ebook img

Algebraic Properties of Ore Extensions and Their Commutative Subrings PDF

139 Pages·2014·0.692 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Properties of Ore Extensions and Their Commutative Subrings

Algebraic Properties of Ore Extensions and their Commutative Subrings Johan Richter Faculty of Engineering Centre for Mathematical Sciences Mathematics Mathematics Centre for Mathematical Sciences Lund University Box 118 SE-221 00 Lund Sweden http://www.maths.lth.se/ Doctoral Theses in Mathematical Sciences 2014:3 ISSN 1404-0034 ISBN 978-91-7623-068-8 LUTFMA-1049-2014 (cid:13) Johan Richter, 2014 Printed in Sweden by Media–Tryck, Lund 2014 Preface Thisthesisisbasedonsixpapers(A–F).InPartIofthethesiswegiveanintroduc- tion to the subject and present a summary of the results found in thesix papers. PartIIconsistsofthepapersthemselves,whicharethefollowing: A. J. Richter, S. D.Silvestrov, On algebraiccurves for commutingelementsinq- Heisenbergalgebras,J.Gen. Lie. T.Appl. 3(2009),no. 4,321–328. B. J. Richter, S.D. Silvestrov, Burchnall-Chaundy annihilating polynomials for commutingelementsinOreextensionrings,J.Phys.: Conf. Ser. 342(2012) C. J.Öinert,J.Richter,S.D.Silvestrov,Maximalcommutativesubringsandsim- plicityofOreextensions,J.AlgebraApppl. 12,1250192(2013),arXiv:1111.1292 (2011) D. J.Richter,Burchnall-ChaundytheoryforOreextensions,inSpringerProceed- ings in Mathematics & Statistics, Vol. 85, ed: Abdenacer Makhlouf et al: Algebra,GeometryandMathematicalPhysics,arXiv:1309.4415 E. J.Richter,ANoteon“ACombinatorialProofofAssociativityofOreExtensions”, DiscreteMathematics,Volumes315–316,6February2014,Pages156–157 F. J. Richter, S.D.Silvestrov, CentralizersinOre extensionsofpolynomialrings, International Electronic Journal of Algebra, Volume 15 (2014), 196–207, arXiv:1308.3430 iii Contents Preface iii Acknowledgements ix I Introduction and summary 1 1 Introduction 3 1.1 Notationandconventions . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Oreextensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Differentialoperatorrings . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 GeneralOreextensions . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Nystedt’sproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Centralizers inOreextensions . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Burchnall-Chaundy theory. . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.1 AlgorithmicBurchnall-Chaundy theory . . . . . . . . . . . . . 14 1.5 Simplicityandmaximalcommutativity . . . . . . . . . . . . . . . . . . 16 1.5.1 Motivationfromoperatoralgebrasanddynamicalsystems . 16 1.5.2 SimplicityofOreextensions . . . . . . . . . . . . . . . . . . . . 18 2 Summaryofthethesis 21 2.1 OverviewofPaperA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 OverviewofPaperB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 OverviewofPaperC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 OverviewofPaperD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 OverviewofPaperE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 OverviewofPaperF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 II Scientific papers 29 A Onalgebraiccurvesforcommutingelementsinq-Heisenbergalgebras 33 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 A.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 A.3 R ismaximalcommutative . . . . . . . . . . . . . . . . . . . . . . . . . 37 0 v CONTENTS A.4 Annihilatingpolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 37 A.5 TheeliminantwhentheelementsbelongtoR . . . . . . . . . . . . . 39 0 A.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 B Burchnall-Chaundyannihilating polynomials for commutingelements inOreextensionrings 47 B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 B.2 ExtensionofBurchnall–Chaundy theorytoOreextensions . . . . . . 49 B.2.1 Determinantpolynomial . . . . . . . . . . . . . . . . . . . . . . 50 B.2.2 Theresultant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 B.3 Recursiveconstructionofthematrixoftheresultant . . . . . . . . . 52 B.3.1 TheHeisenbergalgebracase. . . . . . . . . . . . . . . . . . . . 52 B.4 Necessityofinjectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 B.5 Thecaseδ=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 B.5.1 Theleadingcoefficientsingeneral . . . . . . . . . . . . . . . . 56 B.6 Thelower-ordercoefficients . . . . . . . . . . . . . . . . . . . . . . . . 57 B.7 Annihilating polynomials for elements in a specific commutative subalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 C MaximalcommutativesubringsandsimplicityofOreextensions 71 C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 C.2 Oreextensions. Definitionsandnotations . . . . . . . . . . . . . . . . 73 C.3 ThecentralizerandmaximalcommutativityofRinR[x;σ,δ] . . . 74 C.3.1 Skewpolynomialrings . . . . . . . . . . . . . . . . . . . . . . . 76 C.3.2 Differentialpolynomialrings . . . . . . . . . . . . . . . . . . . 77 C.4 ThecenterofR[x;σ,δ] . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 C.5 SimplicityconditionsforR[x;σ,δ] . . . . . . . . . . . . . . . . . . . . 80 C.5.1 Differentialpolynomialrings . . . . . . . . . . . . . . . . . . . 83 D Burchnall-ChaundytheoryforOreextensions 95 D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 D.1.1 Notationandconventions . . . . . . . . . . . . . . . . . . . . . 95 D.2 Burchnall-Chaundy theoryfordifferentialoperatorrings . . . . . . . 97 D.3 Burchnall-Chaundy theoryforOreextensions . . . . . . . . . . . . . . 101 E ANoteon“ACombinatorialProofofAssociativityofOreExtensions” 109 E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 E.2 Theproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 vi CONTENTS F CentralizersinOreextensionsofpolynomialrings 117 F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 F.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 F.3 Centralizers arefreeK[P]-modules . . . . . . . . . . . . . . . . . . . . 120 F.4 Centralizers arecommutative. . . . . . . . . . . . . . . . . . . . . . . . 120 F.5 Singlygeneratedcentralizers . . . . . . . . . . . . . . . . . . . . . . . . 122 vii Acknowledgements IwouldliketobeginbythankingmysupervisorSergeiSilvestrovforconvincingme toapplytothePhD-programmeandforourcooperationovertheseyears. Iwould also like tothank myco-supervisor Johan Öinert forgoodcooperation andmany stimulatingdiscussions. Myotherco-supervisor,AnnaTorstensson,hascontributed interestingcommentsonPaperCinthethesis. VictorUfnarovskishowedmethatmathcanbefunandcreativewhileIwasin highschool. Forthathehasmygratitude. A big collectivethank yougoes toall myco-workers attheCentre forMathe- maticalSciences. Youhaveallcontributedtoastimulating workplaceandmany ofyouhaveparticipatedinfundiscussionsoverlunchorcoffee. TheworkinthisthesishasbeenfinanciallysupportedbytheLannerandDahlgren funds,theSwedishResearchCouncil,theSwedishFoundationforInternationalCo- operation in Research and Higher Education (STINT), the Crafoord Foundation, theRoyalPhysiographicSocietyinLund,theRoyalSwedishAcademyofSciences, the Nordforsk Research Network “Operator algebras and Dynamics”, the Danish National Research Foundation (DNRF) and the Mathematisches Forschungsinsti- tutOberwolfach. Last,butnotleast,myfamilyhasbeenaconstantsourceofloveandsupport. Thankyou. ix CONTENTS x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.