American Mathematical Society Colloquium Publications Volume 62 Algebraic Spaces and Stacks Martin Olsson Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Algebraic Spaces and Stacks Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms http://dx.doi.org/10.1090/coll/062 American Mathematical Society Colloquium Publications Volume 62 Algebraic Spaces and Stacks Martin Olsson American Mathematical Society Providence, Rhode Island Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms EDITORIAL COMMITTEE Lawrence C. Evans Yuri Manin Peter Sarnak (Chair) 2010 Mathematics Subject Classification. Primary 14D23; Secondary 14D20, 14D22. For additional informationand updates on this book, visit www.ams.org/bookpages/coll-62 Library of Congress Cataloging-in-Publication Data Olsson,MartinC.,author. Algebraicspacesandstacks/MartinOlsson. Providence,RhodeIsland: AmericanMathematicalSociety,[2016] pagescm–(AmericanMathematicalSocietyColloquiumPublications;volume62) Includesbibliographicalreferencesandindex. ISBN978–1-4704-2798-6(alk.paper) 1.Algebraicspaces. 2.Algebraicstacks. 3.Algebraicgeometry–Foundations–Generalizations (algebraic spaces, stacks). 4. Algebraic geometry–Families, fibrations–Stacks and moduli prob- lems. 5.Algebraicgeometry–Families,fibrations–Fineandcoarsemodulispaces. QA564.0578 2016 516.3(cid:2)5–dc23 2015043394 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for useinteachingorresearch. Permissionisgrantedtoquotebriefpassagesfromthispublicationin reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink(cid:2) service. Formoreinformation,pleasevisit: http://www.ams.org/rightslink. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. Excludedfromtheseprovisionsismaterialforwhichtheauthorholdscopyright. Insuchcases, requestsforpermissiontoreuseorreprintmaterialshouldbeaddresseddirectlytotheauthor(s). Copyrightownershipisindicatedonthecopyrightpage,oronthelowerright-handcornerofthe firstpageofeacharticlewithinproceedingsvolumes. (cid:2)c 2016bytheAmericanMathematicalSociety. Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica. (cid:2)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttp://www.ams.org/ 10987654321 212019181716 Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms To Jasmine Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Contents Preface xi Introduction 1 Chapter 1. Summary of background material 7 1.1. Flatness 7 1.2. Morphisms locally of finite presentation 9 1.3. E´tale and smooth morphisms 13 1.4. Schemes as functors 23 1.5. Hilbert and Quot schemes 29 1.6. Exercises 30 Chapter 2. Grothendieck topologies and sites 35 2.1. Sites 35 2.2. Presheaves and sheaves 38 2.3. Cohomology of sheaves 50 2.4. Simplicial topoi 55 2.5. Exercises 64 Chapter 3. Fibered categories 69 3.1. Definition of fibered category and basic properties 70 3.2. The 2-Yoneda lemma 74 3.3. Splittings of fibered categories 77 3.4. Categories fibered in groupoids 78 3.5. Exercises 84 Chapter 4. Descent and the stack condition 87 4.1. Faithfully flat descent 88 4.2. Generalities on descent 93 4.3. Descent for quasi-coherent sheaves 98 4.4. Examples 103 4.5. Application: Torsors and principal homogenous spaces 108 4.6. Stacks 112 4.7. Exercises 115 Chapter 5. Algebraic spaces 119 5.1. Properties of sheaves and definition of algebraic space 120 5.2. Algebraic spaces as sheaf quotients 124 5.3. Examples of algebraic spaces 127 5.4. Basic properties of algebraic spaces 129 5.5. Algebraic spaces are fppf sheaves 134 vii Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms viii CONTENTS 5.6. Exercises 135 Chapter 6. Invariants and quotients 137 6.1. Review of some commutative algebra 137 6.2. Quotients by finite flat groupoids 139 6.3. Topological properties of algebraic spaces 145 6.4. Schematic open subspaces of algebraic spaces 148 6.5. Exercises 149 Chapter 7. Quasi-coherent sheaves on algebraic spaces 151 7.1. The category of quasi-coherent sheaves 151 7.2. Affine morphisms and Stein factorization 155 7.3. Nilpotent thickenings of schemes 162 7.4. Chow’s lemma for algebraic spaces 163 7.5. Finiteness of cohomology 164 7.6. Exercises 167 Chapter 8. Algebraic stacks: Definitions and basic properties 169 8.1. Definition of algebraic stack and fiber products 169 8.2. Properties of algebraic stacks and morphisms between them 175 8.3. Deligne-Mumford stacks 178 8.4. Examples 183 8.5. Exercises 188 Chapter 9. Quasi-coherent sheaves on algebraic stacks 191 9.1. The lisse-´etale site 191 9.2. Comparison with simplicial sheaves and the ´etale topos 197 9.3. Pulling back quasi-coherent sheaves 203 9.4. Exercises 205 Chapter 10. Basic geometric properties and constructions for stacks 209 10.1. Proper morphisms 209 10.2. Relative Spec and Proj 210 10.3. Root stacks 215 10.4. Exercises 218 Chapter 11. Coarse moduli spaces 221 11.1. Basics on coarse moduli spaces 221 11.2. Proof of the main theorem 222 11.3. Applications of the local structure of coarse moduli spaces 230 11.4. Chow’s lemma for Deligne-Mumford stacks and applications 233 11.5. The valuative criterion for properness 235 11.6. Finiteness of cohomology 237 11.7. Exercises 239 Chapter 12. Gerbes 243 12.1. Torsors and H1 243 12.2. Generalities on gerbes 246 12.3. Gerbes and twisted sheaves 250 12.4. Exercises 254 Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms CONTENTS ix Chapter 13. Moduli of curves 259 13.1. Moduli of elliptic curves 259 13.2. The stack M . 266 g 13.3. Moduli of stable maps 278 13.4. Exercises 282 Appendix A. Glossary of category theory 285 Bibliography 291 Index of Notation 295 Index of Terminology 297 Licensed to Keio University-Hiyoshi Campus. Prepared on Mon Apr 17 21:46:45 EDT 2017for download from IP 131.113.213.130. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms