ebook img

Algebraic Semantics of Imperative Programs PDF

229 Pages·1996·25.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Semantics of Imperative Programs

AlgebraiSce manticosf I mperatiPvreo grams CopyrighMtaetde rial FoundatioonfsC omputing MichaGealr eayn dA lbeMrety eerd,i tors ComplexiItsys ueisn VLSI:O ptimaLla youtfso rt heS huffle-ExchanGgraep ha ndO thre NetworkFsr,a nTkh omsonL eighto1n9,8 3 EquationLaolg iacs a ProgrammiLnagn guagMei,c haeJl.O 'Donnell1,98 5 GeneraTlh eoroyf D eductiSvyeste ms andI tsA pplicatiSo.nY su, M aslov1,9 87 ResourAclel ocatPiroonb lemAsl:g orithAmpipcr oaches,T oshihiIdbea raaknid N a okiK a­ toh1,9 88 AlgebraTiheco ryo fP roceesssM,a ttheHwe nness1y9,8 8 PX:A ComputatioLnogaicl, SusumuH ayashain dH irosNhia kan19o8,9 TheS table MarriagPer obleSmt:r uctuarnedA lgorithDmasn,G usfieladn dR obertI rving, 1989 RealisCtoimcp ileGre neratiPoetne,Lr e e, 1989 Signl-eLayer WireR outing andC ompactino, F.M illeMral ey,1 990 BasiCca tegoTrhye orfyor ComputeSrc ientiBsetnsj,a miCn. P ierc1e9,9 1 CategoriTeysp,e sa,n dS tructurAens I:n trdouctiotnoC ategorThye ory fort heW orking ComputeSrc ientiAsndtr,e aA spertanid G iuseppLeon go, 1991 SemanotfiPr cgosram ming LanguageSst:r uctuarnedsT echniquCeasr,lA .G unter1,9 92 TheF ormalS emanotfPir cogsram ming LanguageAsn: I ntroductGilyonn,nW inske1l9,93 HilberTte'nst Phr obleYmu, rVi. M atiyasev1i9c9h,. 1 ExploringI nterior-PLoiinnetaP rr ogramminAgl:g orithamnsd ftSoware, AmiA rbel, 1993 TheoerticlaA spectosf O bject-OriePnrtoegdr amminTgy:p es,S emanticasn,d L anguage Desigend,i tebdy C arlA .G untearn dJ ohnC .M itche1l9l9,4 FromL ogitco L ogicP rgoramming, KeesD oets1,9 94 TheS tructuorfTe ypPerdo gramLamnigunagges , DavidA .S chmid1t9,9 4 Logiacn dI nformatFiloown, editebdy Janv aEni jacnkdA lberVti sse1r9,9 4 CircuCiotm plexiatnydN euralN etworkIasn,P arberr1y9,94 ContrFollo wS emantiJcasc,od eB akkearn dE ridke Vin1k9,9 6 AlgebraSeimca nticso fI mperatPirvoeg ramJsos,e phA .G oguena nGdr antM alcolm1,9 96 CopyrighMtaetde rial AlgebraiSce manticosfI mperatiPvreo grams JosepAh.G oguen andG ranMta lcolm TheM ITP ress CambridMgaes,s achusetts LondoEnn,gl and CopyrighMtaetde rial © 1996M assachuseItntsst itouftT ee chnology Allr ightrse serveNdo. p arto ft hibsoo k may be reproducienda nyf ormb y any electorro nic mechanicmaela ns( includpihnogt ocopyirnegc,o rdionrgi ,n formatsitoonr agaen dr etrie)v al withpoerumtis siionwn r iitngf romt hep ublisher. Thibso owaks seitn Li\ TE)(b y thea uthoarndsw asp rinteadn db oundi nt heU niteSdt ateosf America. LibraroyfC ongresCsa taloging-in-PubDlaitcaa tion GoguenJ,o sepAh. Algebrasiemca ntisco fi mperatipvroeg rams/ J oseph A. Goguena ndG rantM alcolm. p.c m.-(Foundatioonfcs o mputi)ng Includbeisb liograprhiecfaelr enacnedsi ndex. ISBN0 -262-07(17h2ae-l:Xk.p ape)r 1.P rogramming languages( Electrocnoimcp ute)r-sSemanticIs..M alcolmG,r antI.I T.i tle. IISIe.r ies. QA76.7.G621 996 005.13'1-dc20 95-47440 CIP CopyrighMtaetde rial Contents SeriFeosr eword IX 0 Introduction 1 1 Backgrounidn G eneralA lgebraan d OBJ 11 1.1 Signatreus 11 1.2A lgebras 16 1.3T erms 17 1.4V ariables 21 1.5 Equations 24 1.6R ewritianngdE quatioDneadlu ction 29 1.6A.t1tr ibuotfeo sp eratsi on 32 1.6D.e2n otatisoenmaaln tifcosro bjects 36 1.6.T3h eT heoreomf C onstants 38 1.7I mportgi Mnodules 40 1.8L iterature 43 1.9E xercises 43 2 Stores, VariaVballeuse,sa ,n d Assignment 51 2.1S toreVsa,r iablaensdV, a lues 51 2.1O.B1J 'sb uilt-in inequality 55 2.2A sisgnment 60 2.3E xercises 64 3 Compositioann d Conditionals 67 70 3.1S equentCioamlp osition 3.2C onditionals 71 33. Structural Induction 74 76 3.4 Exerceiss 79 4 ProvinPgr ogramC orrectness 4.1E xampleA:b soluVtael ue 83 Copyrighted Material vi Contents 86 4.2 ExamplCe:o mputitnhge M aximumo fT woV alues 88 4.3 Exercises 91 5 Iteration 92 5.1 Invariants 98 5.1.Ex1a mpleg:rea tetsc ommon divisor 5.2 102 Termination 5.3E xercises 105 109 6 Arrays 6.1 115 SomeS implEex amples 6.2 118 Exercises 6.3 119 SpecificatainodPn rso ofs 6.4 126 Exercises 3 7 Procedures 11 133 7.1 Non-recurPsriovcee dures 7.1.1 133 Proceduwreistn ho parameters 7.1.2 139 Proceduwrietsvh a r-parameters 7.1.Pr3oc edures witehx p-parameters 144 7.2R ecursPirvoec edures 184 7.2P.r1oc eduwrietsnh o p arameters 149 7.2P.ro2ce dures witvha r-parameters 156 7.3 162 Exercises 169 8 Some Compariswoint hO therA pproaches A Summaryo ft heS emantics 175 185 B FirsOtr derL ogica ndI nduction C OrderS ortedA lgebra 203 CopyrighMtaetde rial Contents Vll 209 D OBJ3S yntax 215 E InstructoGrusi'd e 223 Bibliography 227 Index CopyrighMtaetde rial SerieFso reword Theoreticcoamlp utesrc ienhc�se nowu ndergosneev erdaelc adoefsd evelopment. The "classitcoapli"co sfa utomattah eorfyo,r malla nguagaensd,c omputational complexhiatvyeb ecomfier mleys tablisahnedtd h,e iirm portatnoco et hetrh eoreti­ cawlo rka ndt op ractiiscw ei delrye cogniSzteidm.u labtyet de chnoloagdivcaanlc es, theoretihcaivabene se nr apidelxyp anditnhgea reausn desrt udayn,d t het imdee lay betweetnh eoretical apnrdoi gtrpser sasc tiicmapla chta sb eend ecreasdirnagm at­ icallMyu.c hp ublichiatsyb eeng iverne centtloby r eakthroiungc hrspy tography andl ineparro grammianngd,s teadpyr ogreissbs e inmga deo np rogrammilnagn ­ guagsee manticcosm,p utatigoenoamle trayn,d e fficiendta tas tructurNeesw.e r, mores peculatairveea,os f s tudiyn clurdeel atiodnaatla basVeLsS,I t heorayn,d paralalnedld istribcuotmepdu tatiAosnt .h ilsi sotft opiccosn tineuxepsa nding, iti sb ecominmgo rea ndm ored ifficutlots taayb reaosftt hep rogretshsa its b e­ ingm adea ndi ncreasiinmgployr tathnatt t hem osts ignificwaonrtkb ed istilled andc ommunicaitnea d m annetrh awti lfla cilitate furtahnedra prpelsiecaartciho n oft hiwso rkB.y publishcionmgp rehenbsoiovkea sn ds pecialmiozneodg rapohns thet heoretaiscpaelc otfsc omputsecri entchee,s erioensF oundatioofnC so mput­ ingp rovidae fso ruimn w hicihm portarnets eartcohp iccasn b ep resentientd h eir entiraentdyp laceidnp erspecftoirrve es earchsetrusd,e natnsd,p ractitiaolnie.k res MichaeRl.G arey AlberRt. M eyer CopyrighMtaetde rial AlgebraiSce manticosfI mperatiPvreo grams CopyrighMtaetde rial o Introduction Thibso oiksi nt endedt oi ntrodunudecrger audate Computing Sciencset udents tof ormarle asonianbgo uti mperatiprvoegr ams. Oursp ecfiicg oasli ncltuhdee following: 1.im prove intuitainodna biliyt ini mperatvie rpogramming, through under- standgi tnhes emanictso fp rogramsa nds eieng numerouesx amples; 2.t eahcohw top rovper opertoifep sr ograms; 3.d evelop ther elevamnatt hematibcacaklgr ound; 4.p resetnhte O BJs3y staendmu sei tf ora lplr oofasn;d 5.sh ow thatth icsa nb ed onei n waa yt hait sco mplretiegloyry toen uostt,o o difficulotrt ooa bstract, byu sing equationloagilc , whiicsshim plyt he olgic ofs ubstituetqiuanlsg f oreq uals. Thaelg ebarics emantiofci sm perativep rogriasme sscrd ibed bys peciaf cyliansgs ofab stramcatc hinaensd g ivinge quatoniala xiowmhsi csphec fiyt hee ffecotf p ro­ gramso ns uchm achineTsh.e p rogrammilnangg uage featurterse atiendt heb ook area:s signmesenqtue,n tialc omposition, conditpriocoednurael d,efi nwih­ile-loop, tiona ndp rocedure callT.h ee quatioanxaiolm s whicdhe scritbhees emantics of thesfee aturaerseu sedt op rovteh ec orrecotfpn reosgsra mTsh.is w ork shothwast imperatpirvoeg racmasn b es eeans f ullfyo .,.malmiastheedma ticale ntitiaebso,u t whicthh eoremsc anb ep rovejdu, sas ti na nyo ther branocfmh a thematics. proofs Thef undamentali deoaf p rogracmo rrectness goesb ack tow orko fv on Neumann andT urnigi nt he1 94[0s25 76,] a:n i nva.,.iafnorta ni teraitsia on property rtehmaati ntrsu oef t he stateeac h timet hel oopc odiese xecuteOdu.r approach differfsr omo thedre velopmeonftt sh iidesa ino urc hoicoeffi rsotr der equatiolnoalgas iacf o undatoin andi no ursy stematicu soefa n i mplementedf ormal notatitoonp rovidec omputesrpu portf orp roofIst.a lsdoi ffeirnts h atw e define these manticso fp rogramussin g an equatinoals pecificaftoirao nc laosfas b stract machinfeors s torage, bys pecifyingt heeff ecotfps r ogramosn t he statoefst hese machineAsn.a dvantage oft hisa pproaicshth ati ta dmitass modelsa nyd esired organisaitoonfm emory,f oerx amplinev,o lvingc achsea nd/ord isTchsii.sas c hieved bya xiomatising thper operties thaatn ys uitabslteo ramgues th ave. Equationloaglci hass omea dvantgaeso veort herm,or e complelxogi cs: 1.i ti sve rsyi mpl-et helo gico fs ubsttuitign equalfosr eq uals; 2.m anypr oblems associatweidt heq uationall ogaircdee c idable thata ren ot decidable inmo rec ompleloxg ics; CopyrighMtaetde rial

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.