ebook img

ALGEBRAIC TOPOLOGY I PDF

685 Pages·2017·9.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ALGEBRAIC TOPOLOGY I

ALGEBRAIC TOPOLOGY I - II STEFAN FRIEDL Contents References......................................................................... 6 1. Topological spaces............................................................. 15 1.1. The de(cid:12)nition of a topological space....................................... 15 1.2. Constructions of more topological spaces .................................. 25 1.3. Further examples of topological spaces..................................... 28 1.4. The two notions of connected topological spaces........................... 32 1.5. The (path-) components of a topological spaces............................ 35 1.6. Local properties........................................................... 37 1.7. Graphs and topological realizations of graphs.............................. 39 1.8. The basis of a topology.................................................... 43 1.9. Manifolds................................................................. 44 1.10. The classi(cid:12)cation of 1-dimensional manifolds............................. 48 1.11. Orientations of manifolds................................................. 52 2. Differential topology........................................................... 55 2.1. The Tubular Neighborhood Theorem...................................... 55 2.2. The connected sum operation ............................................. 59 2.3. Knots and their complements.............................................. 61 3. How can we show that two topological spaces are not homeomorphic? ......... 65 4. The fundamental group ....................................................... 69 4.1. Homotopy classes of paths................................................. 69 4.2. The fundamental group of a pointed topological space..................... 76 5. Categories and functors ....................................................... 82 5.1. De(cid:12)nition and examples of categories...................................... 82 5.2. Functors.................................................................. 84 5.3. The fundamental group as functor......................................... 86 6. Fundamental groups and coverings ............................................ 91 6.1. The cardinality of sets..................................................... 91 6.2. Covering spaces........................................................... 93 6.3. The lifting of paths........................................................105 6.4. The lifting of homotopies..................................................108 6.5. Group actions and fundamental groups.................................... 114 6.6. The fundamental group of the product of two topological spaces........... 120 1 2 STEFAN FRIEDL 6.7. Applications: the Fundamental Theorem of Algebra and the Borsuk-Ulam Theorem...............................................................123 7. Homotopy equivalent topological spaces ....................................... 126 7.1. Homotopic maps.......................................................... 126 7.2. The fundamental groups of homotopy equivalent topological spaces........ 128 7.3. The wedge of two topological spaces....................................... 133 8. Basics of group theory.........................................................140 8.1. Free abelian groups and (cid:12)nitely generated abelian groups.................. 140 8.2. The free product of groups................................................ 146 8.3. An alternative de(cid:12)nition of the free product of groups..................... 153 9. The Seifert-van Kampen theorem I............................................ 156 9.1. The Seifert{van Kampen theorem I........................................156 9.2. Proof of the Seifert-van Kampen Theorem 9.2............................. 163 9.3. More examples: surfaces and the connected sum of manifolds.............. 168 10. Presentations of groups and amalgamated products...........................174 10.1. Basic de(cid:12)nitions in group theory......................................... 174 10.2. Presentation of groups ................................................... 175 10.3. The abelianization of a group ............................................ 180 10.4. The amalgamated product of groups ..................................... 184 11. The general Seifert-van Kampen Theorem.................................... 189 11.1. The formulation of the general Seifert-van Kampen Theorem............. 189 11.2. The fundamental groups of surfaces...................................... 191 11.3. Non-orientable surfaces...................................................197 11.4. The classi(cid:12)cation of closed 2-dimensional (topological) manifolds......... 199 11.5. The classi(cid:12)cation of 2-dimensional (topological) manifolds with boundary.200 11.6. Retractions onto boundary components of 2-dimensional manifolds....... 205 12. Examples: knots and mapping tori........................................... 209 12.1. An excursion into knot theory ((cid:3))........................................ 209 12.2. Mapping tori.............................................................214 13. Limits ....................................................................... 224 13.1. Preordered and directed sets ............................................. 224 13.2. The direct limit of a direct system........................................225 13.3. Gluing formula for fundamental groups and HNN-extensions ((cid:3)).......... 237 13.4. The inverse limit of an inverse system.................................... 242 13.5. The pro(cid:12)nite completion of a group ((cid:3))...................................250 14. Decision problems............................................................252 15. The universal cover of topological spaces ..................................... 255 15.1. Local properties of topological spaces.....................................255 15.2. Lifting maps to coverings.................................................256 15.3. Existence of covering spaces.............................................. 261 16. Covering spaces and manifolds ............................................... 274 16.1. Covering spaces of manifolds............................................. 274 ALGEBRAIC TOPOLOGY I - II 3 16.2. The orientation cover of a non-orientable manifold........................278 17. Complex manifolds...........................................................281 18. Hyperbolic geometry......................................................... 287 18.1. Hyperbolic space......................................................... 287 18.2. Angles in Riemannian manifolds..........................................293 18.3. The distance metric of a Riemannian manifold ........................... 295 18.4. The hyperbolic distance function......................................... 298 18.5. Complete metric spaces.................................................. 300 19. The universal cover of surfaces ............................................... 302 19.1. Hyperbolic surfaces ...................................................... 302 19.2. More hyperbolic structures on the surfaces of genus g (cid:21) 2 ((cid:3)).............306 19.3. More examples of hyperbolic surfaces.....................................308 19.4. The universal cover of surfaces........................................... 313 19.5. Proof of Theorem 19.9 I..................................................314 19.6. Proof of Theorem 19.9 II................................................. 318 19.7. Picard’s Theorem........................................................ 321 20. The deck transformation group ((cid:3))........................................... 325 21. Related constructions in algebraic geometry and Galois theory ((cid:3))............ 336 21.1. The fundamental group of an algebraic variety ((cid:3))........................336 21.2. Galois theory ((cid:3)).........................................................338 22. CW-complexes............................................................... 340 22.1. De(cid:12)nition of (cid:12)nite-dimensional CW-complexes and examples ............. 340 22.2. Two topologies on R1 ................................................... 346 22.3. In(cid:12)nite-dimensional CW-complexes.......................................349 22.4. Properties of CW-complexes ............................................. 350 22.5. The Homotopy Extension Theorem.......................................359 22.6. Fundamental groups of CW-complexes ................................... 362 22.7. The Cellular Approximation Theorem.................................... 368 22.8. Proof of Proposition 22.20 ((cid:3))............................................ 371 22.9. Coverings of CW-complexes.............................................. 376 22.10. Spanning trees of graphs ((cid:3)) ............................................ 381 23. Higher homotopy groups..................................................... 383 23.1. De(cid:12)nition of the higher homotopy groups.................................383 23.2. Properties and calculations of the higher homotopy groups ............... 390 23.3. Covering spaces and higher homotopy groups.............................392 23.4. Are there any higher homotopy groups that are non-trivial?.............. 395 23.5. The Poincar(cid:19)e Conjecture................................................. 398 24. The homology groups of a topological space.................................. 402 24.1. Singular chains...........................................................402 24.2. De(cid:12)nition of the homology groups of a topological space..................405 24.3. First calculations of homology groups .................................... 410 24.4. Algebraic chain complexes................................................412 4 STEFAN FRIEDL 24.5. The functoriality of homology groups.....................................414 24.6. Direct products and direct sums ((cid:3))...................................... 415 24.7. The homology groups of a direct sum.....................................416 25. Homology and homotopies ................................................... 418 25.1. Chain homotopies........................................................ 418 25.2. Homology and homotopic maps .......................................... 419 26. Long exact sequences and the homology of quotient spaces ................... 426 26.1. Long exact sequences.....................................................426 26.2. The homology groups of spheres..........................................429 26.3. Basic homological algebra................................................ 432 26.4. Relative homology groups................................................ 438 26.5. The Excision Theorem................................................... 445 26.6. The proof of the Excision Theorem 26.16: the idea....................... 447 26.7. The proof of the Excision Theorem 26.16: the full details................. 448 26.8. Explicit generators of homology groups...................................461 26.9. Applications to topological manifolds.....................................467 27. The degree of a self-map of a sphere..........................................470 28. The Mayer{Vietoris sequence and its applications ............................ 478 28.1. Split exact sequences.....................................................478 28.2. The Mayer{Vietoris sequence.............................................481 28.3. Applications of the Mayer{Vietoris sequence..............................484 28.4. The Mayer{Vietoris Theorem for CW-complexes ......................... 487 28.5. The homology groups of the torus and the Klein bottle................... 488 28.6. The homology groups of a knot complement..............................493 28.7. The homology groups of a mapping torus ((cid:3))............................. 495 29. Cellular homology............................................................500 29.1. The homology groups of a nested sequence of topological spaces.......... 500 29.2. The de(cid:12)nition of cellular homology....................................... 503 29.3. The relationship between cellular and singular homology ................. 506 29.4. The cellular boundary maps..............................................511 29.5. The homology groups of 2-dimensional manifolds......................... 516 29.6. The local degree ......................................................... 520 30. The Jordan Curve Theorem.................................................. 530 31. Topological robotics..........................................................538 31.1. The matrix groups SO(3) and SU(2).....................................538 31.2. The belt trick............................................................ 543 31.3. Topological robotics......................................................545 31.4. Linkages................................................................. 546 32. The (cid:12)rst homology group and the fundamental group.........................550 32.1. The Hurewicz homomorphism............................................ 550 32.2. Natural transformations..................................................557 32.3. The Hurewicz homomorphism in higher dimensions.......................562 ALGEBRAIC TOPOLOGY I - II 5 33. Simplicial complexes and homology groups of manifolds ...................... 566 33.1. Simplicial complexes..................................................... 566 33.2. The top-dimensional homology group of a manifold.......................569 33.3. The fundamental class of a compact orientable manifold.................. 576 33.4. The homology groups of the connected sum of two manifolds............. 584 33.5. Representing homology classes by manifolds ((cid:3)).......................... 587 33.6. The degree of a map between oriented manifolds ......................... 589 34. The Euler characteristic...................................................... 594 34.1. The Euler characteristic and homology groups............................594 34.2. Properties of the Euler characteristic..................................... 597 34.3. The Euler characteristic of the product of two CW-complexes ............ 602 34.4. Groups acting on spheres.................................................604 34.5. Graphs ((cid:3))............................................................... 605 34.6. The Lefschetz Fixed Point Theorem ((cid:3)).................................. 606 35. Applications of the Euler characteristic ((cid:3))................................... 608 35.1. Building a leather football................................................608 35.2. Platonic solids ........................................................... 609 35.3. Homology spheres........................................................614 35.4. Planar graphs............................................................ 616 36. Homology with coefficients................................................... 621 36.1. The tensor product of abelian groups.....................................621 36.2. The tensor product of a chain complex with an abelian group ............ 626 36.3. Exact functors........................................................... 631 36.4. The G-torsion of an abelian group........................................634 36.5. The Universal Coefficient Theorem....................................... 644 36.6. Splittings of the Universal Coefficient Theorem........................... 649 36.7. Isomorphisms on homology groups induce chain homotopies ((cid:3))...........652 36.8. Homological algebra over an arbitrary commutative ring ((cid:3)).............. 654 37. The Ku(cid:127)nneth Theorem....................................................... 656 37.1. The tensor product of chain complexes................................... 656 37.2. The Eilenberg-Zilber Theorem............................................657 37.3. The Ku(cid:127)nneth Theorem for chain complexes...............................661 37.4. The Ku(cid:127)nneth Theorem for topological spaces.............................664 38. Applications of homology groups............................................. 668 38.1. Persistent homology ((cid:3)).................................................. 668 38.2. Division algebras.........................................................669 38.3. The transfer map ........................................................ 675 38.4. The Borsuk-Ulam Theorem and the Ham-Sandwich Theorem.............679 6 STEFAN FRIEDL References [Aa] J. M. Aarts. Plane and solid geometry, Universitext, Springer Verlag (2008). [AGK] A. Abrams, D. Gay and R. Kirby. Group trisections and smooth 4-manifolds, Preprint (2016) https://arxiv.org/pdf/1605.06731.pdf [Ad] S.I.Adyan.Algorithmic unsolvability of problems of recognition of certain properties of groups,Dokl. Akad. Nauk SSSR (N.S.) 103 (1955), 533{535. [AM] S. Akbulut and J. D. McCarthy. Casson’s invariant for oriented homology 3-spheres, volume 36 of Mathematical Notes, Princeton University Press, Princeton, NJ, 1990. [AP] A.AkhmedovandD.Park.Exotic smooth structures on small 4-manifolds,Invent.Math.173(2008), 209{223. [AP2] A. Akhmedov and D. Park. Exotic smooth structures on small 4-manifolds with odd signatures, [Al] J. W. Alexander. An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. USA 10 (1924), 8{10. [Al2] J. W. Alexander. On the subdivision of space by a polyhedron, Proc. Nat. Acad. Sci. USA 10 (1924), 6{8. [Ap] F. Ap(cid:19)ery. Models of the real projective plane. Computer graphics of Steiner and Boy surfaces, Com- puter Graphics and Mathematical Models. Vieweg Verlag (1987). [Ar] M. A. Armstrong. Groups and symmetry, Undergraduate Texts in Mathematics, Springer Verlag (1988) [AFW] M.Aschenbrenner,S.FriedlandH.Wilton.Decisionproblemsfor3-manifoldsandtheirfundamen- tal groups Baykur, R. Inanc (ed.) et al., Interactions between low dimensional topology and mapping class groups. Geometry and Topology Monographs 19 (2015), 201{236. [At87] M.Atiyah.On the work of Simon Donaldson,Proc.Int.Congr.Math.,Berkeley/Calif.1986(1987), 3{6. [Bae] J. Baez. The Octonions, Bull. Amer. Math. Soc. 39 (2), 145{205. [Bak] A.Baker.Matrix groups. An introduction to Lie group theory,SpringerUndergraduateMathematics Series (2002). [Bal] W. Ballmann. Lectures on K(cid:127)ahler manifolds, ESI Lectures in Mathematics and Physics. Zu(cid:127)rich: European Mathematical Society Publishing House (2006). [Bar] J. Barrington. 15 new ways to catch a lion, in \seven years of manifold 1968-1980", edited by Ian Stewart and John Jaworski, Shiva Publishing (1981) [Bau] G. Baumslag, Topics in combinatorial group theory, Lectures in Mathematics, ETH Zu(cid:127)rich. Basel: Birkh(cid:127)auser Verlag. (1993). [BP] R. Benedetti and C. Petronio. Lectures on hyperbolic geometry, Universitext, Springer Verlag (1992) [Be] M. Berger. Geometry. I., Universitext, Springer Verlag (2009) [BB] S. Bigelow and R. Budney. The mapping class group of a genus two surface is linear, Algebr. Geom. Topol. 1 (2001), 699{708. [Bog] O. Bogopolski. Introduction to group theory, EMS Textbooks in Mathematics (2008). [BM] J. Bondy and U. Murty. Graph Theory, Graduate Texts in Mathematics 244, Springer Verlag (2008) [BS] A.BorelandJ.-P.Serre.GroupesdeLieetpuissancesr(cid:19)eduitesdeSteenrod,Amer.J.Math.75(1953), 409{448. [Bot] R. Bott. The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313{337. [Bou] N. Bourbaki. Elements of mathematics. Algebra. Chapters 1{3, Springer-Verlag (2007). [Bre] G. Bredon. Geometry and Topology, Graduate Texts in Mathematics 139, Sprinter Verlag (1993) [BJ] T. Br(cid:127)ocker and K. J(cid:127)anich. Introduction to differential topology, Cambridge University Press. VII (1982). [Brou] L. Brouwer. Beweis der Invarianz der Dimensionenzahl, Math. Ann. 70 (1911), 161{165. [Brow] M.Brown.A proof of the generalized Schoen(cid:13)iestheorem,Bull.Amer.Math.Soc.66(1960),74{76. ALGEBRAIC TOPOLOGY I - II 7 [Brow2] R. F. Brown. The Lefschetz (cid:12)xed point theorem, Scott, Foresman and Company VI (1971). [Brow3] R. F. Brown. Topology and groupoids, 3rd revised, updated and extended ed. Published by groupoids.org (2006). [BZH] G.Burde,H.ZieschangandM.Heusener.Knots,3rdfullyrevisedandextendededition.DeGruyter Studies in Mathematics 5 (2014). [Cal] D. Calegari. scl - stable commutator length, Mathematical Society of Japan Monographs (2009) [Can] J. Cannon. Shrinking cell-like decompositions of manifolds. Codimension three, Annals of Mathe- matics 110 (1979), 83{112. [Car] G. Carlsson. Topology and data, Bull. Amer. Math. Soc. 46 (2009), 255{308. [Ch] S. S. Chern. Complex manifolds without potential theory, (With an appendix on the geometry of characteristic classes). Universitext, Springer Verlag (1995). [CCL] S. S. Chern, W. H. Chen and K. S. Lam. Lectures on differential geometry, Series on University Mathematics. 1. Singapore: World Scienti(cid:12)c (1999). [Ci] K. Ciesielski. Set theory for the working mathematician, London Mathematical Society Student Texts 39. Cambridge University Press (1997). [Coh] M.Cohen.Acourseinsimple-homotopytheory,GraduateTextsinMathematics10,Springer-Verlag (1973). [Coh2] D. Cohen. Combinatorial group theory: a topological approach, London Mathematical Society Stu- dent Texts, 14. Cambridge University Press. (1989). [CZ] D. J. Collins and H. Zieschang. Combinatorial group theory and fundamental groups, in: Algebra, VII, pp. 1{166, 233{240, Encyclopaedia of Mathematical Sciences, vol. 58, Springer, Berlin, 1993. [Con] J. H. Conway. Functions of One Complex Variable I, Graduate Texts in Mathematics 159, Springer Verlag (1978) [CFH] A. Conway, S. Friedl and G. Herrmann. Linking forms revisited, Preprint (2017) [CG] J.H.ConwayandC.McA.Gordon.Knotsandlinksinspatialgraphs,J.GraphTh.7(1983),446{453. [Cox] H. S. M. Coxeter. Regular polyhedrons, Methuen & Co (1948) [Cu] C. Curtis. Linear algebra. An introductory approach, Allyn and Bacon (1974). [DV] R. Daverman and G. Venema. Embeddings in manifolds, Graduate Studies in Mathematics 106. American Mathematical Society (2009). [DK] J. Davis and P. Kirk. Lecture notes in algebraic topology, Graduate Studies in Mathematics. 35. Providence, RI: AMS, American Mathematical Society (2001). [Dol] A. Dold. Erzeugende der Thomschen Algebra N, Math. Z. 65 (1956), 25{35. [Don] S. K. Donaldson. An application of gauge theory to four-dimensional topology, J. Diff. Geom. 18 (1983), 279{315. [Don2] S.Donaldson.The orientation of Yang{Mills moduli spaces and 4-manifold topology,J.Differential Geometry 26 (1987), 397{428. [Don3] S. Donaldson. Irrationality and the h-cobordism conjecture, J. Differential Geom. 26 (1987), 141{ 168. [Dow] C. Dowker. Topology of metric complexes, Amer. J. Math. 74 (1952), 555{577. [EH] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction, Amer. Math. Soc. (2010) [Ed] R.D.Edward.Thetopologyofmanifoldsandcell-likemaps,ProceedingsoftheInternationalCongress of Mathematicians, Helsinki, 1978 ed. O. Lehto, Acad. Sci. Fenn (1980), 111{127. [Ed2] R.D.Edwards.Thesolutionofthe4-dimensionalAnnulusconjecture(afterFrankQuinn),in\Four- manifold Theory", Gordon and Kirby ed., Contemporary Math. 35 (1984),211{264. [Ep] M. Epple. Die Entstehung der Knotentheorie. Kontexte und Konstruktionen einer modernen mathe- matischen Theorie, Vieweg Verlag (1999) [FaM] B.FarbandD.Margalit.Aprimeronmappingclassgroups,PrincetonMathematicalSeries.Prince- ton, NJ: Princeton University Press (2011). 8 STEFAN FRIEDL [Fa] M. Farber. Invitation to topological robotics, Zurich Lectures in Advanced Mathematics. Zu(cid:127)rich: Eu- ropean Mathematical Society (EMS) (2008). [FS] R. Fintushel and R. Stern. A (cid:22)-invariant one homology 3-sphere that bounds an orientable rational ball, Contemp. Math. 35 (1984), 265{268. [FS2] R. Fintushel and R. Stern. Knots, links, and 4-manifolds, Invent. Math. 134 (1998), 363{400. [FM] A. Fomenko and S. Matveev. Algorithmic and computer methods for three-manifolds, Mathematics and its Applications 425. Kluwer Academic Publishers (1997) [FW] G. Francis and J. Weeks. Conway’s ZIP Proof, Amer. Math. Monthly 106 (1999), 393{399. [FP] F. Frankl and L. Pontrjagin. Ein Knotensatz mit Anwendung auf die Dimensionstheorie, Math. An- nalen. 102 (1930), 785{789. [Fr] M. Freedman. The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357{453. [FK] M.FreedmanandR.Kirby.AgeometricproofofRochlin’stheorem,Algebraicandgeometrictopology, Part 2, pp. 85-97, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc, 1978 . [FQ] M. Freedman and F. Quinn. Topology of 4-manifolds, Princeton Mathematical Series, 39. Princeton University Press (1990). [FJ] M. Fried and M. Jarden. Field arithmetic. Revised by Moshe Jarden. 3rd revised ed. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag (2008). [Fu] M. Furuta. Homology cobordism group of homology 3{spheres, Invent. Math. 100 (1990), 339{355. [Fu2] M. Furuta. Monopole Equation and the 11/8-Conjecture, Math. Res. Letters 8 (2001), 279{291. [Ga] D. Gale. The Game of Hex and Brouwer Fixed-Point Theorem, Amer. Monthly 86 (1979), 818{827. [Ga2] D. Gale. The Classi(cid:12)cation of 1-Manifolds: A Take-Home Exam, Amer. Math. Monthly 94 (1987), 170-175. [GX] J. Gallier and D. Xu. A guide to the classi(cid:12)cation theorem for compact surfaces, Geometry and Computing 9. Berlin: Springer Verlag (2013). [GM] J. Garnett and D. Marshall. Harmonic measure, New Mathematical Monographs 2. Cambridge: Cambridge University Press (2005). [GK] D. Gay and R. Kirby. Trisecting 4-manifolds, Geom. Topol. 20, No. 6 (2016), 3097{3132. [Gh] R. Ghrist. Elementary Applied Topology, ed. 1.0, Createspace, 2014. [Gl] D. Gleeson. A Rigorous Treatment of Conway’s ZIP Proof, University College Cork project report https://pdfs.semanticscholar.org/60ee/49ab54d1e0d7013f4905745ce569fdb46074.pdf [GS] R. Gompf and A. Stipsicz. 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, AMS (1999) [GL] C. McA. Gordon and J. Luecke. Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), no. 2, 371{415. [Grom] M. Gromov. Hyperbolic groups, in Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ., 75{263, Springer, 1987. [Grot] A.Grothendieck.Rev^etements(cid:19)etales et groupe fondamental,S(cid:19)eminairedeG(cid:19)eom(cid:19)etrieAlg(cid:19)ebriquedu Bois-Marie, Lecture Notes in Mathematics 224 (1971). [Gru] I. A. Grushko. On the bases of a free product of groups, Matematicheskii Sbornik 8 (1940), 169{182. [GP] V. Guillemin and A. Pollack. Differential topology, Englewood Cliffs, N.J.: Prentice-Hall, Inc. XVI (1974). [Hab] N. Habegger. Une variet(cid:19)e de dimension 4 avec forme d’intersection paire et signature (cid:0)8, Comm. Math. Helv. 57 (1982), 22{24. [Hal] M. Hall. The theory of groups, Chelsea Publishing Company New York, N.Y. (1976) [Han] O. Hanner. Some theorems on absolute neighborhood retracts, Arkiv Mat. 1 (1951), 389{408. [Hat] A. Hatcher. Algebraic topology, Cambridge University Press (2002) https://www.math.cornell.edu/~hatcher/AT/AT.pdf ALGEBRAIC TOPOLOGY I - II 9 [Hat2] A. Hatcher. Vector bundles and K-theory https://www.math.cornell.edu/~hatcher/VBKT/VB.pdf [Hat3] A. Hatcher. Notes on basic 3-manifold topology https://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf [Hau] J.-C. Hausmann. Mod two homology and cohomology, Universitext. Springer Verlag (2014). [Hee] P. Heegaard. Forstudier til en topologisk Teori for de algebraiske Fladers Sammenhang, University of Copenhagen (1898) [Hem] J. Hempel. 3-manifolds, Annals of Mathematics Studies 86. Princeton, New Jersey: Princeton University Press and University of Tokyo Press. XII (1976). [Hil] J. Hillman. An explicit formula for a branched covering from CP2 to S4, arXiv:1705.05038 (2017) [Hirs] M. Hirsch. Differential topology, Graduate Texts in Mathematics 33, Springer Verlag (1976). [Hirz] F. Hirzebruch. On Steenrod’s reduced powers, the index of inertia and the Todd genus, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 951{956. [Hu] T. Hungerford. Algebra, Graduate Texts in Mathematics 73, Springer Verlag (1980). [IR] K.IrelandandM.Rosen.AClassicalIntroductiontoModernNumberTheory,Secondedition,Springer Verlag (1990) [J(cid:127)a1] K. J(cid:127)anich. Topology, Springer-Lehrbuch (2005). [J(cid:127)a2] K. J(cid:127)anich. Funktionentheorie, 6. Au(cid:13)age, Springer-Lehrbuch (2011). [J(cid:127)a3] K. J(cid:127)anich. Vektoranalysis, 2. Au(cid:13)age, Springer-Lehrbuch (1993). [Jo] J. Johnson. Notes on Heegaard splittings, lecture notes, Yale University (2007) http://users.math. yale.edu/~jj327/notes.pdf [Ka] S. Kaplan. Constructing of framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254 (1979), 237{263. [KaM] M. Kapovich and J. Millson. Universality theorems for con(cid:12)guration spaces of planar linkages, Topology 41 (2002), 1051{1107. [KK] A. Kawauchi and S. Kojima. Algebraic classi(cid:12)cation of linking pairings on 3-manifolds, Math. Ann. 253 (1980), 29{42. [Ke] M. Kervaire. Non-parallelizability of the n-sphere for n>7, Proc. N.A.S. 44 (1958), 280{283. [Ke2] M. Kervaire. A manifold which does not admit any differentiable structure, Comment. Math. Helv. 34 (1960), 257{270. [KeM] M. Kervaire and J. Milnor. Groups of homotopy spheres: I, Ann. Math. 77 (1963), 504{537. [KL] S. G. Kim and C. Livingston. Non-splittability of the rational homology cobordism group, Pac. J. Math. 271 (2014), 183{211. [Ki] R. Kirby. Stable homeomorphisms and the annulus conjecture, Annals of Math. 89(1969), 575{582. [Ki2] R. Kirby. Problems in low-dimensional topology, Kazez, William H. (ed.), Geometric topology. 1993 Georgia international topology conference, 1993, Athens, GA, USA. American Mathematical Society. AMS/IP Stud. Adv. Math. 2(pt.2), 35{473 (1997). [Ki3] R. Kirby. The Whitney trick, Celebration Mathematica (2013) http://celebratio.org/cmmedia/essaypdf/76_main.pdf [Ki4] R. Kirby. The topology of 4-manifolds, Lecture Notes in Mathematics, 1374. Springer-Verlag (1989). [KSc] R.C.KirbyandM.Scharlemann.EightfacesofthePoincar(cid:19)ehomology3-sphere,Geometrictopology (Proc. Georgia Topology Conf., Athens, Ga., 1977), pp. 113{146, Academic Press, New York-London, 1979. [KSi] R.C.KirbyandL.C.Siebenmann.OnthetriangulationofmanifoldsandtheHauptvermutung.Bull. Amer. Math. Soc. 75 (1969), 742{749. [KSi2] R. C. Kirby and L. C. Siebenmann. Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J., 1977. 10 STEFAN FRIEDL [Kn] H. Kneser. Geschlossene Fl(cid:127)achen in dreidimensionalen Mannigfaltigkeiten, Jber. Deutsch. Math.- Verein. 38 (1929), 248{260. [Kos] A. Kosinski. Differentiable manifolds, Pure and Applied Mathematics, 138. Academic Press. xvi (1993). [Kot] D. Kotschick. On manifolds homeomorphic to CP2#8CP2, Invent. Math. 95 (1989), 591{600. [Lac] M. Lackmann. Octonions and octonionic projective spaces, University of Bonn (2012) [Lan] S. Lang. Complex analysis, Graduate Texts in Mathematics 103, Springer Verlag (1999). [Lan2] S. Lang. Algebra, third edition, Addison Wesley (1993). [Le1] J. Lee. Riemannian manifolds: an introduction to curvature, Graduate Texts in Mathematics 176, Springer Verlag (1997). [Le2] J.Lee.Introductiontosmoothmanifolds,GraduateTextsinMathematics218,SpringerVerlag(2002). [Le3] J. Lee. Introduction to topological manifolds, Graduate Texts in Mathematics 202, Springer Verlag (2000). [Li] W. B. R. Lickorish. A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531{540. [Li2] W.B.R.Lickorish.Homeomorphisms of non-orientable two-manifolds,Proc.CambridgePhilos.Soc. 59 (1963), 307{317. [Li3] W. B. R. Lickorish. An introduction to knot theory, Graduate Texts in Mathematics 175, Springer Verlag (1997). [L(cid:127)o] C. L(cid:127)oh. Geometric group theory, an introduction, lecture notes, University of Regensburg (2015) http://www.mathematik.uni-regensburg.de/loeh/teaching/ggt_ws1415/lecture_notes.pdf [Lu(cid:127)] W. Lu(cid:127)ck. Algebraische Topologie, Vieweg Verlag (2005) [LW] A. Lundell and S. Weingram. The topology of CW complexes, The University Series in Higher Math- ematics. Van Nostrand Reinhold Company. VIII (1969). [LS] R. Lyndon and P. Schupp. Combinatorial group theory, Springer Verlag (1977). [Mac] S. Mac Lane. Homology, Reprint of the 3rd corr. print. 1975. Classics in Mathematics. Springer- Verlag (1995). [MKS] W. Magnus, A. Karrass and D. Solitar. Combinatorial group theory. Presentations of groups in terms of generators and relations, Reprint of the 1976 second edition. Dover Publications (2004). [Man] C. Manolescu. Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016), 147-176. [Mar] A.A.Markov.The insolubility of the problem of homeomorphy,Dokl.Akad.NaukSSSR121(1958), 218{220. [Mas] W.Massey.Algebraictopology: Anintroduction,GraduateTextsinMathematics56,SpringerVerlag (1981). [Mas2] W. Massey. A basic course in algebraic topology, Graduate Texts in Mathematics 127, Springer Verlag (1991) [Mas3] W. Massey. Homology and cohomology theory. An approach based on Alexander-Spanier cochains, Monographs and Textbooks in Pure and Applied Mathematics 46 (1978). [Mas4] W. Massey. The quotient space of the complex projective plane under conjugation is the 4-sphere, Geom. Dedicata 2 (1973), 371{374. [Mata] Y. Matsumoto. An introduction to Morse theory, Translations of Mathematical Monographs. Iwanami Series in Modern Mathematics. 208. Providence, (2002). [Matb] H. Matsumura. Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8 (1989). [Maz] B. Mazur. On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59{65. [McS] D.McDuffandD.Salomon.Introductiontosymplectictopology,3rdedition,OxfordGraduateTexts in Mathematics 27 (2016).

Description:
140. 8.1. Free abelian groups and finitely generated abelian groups . Introduction to differential topology, Cambridge University Press. VII. (1982) On Steenrod's reduced powers, the index of inertia and the Todd genus, Proc. Nat. Differentiable manifolds, Pure and Applied Mathematics, 138.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.