2007 Editors NilsA.Baas EricM.Friedlander DepartmentofMathematics DepartmentofMathematics NTNU UniversityofSouthernCalifornia 7491Trondheim 3620VermontAvenue Norway LosAngeles,CA90089-2532 e-mail:[email protected] USA e-mail:[email protected] BjørnJahren PaulArneØstvær DepartmentofMathematics DepartmentofMathematics UniversityofOslo UniversityofOslo P.O.Box1053Blindern P.O.Box1053Blindern 0316Oslo 0316Oslo Norway Norway e-mail:[email protected] e-mail:[email protected] ISBN978-3-642-01199-3 e-ISBN:978-3-642-01200-6 DOI:10.1007/978-3-642-01200-6 SpringerDodrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2009926010 (cid:2)c Springer-VerlagBerlinHeidelberg2009 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names,registered names, trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface to the Series The Niels Henrik Abel Memorial Fund was established by the Norwegian gov- ernment on January 1, 2002. The main objective is to honor the great Norwegian mathematicianNielsHenrikAbelbyawardinganinternationalprizeforoutstand- ing scientific work in the field of mathematics. The prize shall contribute towards raising the status of mathematics in society and stimulate the interest for science amongschoolchildrenandstudents.Inkeepingwiththisobjectivetheboardofthe Abel fundhas decided to finance one or two Abel Symposiaeach year. The topic may be selected broadly in the area of pure and applied mathematics. The Sym- posiashouldbeatthehighestinternationallevel,andservetobuildbridgesbetween thenationalandinternationalresearchcommunities.TheNorwegianMathematical Societyisresponsiblefortheevents.Ithasalsobeendecidedthatthecontributions fromthese Symposiashouldbepresentedina seriesofproceedings,andSpringer Verlaghasenthusiasticallyagreedtopublishtheseries.TheboardoftheNielsHen- rikAbelMemorialFundisconfidentthattheserieswillbeavaluablecontribution tothemathematicalliterature. RagnarWinther ChairmanoftheboardoftheNielsHenrikAbelMemorialFund v Preface The2007AbelSymposiumtookplaceattheUniversityofOslofromAugust5to August10,2007.Theaimofthesymposiumwastobringtogethermathematicians whoseresearcheffortshaveledtorecentadvancesinalgebraicgeometry,algebraic -theory,algebraictopology,andmathematicalphysics.Thecommonthemeofthis (cid:0)symposiumwasthedevelopmentofnewperspectivesandnewconstructionswitha categoricalflavor.Asthe lecturesatthesymposiumandthepapersofthisvolume demonstrate,theseperspectivesandconstructionshaveenabledabroadeningofvis- tas, a synergybetweenonce-differentiatedsubjects, andsolutionsto mathematical problemsbotholdandnew. This symposium was organized by two complementary groups: an external organizing committee consisting of Eric Friedlander (Northwestern,University of Southern California), Stefan Schwede (Bonn) and Graeme Segal (Oxford) and a local organizing committee consisting of Nils A. Baas (Trondheim), Bjørn Ian Dundas(Bergen),BjørnJahren(Oslo)andJohnRognes(Oslo). The webpage of the symposium can be found at http://abelsymposium.no/ symp2007/info.html Theinterestedreaderwillfindtitlesandabstractsofthetalkslistedhere Monday6th Tuesday7th Wednesday8th Thursday9th 09.30 10.30 F.Morel S.Stolz J.Lurie N.Strickland 11.00 12.00 M.Hopkins A.Merkurjev J.Baez U.Jannsen 13.30 14.20 R.Cohen M.Behrens H.Esnault C.Rezk 14.40 15.30 L.Hesselholt M.Rost B.Toe¨n M.Levine 16.30 17.20 M.Ando U.Tillmann D.Freed 17.40 18.30 D.Sullivan V.Voevodsky aswellasafewonlinelecturenotes.Moreover,onewillfindhereusefulinformation aboutourgracioushostcity,Oslo. The present volume consists of 12 papers written by participants (and their collaborators).Wegiveaverybriefoverviewofeachofthesepapers. vii viii Preface “Theclassifyingspaceofatopological2-group”byJ.C.BaezandD.Stevenson: Recentworkinhighergaugetheoryhasrevealedtheimportanceofcategorisingthe theoryofbundlesandconsideringvariousnotionsof2-bundles.Thepresentpaper givesasurveyonrecentworkonsuchgeneralizedbundlesandtheirclassification. “String topology in dimensions two and three” by M. Chas and D. Sullivan describessomeapplicationsofstringtopologyinlow dimensionsforsurfacesand 3-manifolds.TheauthorsrelatetheirresultstoatheoremofW.JacoandJ.Stallings and a group theoretical statement equivalent to the three-dimensional Poincare conjecture. Thepaper“Floerhomotopytheory,realizingchaincomplexesbymodulespectra, andmanifoldswithcorners”,byR.Cohen,extendsideasoftheauthor,J.D.S.Jones and G. Segal on realizing the Floer complex as the cellular complex of a natural stable homotopy type. Crucial in their work was a framing condition on certain moduli spaces, and Cohen shows that by replacing this by a certain orientability withrespecttoageneralizedcohomologytheory ,thereisanaturaldefinitionof (cid:0) Floer –homology. (cid:2) In“(cid:2)R(cid:0)elativeCherncharactersfornilpotentideals”byG.Cortin˜asandC.Weibel, theequalityoftworelativeCherncharactersfrom -theorytocyclichomologyis shown in the case of nilpotent ideals. This import(cid:0)ant equality has been assumed withoutproofinvariouspapersinthepast20years,includingrecentinvestigations ofnegative -theory. H. Esnau(cid:0)lt’s paper “Algebraic differential characters of flat connections with nilpotent residues” shows that characteristic classes of flat bundles on quasi- projective varieties lift canonically to classes over a projective completion if the localmonodromyatinfinityisunipotent.Thisshouldfacilitatethecomputationsin somesituations,foritissometimeseasiertocomputesuchcharacteristicclassesfor flatbundlesonquasi-projectivevarieties. “NormvarietiesandtheChainLemma(afterMarkusRost)”byC.Haesemeyer and C. Weibel gives detailed proofs of two results of Markus Rost known as the “Chain Lemma”and the “Normprinciple”.The authorsplace these two resultsin thecontextoftheoverallproofoftheBloch–Katoconjecture.Theproofsarebased onlecturesbyRost. In“OntheWhiteheadspectrumof thecircle”L. Hesselholtextendsthe known computations of homotopy groups WhTop of the Whitehead spectrum of (cid:2) thecircle.Thisproblemisoffundam(cid:3)e(cid:0)n(cid:4)talimp(cid:4)o(cid:5)rta(cid:6)(cid:6)nceforunderstandingthehome- omorphismgroupsofmanifolds,inparticularthoseadmittingRiemannianmetrics of negative curvature. The author achieves complete and explicit computations for . J(cid:7).F. J(cid:8)ardine’s paper “Cocycle categories” presents a new approach to defining (cid:0) andmanipulatingcocyclesinrightpropermodelcategories.Thesecocyclemethods provide simple new proofs of homotopy classification results for torsors, abelian sheaf cohomology groups, group extensions and gerbes. It is also shown that the algebraicK-theorypresheafofspacesisasimplicialstackassociatedtoa suitably definedparabolicgroupoid. Preface ix “Asurveyofellipticcohomology”byJ.Lurieisanexpositoryaccountoftherela- tionship between elliptic cohomologyand derived algebraic geometry.This paper lies attheintersectionofhomotopytheoryandalgebraicgeometry.Precursorsare kept to a minimum, making the paper accessible to readers with a basic back- groundinalgebraicgeometry,particularlywiththetheoryofellipticcurves.Amore comprehensiveaccountwithcompletedefinitionsandproofs,willappearelsewhere. “On Voevodsky’s algebraic -theory spectrum” by I. Panin, K. Pimenov and O. Ro¨ndigs resolves some -th(cid:0)eoreticquestionsin the modernsetting of motivic homotopy theory. They sho(cid:0)w that the motivic spectrum , which represents algebraic -theoryinthemotivicstablehomotopycategory(cid:9),h(cid:10)a(cid:11)sauniqueringstruc- tureover(cid:0)theintegers.Forgeneralbaseschemesthisstructurepullsbacktogivea distinguishedmonoidalstructurewhichtheauthorshaveemployedintheirproofof amotivicConner–Floydtheorem. The paper “Chern character, loop spaces and derived algebraic geometry” authored by B. Toe¨n and G. Vezzosi presents work in progress dealing with a categorised version of sheaf theory. Central to their work is the new notion of “derivedcategoricalsheaves”,whichcategorisesthenotionofcomplexesofsheaves ofmodulesonschemes.Ideasoriginatinginderivedalgebraicgeometryandhigher categorytheoryareusedtointroduce“derivedloopspaces”andtoconstructaChern characterforcategoricalsheaveswithvaluesincyclichomology.Thisworkcanbe seenasanattempttodefinealgebraicanalogsofelliptic objectsandcharacteristic classes. “Voevodsky’slecturesonmotiviccohomology2000/2001”consistsoffourparts, each dealingwith foundationalmaterialrevolvingaroundthe proofof the Bloch– Kato conjecture. A motivic equivariant homotopy theory is introduced with the specificaimofextendingnon-additivefunctors,suchassymmetricproducts,from schemestothemotivichomotopycategory.ThetextiswrittenbyP.Deligne. We gratefully acknowledge the generous support of the Board for the Niels Henrik Abel Memorial Fund and the Norwegian Mathematical Society. We also thank Ruth Allewelt and Springer-Verlagfor constantencouragementand support duringtheeditingoftheseproceedings. Trondheim,LosAngelesandOslo NilsA.Baas March2009 EricM.Friedlander BjørnJahren PaulArneØstvær Contents TheClassifyingSpaceofaTopological2-Group 1 JohnC.BaezandDannyStevenson (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) StringTopologyinDimensionsTwoandThree 33 MoiraChasandDennisSullivan (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) Floer HomotopyTheory, Realizing Chain Complexesby ModuleSpectra,andManifoldswithCorners 39 RalphL.Cohen (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) RelativeChernCharactersforNilpotentIdeals 61 G.Cortin˜asandC.Weibel (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) AlgebraicDifferentialCharactersofFlat ConnectionswithNilpotentResidues 83 He´le`neEsnault (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) NormVarietiesandtheChainLemma(AfterMarkusRost) 95 ChristianHaesemeyerandChuckWeibel (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) OntheWhiteheadSpectrumoftheCircle 131 LarsHesselholt (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) CocycleCategories 185 J.F.Jardine (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) ASurveyofEllipticCohomology 219 J.Lurie (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) OnVoevodsky’sAlgebraic -TheorySpectrum 279 IvanPanin,KonstantinPimen(cid:0)ov,andOliverRo¨ndig(cid:12)(cid:12)s(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) xi xii Contents Chern Character, Loop Spaces and Derived Algebraic Geometry 331 BertrandTo(cid:12)e¨(cid:12)n(cid:12)(cid:12)a(cid:12)n(cid:12)d(cid:12)(cid:12)G(cid:12)(cid:12)a(cid:12)b(cid:12)(cid:12)r(cid:12)ie(cid:12)(cid:12)le(cid:12)(cid:12)V(cid:12)(cid:12)e(cid:12)z(cid:12)z(cid:12)o(cid:12)s(cid:12)i(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) Voevodsky’sLecturesonMotivicCohomology2000/2001 355 PierreDeligne (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
Description: