ebook img

Algebraic topology. Errata (web draft, Nov. 2004) PDF

6 Pages·0.059 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic topology. Errata (web draft, Nov. 2004)

Corrections to the book Algebraic Topology by Allen Hatcher Some of these are more in the nature of clarifications than corrections. Many of the correctionshavealreadybeenincorporatedintolaterprintingsofthebook. Chapter0,page15,Example0.15. Ifyouhaveanearlyversionofthischapterwith nofigureforthisexample,theninthenext-to-lastlineofthisparagraphchange“the closureof X−N”to“X−h(cid:132)M −Z(cid:133)”. [Thisparagraphwasrewrittenforlaterversions, f makingthiscorrectionirrelevant.] Chapter 0, page 17. The fourth line should say that (cid:132)Y;A(cid:133) has the homotopy extension property, rather than (cid:132)X;A(cid:133). Also, in the next paragraph there are two ! ! placeswhere k :A A shouldbechangedto k :A X,inthefourthandtwelfth tu tu linesfollowingthedisplayedformulafor k . t ! ! Chapter0,page17. Inthethird-to-lastline, f :X X shouldbe f :X Y. Also, 1 1 on the seventh-to-last line it might be clearer to say “Viewing k as a homotopy of tu k jjA” t Chapter0,page20,Exercise26,thirdline: Change (cid:132)X;A(cid:133) to (cid:132)X ;A(cid:133). 1 Chapter 0, page 20, Exercise 27. To avoid point-set topology difficulties, assume that f isnotjustsurjectivebutaquotientmap. Hereisamoregeneralversionofthis ! exercise: Given a pair (cid:132)X;A(cid:133) and a homotopy equivalence f:A B, show that the ! naturalmap X Bt X isahomotopyequivalenceif (cid:132)X;A(cid:133) satisfiesthehomotopy f extensionproperty. x1.1, page 30, line 14. Change “paths lifting the constant path at x ” to “paths 0 liftingconstantpaths” x1.1, page 39, Exercise 16(c). In case it’s not clear, the circle A issupposedtobethedarkoneinthefigure,inthe interiorofthesolidtorus. A x1.2,page46,sixthlinefrombottom. Repeated“the”—deleteone. x1.2,page53,Exercise5. Part(b)issimplywrong,andshouldbedeleted. x1.2,page54,Exercise15. Itshouldbespecifiedthatifthetriangle T hasvertices P, Q, R,thenthethreeedgesareorientedas PQ, PR, QR. x1.3,page65,line12. Change“coverspace”to“coveringspace” x1.3,page79,Exercise3. Addthehypothesisthatthecoveringspace p:Xe!X is surjective. x1.3,page82,Exercise33. Changethe ‘ inthefourthlineto d. x2.1, page 121, line −9. The equations should read S(cid:132)(cid:134)w (cid:135)(cid:133) (cid:131) w (cid:132)S@(cid:134)w (cid:135)(cid:133) (cid:131) 0 0 0 w (cid:132)S(cid:132)(cid:134);(cid:135)(cid:133)(cid:133)(cid:131)w (cid:132)(cid:134);(cid:135)(cid:133)(cid:131)(cid:134)w (cid:135). [Thisiscorrectedinlaterprintings.] 0 0 0 x2.1,page125,Example2.23. Eachoccurrenceof H (cid:132)Sn(cid:133) inthisexampleshould n haveatildeoverthe H. x2.1,page127. Inthediscussionofnaturalitytwo-thirdsofthewaydownthepage themaps (cid:11), (cid:12),and γ shouldbeassumedtobechainmaps. x2.1, page 129, next-to-last paragraph. In each of the first two lines of this para- 0 graphthereisa c thatshouldbe c . ! x2.2, page 134. The notion of degree for maps Sn Sn is not very interesting when n(cid:131)0,soitmaybebesttoexcludethiscasefromthedefinitiontoavoidhaving e tothinkabouttrivialitiesandwhether H shouldbe H ornot. n n x2.2,page135,lastline. Addthenontrivialitycondition n>0,toguaranteethat thegroups H (cid:132)Sn(cid:133) inthediagramonthenextpageare Z. n x2.2,page137,line6. Changetheword“stretching”to“shrinking.” x2.2,page152. Intheexactsequenceatthetopofthepagedeletethefinal 0 and thearrowleadingtoit. x2.2, page 156, Exercise 13. The second half of part (b) should say that the only ! subcomplex A(cid:26)X forwhichthequotientmap X X=A isahomotopyequivalence isthetrivialsubcomplexconsistingofthe 0 cellalone. x2.3, page 164. There is something wrong with the syntax of the long sentence beginning on line 8 of this page, the second example of a functor. The simplest correctionwouldbetochangetheword“assigns”to“assigning”inline8. Perhapsa betterfixwouldbetobreakthislongsentenceintotwosentencesbyputtingaperiod attheendofline9andthenstartinganewsentenceonline10with“Thisisafunctor fromthecategory (cid:1)(cid:1)(cid:1)”. x2.B, page 173. In the second paragraph after Theorem 2B.5 the historical com- ments are in need of corrections. Frobenius’ theorem needs the hypothesis that the divisionalgebrahasanidentityelement,andHurwitzonlyprovedthatthecondition jabj(cid:131)jajjbj impliesthedimensionmustbe 1, 2, 4,or 8. Hereisarevisedversion ofthisparagraph: Thefourclassicalexamplesare R, C,thequaternionalgebra H,andtheoctonion algebra O. Frobeniusprovedin1877that R, C,and H aretheonlyfinite-dimensional associativedivisionalgebrasover R withanidentityelement. Iftheproductsatisfies jabj (cid:131) jajjbj as in the classical examples, then Hurwitz showed in 1898 that the dimensionofthealgebramustbe 1, 2, 4,or 8,andotherssubsequentlyshowedthat the only examples with an identity element are the classical ones. A full discussion of all this, including some examples showing the necessity of the hypothesis of an identityelement,canbefoundin[Ebbinghaus1991]. Asonewouldexpect,theproofs of these results are algebraic, but if one drops the condition that jabj (cid:131) jajjbj it seemsthatmoretopologicalproofsarerequired. WewillshowinTheorem3.20that afinite-dimensionaldivisionalgebraover R musthavedimensionapowerof 2. The factthatthedimensioncanbeatmost 8 isafamoustheoremof[Bott&Milnor1958] and[Kervaire1958]. Seex4.Bforafewmorecommentsonthis. x2.C,page180. Inthelineprecedingtheproofof2C.3theS3 shouldbeS4. Also,in thelineabovethisthereferenceshouldbetoExample4L.4ratherthantoanexercise insection4K. x2.C, page 180. The last sentence on this page continuing onto the next page is somewhat unnecessary since the fact that K is a subdivision of L implies that its simpliceshavediameterlessthan "=2. Introduction to Chapter 3, page 187. In the fourth-to-last line change “homology group”to“cohomologygroup”. x3.1, page 198, line 20. There are two missing ’’s. It should read ’(cid:132)@(cid:27)(cid:133) (cid:131) (cid:0) (cid:1) (cid:0) (cid:1) ’ (cid:27)(cid:132)v (cid:133) −’ (cid:27)(cid:132)v (cid:133) (cid:131)0. 1 0 x3.1,page202line5. Change Hn(cid:132)X;A(cid:133) to Hn(cid:132)X;A;G(cid:133). x3.2,page215. InthestatementofTheorem3.14change“with”to“when”. x3.2,page217,sixthtolastline. Change“aspecialcaseoftheformerif 2(cid:148)0 in R”to“aconsequenceoftheformerif R hasnoelementsoforder 2”. x3.2,page218,lastlineofsecondparagraph: Changethefirst Y to X,sothatthe (cid:3) ⊗ (cid:3) tensorproductbecomes H (cid:132)X;R(cid:133) H (cid:132)Y;R(cid:133). R x3.2, page 221, line 9. The strict inequality n > i could be changed to n (cid:21) i, althoughthisisnotimportantfortheargumentbeingmade. x3.2,page228,Example3.24. ChangeMacauleytoMacaulay(3times). Alsointhe Index,page540,underCohen-Macaulay. x3.2,page229,Exercise4. ThereferenceshouldbetoExercise3inx2.C. x3.2,page229,Exercise5. Changethisto: Showthering H(cid:3)(cid:132)RP1;Z (cid:133) isisomor- 2k phic to Z (cid:134)(cid:11);(cid:12)(cid:135)=(cid:132)2(cid:11);2(cid:12);(cid:11)2−k(cid:12)(cid:133) where j(cid:11)j (cid:131) 1 and j(cid:12)j (cid:131) 2. [Use the coefficient 2k ! map Z Z andtheproofofTheorem3.12.] 2k 2 x3.2,page230. InthenexttolastlineofExercise14theexponenton (cid:11) shouldbe 2n(cid:130)1 insteadof n(cid:130)1. x3.2, page 230, Exercise 17. This can in fact be done by the same method as in Proposition 3.22, although the details are slightly more complicated. For a write-up ofthis,seethewebpageforthebookundertheheadingofRevisions. x3.3, page 234, line 7. Change “neighborhood of A” to “neighborhood of the closureof A”. x3.3, page 236. In the sixth line of the longish paragraph between Theorem 3.26 and Lemma 3.27, change the phrase “for B any open ball in M” to “for B any open ballin M containing x.” x3.3,page239,next-to-lastline: Change“(cid:132)k−‘(cid:133) simplex”to“(cid:132)k−‘(cid:133) chain” x3.3,page241. Intheninth-to-lastlinechange“cycle”to“cocycle”. x3.3, page 242. In line 5 of the subsection Cohomology with Compact Supports change“chaingroup”to“cochaingroup.” x3.3, page 245. At the end of the first paragraph on this page it is stated that inclusionmapsofopensetsarepropermaps,butthisisnotgenerallytrue. Aproper map f:X!Y doesinducemaps f(cid:3):Hi(cid:132)Y;G(cid:133)!Hi(cid:132)X;G(cid:133),buttheproofofPoincar´e c c duality uses induced maps of a different sort going in the opposite direction from ! what is usual for cohomology, maps Hi(cid:132)U;G(cid:133) Hi(cid:132)V;G(cid:133) associated to inclusions c c > U V ofopensetsinthefixedmanifold M. x3.3,page245. Inthediagraminthemiddleofthepagethetwoverticalarrowsare pointing in the wrong direction in the first printing of the book. This was corrected inthesecondprinting. x3.3,page248. Inthenext-to-lastlineofitem(1)intheproofofPoincar´eDuality, change“thecocycletaking”to“acocycle ’ taking” x3.3,page249,line12. Change Hi−1 to Hi(cid:130)1. x3.3, page249. Inthelineabovethecommutativediagramtwo-thirdsoftheway downthepagethereareacouplemissingsymbolsinthetwo Hom groups. Itshould ! read HomR(cid:132)C‘(cid:132)X;R(cid:133);R(cid:133) HomR(cid:132)Ck(cid:130)‘(cid:132)X;R(cid:133);R(cid:133). x3.3,page251,lastline. Thereisamissingparenthesisfollowingthesecond Hj. x3.3,page253. InthelastparagraphoftheproofofProposition3.42itmightbe bettertoreplacethesubscripts i by k. x3.3,page255,line5. Omitthecoefficientgroup Z. (Itshouldhavebeenablack- boardbold Z inanycase.) x3.3,page256,line8. Change“Example1.26”to“Example1.24”. x3.3,page258,Exercise8,secondline. Deletethesecond“of”. x3.B,page268,tenth-to-lastline. Change“homomorphism”to“bilinearmap”. x3.B,page272,firstline. Change“forall i”to“forall n” x3.B, page 273. In the displayed equations near the bottom of the page the last (cid:132)−1(cid:133)i shouldbedeleted. x3.B, page 276, Corollary 3B.2 (which incidentally should have been numbered 3B.8). TheisomorphisminthiscorollaryisobtainedbyquotingtheKu¨nnethformula andtheuniversalcoefficienttheorem,whosesplittingsarenotnatural,sotheisomor- phism in the corollary need not be natural as claimed. However there does exist a naturalisomorphism,obtainablebyapplyingTheorem4.59laterinthebook. x3.B,page280,next-to-lastlinebeforetheexercises. Change (cid:209)T to T(cid:209). x3.B, page 280, Exercise 5, lines 2 and 3. The slant products should map to the homologyandcohomologyof X ratherthan Y. x3.C, page 281. In the last two lines of the next-to-last paragraph, change it to read “... compact Lie groups O(cid:132)n(cid:133), U(cid:132)n(cid:133), and Sp(cid:132)n(cid:133). This is explained in x3.D for GL (cid:132)R(cid:133),andtheothertwocasesaresimilar.” n x3.C,page282,tenthlinefromthebottom. Change SPn(cid:130)1 to SPn(cid:130)1(cid:132)X(cid:133). x3.C,page286,Example3C.5,thirdline. Change 2i to ni. x3.C, page 286, eleventh line up from the bottom. Modify this to say “but not in — — Z (cid:134)(cid:11)(cid:135) when i>0,sincethecoproductin Z (cid:134)(cid:11)(cid:135) isgivenby...” p p x3.C,page291,Exercise3. AssumetheH–spacemultiplicationisassociativeupto homotopy. x3.C,page291,Exercise9. Addthehypothesisthat X isconnected. x3.C,page291,Exercise10,part(c). Assumethat a and b arenonzero. n n x3.D,page295. Inthetexttotheleftofthefigurechange Pn to Pn−1. x3.F, page 314, lines 9-10. The finite expressions b (cid:1)(cid:1)(cid:1)b b correspond just to n 1 0 nonnegativeintegers. x3.F,page315,next-to-lastlineoffirstparagraph. Change Hn to hn. x3.G,page322,line5. Change Hk(cid:132)X;F(cid:133) to Hk(cid:132)Xe;F(cid:133). x3.H,page332,line-9. Change“Bockstein”to“change-of-coefficient”. x3.H,page334,line2. Missingparenthesisin Cn(cid:132)X;E(cid:133). x3.H,page334,linefollowingProposition3H.5. Repeated“the”—deleteone. x3.H, page 335. In the statement of Theorem 3H.6, Poincar´e duality with local coefficients, change the second (or alternatively, the third) occurrence of M to R, R justordinarycoefficientsin R ratherthanlocalcoefficients. Formoredetailsseethe separatecorrectionpage. x4.1,page345,line2. Change (cid:132)X;B;x (cid:133) to (cid:132)X;A;x (cid:133). 0 0 x4.2,page361,line18. Repeated“the”—deleteoneofthem. x4.2,page370. Thelargediagramonthispagewillonlycommuteuptosignunless thegenerators (cid:11) arechosencarefully. Commutinguptosignisgoodenoughformost purposes, so this isn’t really a big issue. It might be a good exercise to see how to choosegeneratorstomakethediagramcommuteexactly. x4.2,page374. Deletethedirectsumsymbol (cid:8) attheendofthedisplayedexact sequenceinthesixthline. x4.2, page 376. In the proof of injectivity of p(cid:3) there is an implicit permutation of the last two coordinates of In(cid:2)I when the relative homotopy lifting property is applied. x4.3,page399,thirdparagraph. Change L to K0,twice. x4.3,page409,next-to-lastlineofnext-to-lastparagraph. Switch γ and (cid:17),sothat itreads“composingtheinversepathof p(cid:17) with γ.” x4.3,page420,Exercise13. Smalltypo: Itshouldbegin“Givenamap”. x4.B,page428,line6. Typo: ReplaceAdam’byAdams’. x4.C,page430,thirdlineofExample4C.2. Inserttheword“and”before Hn(cid:130)1(cid:132)X(cid:133). x4.F,page454. Inthelastparagraphitisstatedthatonecanassociateacohomol- ogy theory to any spectrum by setting hi(cid:132)X(cid:133) (cid:131) l-i-m!h(cid:214)nX;Kn(cid:130)ii. Unfortunately the wedgeaxiomfailswiththisdefinition. Forfinitewedgesthereisnoproblem, soone doesgetacohomologytheoryforfiniteCWcomplexes. Awaytoavoidthisproblem is to associate an (cid:218) spectrum to a given spectrum in the way explained on the next page,thentakethecohomologytheoryassociatedtothis (cid:218) spectrum. x4.I,page470,Exercise2. Inthefirstlinetherearethreemissing (cid:214)’s. Itshouldsay (cid:214)K(cid:132)Z (cid:2)Z ;1(cid:133)’(cid:214)K(cid:132)Z ;1(cid:133)_(cid:214)K(cid:132)Z ;1(cid:133). Also,inthelastlinethereferenceshouldbe m n m n toProposition4I.3insteadof4E.3. x4.L, page 491, seventh line from the bottom. The exponent n(cid:130)4i should be n(cid:130)2i. The same correction should be made again on the second line of the next page. x4.L. Starting on page 496 and continuing for the rest of this section the name Ademismistakenlywrittenwithanaccent,asAd´em. (Infactthenameispronounced withtheaccentonthefirstsyllable.)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.