ebook img

Algebraic number theory and Fermat’s last theorem PDF

334 Pages·2002·8.493 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic number theory and Fermat’s last theorem

Algebraic Number Theory and Fermat's Last Theorem Third Edition Algebraic Number Theory and Fermat's Last Theorem Third Edition Ian Stewart Mathematics Institute University of Warwick David Tall Mathematics Education Research Centre Institute of Education University of Warwick C CRC Press CS AP.(cid:9) Taylor &Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Editorial, Sales, and Customer Service Office A K Peters, Ltd. 63 South Avenue Natick, MA 01760 www.akpeters.com Copyright © 2002 by A K Peters, Ltd. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner. Library of Congress Cataloging-in-Publication Data Stewart, Ian, 1945- Algebraic number theory and fermat's last theorem / Ian Stewart, David Tall.— 3rd ed. p. cm. Rev. ed. of: Algebraic number theory. 2nd. 1987. Includes bibliographical references and index. ISBN 1-56881-119-5 1. Algebraic number theory. 2. Fermat's last theorem. I. Tall, David Orme. II. Stewart, Ian, 1945- Algebraic number theory. III. Title. QA247 .S76 2001 512'.74—dc21 2001036049 To Ronnie Brown whose brainchild it was Contents Preface xi Index of Notation xvii The Origins of Algebraic Number Theory 1 I Algebraic Methods 7 I Algebraic Background 9 1.1 Rings and Fields (cid:9) 10 1.2 Factorization of Polynomials (cid:9) 13 1.3 Field Extensions (cid:9) 20 1.4 Symmetric Polynomials (cid:9) 22 1.5 Modules (cid:9) 25 1.6 Free Abelian Groups (cid:9) 26 1.7 Exercises (cid:9) 32 2 Algebraic Numbers 35 2.1 Algebraic Numbers (cid:9) 36 2.2 Conjugates and Discriminants (cid:9) 38 2.3 Algebraic Integers (cid:9) 42 2.4 Integral Bases (cid:9) 45 2.5 Norms and Traces (cid:9) 49 2.6 Rings of Integers (cid:9) 51 2.7 Exercises (cid:9) 57 vii viii(cid:9) Contents 3 Quadratic and Cyclotomic Fields(cid:9) 61 3.1 Quadratic Fields (cid:9) 61 3.2 Cyclotomic Fields (cid:9) 64 3.3 Exercises (cid:9) 69 4 Factorization into Irreducibles(cid:9) 73 4.1 Historical Background (cid:9) 75 4.2 Trivial Factorizations (cid:9) 76 4.3 Factorization into Irreducibles (cid:9) 79 4.4 Examples of Non-Unique Factorization into Irreducibles(cid:9) 82 4.5 Prime Factorization (cid:9) 86 4.6 Euclidean Domains (cid:9) 90 4.7 Euclidean Quadratic Fields (cid:9) 91 4.8(cid:9) Consequences of Unique Factorization (cid:9) 94 4.9 The Ramanujan-Nagell Theorem (cid:9) 96 4.10 Exercises (cid:9) 99 5 Ideals(cid:9) 101 5.1 Historical Background (cid:9) 102 5.2(cid:9) Prime Factorization of Ideals (cid:9) 105 5.3 The Norm of an Ideal (cid:9) 114 5.4 Nonunique Factorization in Cyclotomic Fields (cid:9) 122 5.5 Exercises (cid:9) 124 II Geometric Methods(cid:9) 127 6 Lattices(cid:9) 129 6.1 Lattices (cid:9) 129 6.2 The Quotient Torus (cid:9) 132 6.3 Exercises (cid:9) 136 7 Minkowsld's Theorem(cid:9) 139 7.1 Minkowski's Theorem (cid:9) 139 7.2 The Two-Squares Theorem (cid:9) 142 7.3 The Four-Squares Theorem (cid:9) 143 7.4 Exercises (cid:9) 144 8 Geometric Representation of Algebraic Numbers(cid:9) 145 8.1(cid:9) The Space mat hb f L' (cid:9) 145 8.2 Exercises (cid:9) 149 Contents(cid:9) ix 9 Class-Group and Class-Number(cid:9) 151 9.1 The Class-Group (cid:9) 152 9.2 An Existence Theorem (cid:9) 153 9.3(cid:9) Finiteness of the Class-Group (cid:9) 157 9.4 How to Make an Ideal Principal (cid:9) 158 9.5(cid:9) Unique Factorization of Elements in an Extension Ring(cid:9) 162 9.6 Exercises (cid:9) 164 III Number-Theoretic Applications(cid:9) 167 10 Computational Methods(cid:9) 169 10.1 Factorization of a Rational Prime (cid:9) 169 10.2 Minkowski's Constants (cid:9) 172 10.3 Some Class-Number Calculations (cid:9) 176 10.4 Tables (cid:9) 179 10.5 Exercises (cid:9) 180 11 Kummer's Special Case of Fermat's Last Theorem(cid:9) 183 11.1 Some History (cid:9) 183 11.2 Elementary Considerations (cid:9) 186 11.3 Kummer's Lemma (cid:9) 189 11.4 Kummer's Theorem (cid:9) 193 11.5 Regular Primes (cid:9) 196 11.6 Exercises (cid:9) 198 12 The Path to the Final Breakthrough(cid:9) 201 12.1 The Wolfskehl Prize (cid:9) 201 12.2 Other Directions (cid:9) 203 12.3 Modular Functions and Elliptic Curves (cid:9) 205 12.4 The Taniyama-Shimura-Weil Conjecture (cid:9) 206 12.5 Frey's Elliptic Equation (cid:9) 207 12.6 The Amateur who Became a Model Professional (cid:9) 207 12.7 Technical Hitch (cid:9) 210 12.8 Flash of Inspiration (cid:9) 211 12.9 Exercises (cid:9) 212 13 Elliptic Curves(cid:9) 213 13.1 Review of Conics (cid:9) 214 13.2 Projective Space (cid:9) 215 13.3 Rational Conics and the Pythagorean Equation (cid:9) 220 13.4 Elliptic Curves (cid:9) 222 13.5 The Tangent/Secant Process (cid:9) 225

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.