ebook img

Algebraic Operads PDF

649 Pages·2012·4.63 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Operads

Grundlehren der mathematischen Wissenschaften 346 ASeriesofComprehensiveStudiesinMathematics Serieseditors M.Berger P.delaHarpe F.Hirzebruch N.J. Hitchin L.Hörmander A.Kupiainen G.Lebeau F.-H. Lin S.Mori B.C.Ngô M.Ratner D.Serre N.J.A. Sloane A.M. Vershik M.Waldschmidt Editor-in-Chief A.Chenciner J.Coates S.R.S.Varadhan Forfurthervolumes: www.springer.com/series/138 Jean-Louis Loday (cid:2) Bruno Vallette Algebraic Operads Jean-LouisLoday(1946–2012) BrunoVallette IRMA,CNRSetUniversitédeStrasbourg Lab.deMathématiquesJ.A.Dieudonné Strasbourg,France UniversitédeNice-SophiaAntipolis Nice,France ISSN0072-7830 GrundlehrendermathematischenWissenschaften ISBN978-3-642-30361-6 ISBN978-3-642-30362-3(eBook) DOI10.1007/978-3-642-30362-3 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012944723 MathematicsSubjectClassification: 18D50,17AXX,18G50,55P48,57T30 ©Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Àlamémoirede JLL Preface Anoperadisanalgebraicdevicewhichencodesatypeofalgebras.Insteadofstudy- ingthepropertiesofaparticularalgebra,wefocusontheuniversaloperationsthat canbeperformedontheelementsofanyalgebraofagiventype.Theinformation containedinanoperadconsistsintheseoperationsandallthewaysofcomposing them.Theclassicaltypesofalgebras,thatisassociativealgebras,commutativealge- brasandLiealgebras,givethefirstexamplesofalgebraicoperads.Recently,there hasbeenmuchinterestinothertypesofalgebras,tonameafew:Poissonalgebras, Gerstenhaberalgebras,Jordanalgebras,pre-Liealgebras,Batalin–Vilkoviskyalge- bras, Leibniz algebras, dendriform algebras and the various types of algebras up to homotopy. The notion of operad permits us to study them conceptually and to comparethem. Theoperadicpointofviewhasseveraladvantages.First,manyresultsknownfor classicaltypesofalgebras,whenwrittenintheoperadiclanguage,canbeappliedto othertypesofalgebras.Second,theoperadiclanguagesimplifiesboththestatements andtheproofs.So,itclarifiestheglobalunderstandingandallowsonetogofurther. Third, even for classical algebras, the operad theory provides new results that had not been unraveled before. Operadic theorems have been applied to prove results in other fields, like the deformation-quantization of Poisson manifolds by Maxim KontsevichandDmitryTamarkinforinstance.Nowadays,operadsappearinmany differentthemes:algebraictopology,differentialgeometry,noncommutativegeom- ∗ etry, C -algebras, symplectic geometry, deformation theory, quantum field theory, stringtopology,renormalizationtheory,combinatorialalgebra,categorytheory,uni- versalalgebraandcomputerscience. Historically,thetheoreticalstudyofcompositionsofoperationsappearedinthe 1950s in the work of Michel Lazard as “analyseurs”. Operad theory emerged as an efficient tool in algebraic topology in the 1960s in the work of Frank Adams, J.MichaelBoardmann,AndréJoyal,GregoryKelly,PeterMay,SaundersMcLane, JimStasheff,RainerVogtandothertopologistsandcategorytheorists.Inthe1990s, there was a “renaissance” of the theory in the development of deformation theory andquantumfieldtheory,withashiftfromtopologytoalgebra,thatcanbefound intheworkofEzraGetzler,VictorGinzburg,VladimirHinich,JohnJones,Mikhail vii viii Preface Kapranov, Maxim Kontsevich, Yuri I. Manin, Martin Markl, Vadim Schechtman, VladimirSmirnovandDmitryTamarkinforinstance.Tenyearslater,afirstmono- graph[MSS02]onthissubjectwaswrittenbyMartinMarkl,SteveShniderandJim Stasheffinwhichonecanfindmoredetailsonthehistoryofoperadtheory. Now,20yearsaftertherenaissanceoftheoperadtheory,mostofthebasicaspects ofithavebeensettledanditseemstobetherighttimetoprovideacomprehensive accountofalgebraicoperadtheory.Thisisthepurposeofthisbook. One of the main fruitful problems in the study of a given type of algebras is itsrelationshipwithalgebraichomotopytheory.Forinstance,startingwithachain complex equipped with some compatible algebraic structure, can this structure be transferred to any homotopy equivalent chain complex? In general, the answer is negative.However,onecanprovetheexistenceofhigheroperationsonthehomo- topyequivalentchaincomplex,whichendowitwitharicheralgebraicstructure.In theparticularcaseofassociativealgebras,thishigherstructureisencodedintothe notionofassociativealgebrauptohomotopy,aliasA-infinityalgebra,unearthedby Stasheffinthe1960s.IntheparticularcaseofLiealgebras,itgivesrisetothenotion of L-infinityalgebras, whichwas successfullyusedin theproofof theKontsevich formalitytheorem.Itisexactlytheproblemofgoverningthesehigherstructuresthat promptedtheintroductionofthenotionofoperad. Operad theory provides an explicit answer to this transfer problem for a large familyoftypesofalgebras,forinstancethoseencodedbyKoszuloperads.Koszul dualitywasfirstdevelopedatthelevelofassociativealgebrasbyStewartPriddyin the 1970s. It was then extended to algebraic operads by Ginzburg and Kapranov, andalsoGetzlerandJonesinthe1990s(partoftherenaissanceperiod).Theduality between Lie algebras and commutative algebras in rational homotopy theory was recognized to coincide with the Koszul duality theory between the operad encod- ingLiealgebrasandtheoperadencodingcommutativealgebras.Theapplicationof Koszuldualitytheoryforoperadstohomotopicalalgebraisafar-reachinggeneral- izationoftheideasofDanQuillenandDennisSullivan. Theaimofthisbookis,first,toprovideanintroductiontoalgebraicoperads,sec- ond,togiveaconceptualtreatmentofKoszulduality,and,third,togiveapplications tohomotopicalalgebra. Webeginbydevelopingthegeneraltheoryoftwistingmorphisms,whosemain application here is the Koszul duality theory for associative algebras. We do it in such a way that this pattern can be adapted to the operad setting. After giving the definitionandthemainpropertiesofthenotionofoperad,wedeveloptheoperadic homologicalalgebra.Finally,Koszuldualitytheoryofoperadspermitsustostudy thehomotopypropertiesofalgebrasoveranoperad. Weareverygratefultothemanyfriendsandcolleagueswhohavehelpedusand in particular to pioneers of the subject Jim Stasheff, Dennis Sullivan, and Yuri I. Manin. We owe thanks to Olivia Bellier, Alexander Berglund, Emily Burgunder, DamienCalaque,YongshanChen,Pierre-LouisCurien,VladimirDotsenko,Gabriel Drummond-Cole,ClémentDupont,YaëlFrégier,BenoitFresse,HidekazuFurusho, Ezra Getzler, Darij Grinberg, Moritz Groth, Li Guo, Kathryn Hess, Joseph Hirsh, LaurentHofer,EricHoffbeck,RalfHolkamp,MagdalenaKe¸dziorek,MurielLiver- net,JoanMillès,NikolayNikolov,TodorPopov,MariaRonco,HenrikStrohmayer, Preface ix Antoine Touzé, Christine Vespa, Yong Zhang, and to the referees for their helpful andcriticalcomments. We wish to express our appreciation to the Centre National de Recherche Sci- entifique,theEidgenössischeTechnischeHochschule(Zürich),andtheMax-Planck InstitutfürMathematik(Bonn)fortheirsupport. Last but not least, nous sommes heureux de remercier tout particulièrement Eliane et Catherine pour avoir su créer autour de nous l’environnement idéal à la rédactiond’untelouvrage. Strasbourg,France Jean-LouisLoday 18thJanuary2012 BrunoVallette Contents 1 Algebras,Coalgebras,Homology . . . . . . . . . . . . . . . . . . . . 1 1.1 ClassicalAlgebras(Associative,Commutative,Lie) . . . . . . . 1 1.2 CoassociativeCoalgebras . . . . . . . . . . . . . . . . . . . . . 9 1.3 Bialgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Pre-LieAlgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 DifferentialGradedAlgebra . . . . . . . . . . . . . . . . . . . . 22 1.6 Convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.7 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 TwistingMorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 TwistingMorphisms . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 BarandCobarConstruction . . . . . . . . . . . . . . . . . . . . 41 2.3 KoszulMorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4 CobarConstructionandQuasi-isomorphisms . . . . . . . . . . . 49 2.5 ProofoftheComparisonLemma . . . . . . . . . . . . . . . . . 51 2.6 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 KoszulDualityforAssociativeAlgebras . . . . . . . . . . . . . . . . 61 3.1 QuadraticData,QuadraticAlgebra,QuadraticCoalgebra . . . . . 62 3.2 KoszulDualofaQuadraticAlgebra . . . . . . . . . . . . . . . . 64 3.3 BarandCobarConstructiononaQuadraticData . . . . . . . . . 66 3.4 KoszulAlgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 GeneratingSeries . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6 KoszulDualityTheoryforInhomogeneousQuadraticAlgebras . 75 3.7 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 MethodstoProveKoszulityofanAlgebra . . . . . . . . . . . . . . . 89 4.1 RewritingMethod . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2 ReductionbyFiltration . . . . . . . . . . . . . . . . . . . . . . . 92 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.