ebook img

Algebraic number theory and Fermat’s last theorem PDF

338 Pages·2016·2.426 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic number theory and Fermat’s last theorem

Mathematics FOURTH EDITION A N T Updated to reflect current research, Algebraic Number Theory and A lgebrAic umber heory Fermat’s Last Theorem, Fourth Edition introduces fundamental ideas of l g algebraic numbers and explores one of the most intriguing stories in the e b history of mathematics—the quest for a proof of Fermat’s Last Theorem. r A The authors use this celebrated theorem to motivate a general study of ic F l T the theory of algebraic numbers from a relatively concrete point of view. N ANd ermAT’s AsT heorem u Readers will see how Wiles’s proof of Fermat’s Last Theorem opened many m b new areas for future work. e r New to the Fourth Edition T n FOURnTH EDITION n h x + y = z • Provides up-to-date information on unique prime factorization for e o real quadratic number fields, especially Harper’s proof that Z(√14) is r y Euclidean A N • Presents an important new result: Miha˘ilescu’s proof of the Catalan d conjecture of 1844 F e xn + yn = zn • Revises and expands one chapter into two, covering classical ideas r m about modular functions and highlighting the new ideas of Frey, Wiles, A T and others that led to the long-sought proof of Fermat’s Last Theorem ’ s • Improves and updates the index, figures, bibliography, further reading l A list, and historical remarks s T n n n T x + y = z Written by preeminent mathematicians Ian Stewart and David Tall, this text h e continues to teach readers how to extend properties of natural numbers to o r more general number structures, including algebraic number fields and their e m rings of algebraic integers. It also explains how basic notions from the theory n n n of algebraic numbers can be used to solve problems in number theory. x + y = z S t e w a r t • T Ian Stewart • David Tall K26583 a l l www.crcpress.com K26583_cover.indd 1 9/11/15 10:15 AM A N T lgebrAic umber heory F l T ANd ermAT’s AsT heorem FOURTH EDITION TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk A N T lgebrAic umber heory F l T ANd ermAT’s AsT heorem FOURTH EDITION Ian Stewart University of Warwick United Kingdom David Tall University of Warwick United Kingdom CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20150616 International Standard Book Number-13: 978-1-4987-3840-8 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans- mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com ✐ ✐ “book˙2” — 2015/9/8 — 17:27 — page v — #1 ✐ ✐ Contents Preface to the Third Edition ix Preface to the Fourth Edition xv Index of Notation xvii The Origins of Algebraic Number Theory 1 I Algebraic Methods 9 1 Algebraic Background 11 1.1 Rings and Fields . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Factorization of Polynomials. . . . . . . . . . . . . . . . . . 15 1.3 Field Extensions . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 Symmetric Polynomials . . . . . . . . . . . . . . . . . . . . 24 1.5 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.6 Free Abelian Groups . . . . . . . . . . . . . . . . . . . . . . 28 1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Algebraic Numbers 37 2.1 Algebraic Numbers . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 Conjugates and Discriminants . . . . . . . . . . . . . . . . . 40 2.3 Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Integral Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.5 Norms and Traces . . . . . . . . . . . . . . . . . . . . . . . 50 2.6 Rings of Integers . . . . . . . . . . . . . . . . . . . . . . . . 53 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 v ✐ ✐ ✐ ✐ ✐ ✐ “book˙2” — 2015/9/8 — 17:27 — page vi — #2 ✐ ✐ vi Contents 3 Quadratic and Cyclotomic Fields 63 3.1 Quadratic Fields . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 Cyclotomic Fields. . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Factorization into Irreducibles 75 4.1 Historical Background . . . . . . . . . . . . . . . . . . . . . 77 4.2 Trivial Factorizations . . . . . . . . . . . . . . . . . . . . . . 78 4.3 Factorization into Irreducibles . . . . . . . . . . . . . . . . . 81 4.4 Examples of Non-Unique Factorization into Irreducibles . . 84 4.5 Prime Factorization . . . . . . . . . . . . . . . . . . . . . . 88 4.6 Euclidean Domains . . . . . . . . . . . . . . . . . . . . . . . 92 4.7 Euclidean Quadratic Fields . . . . . . . . . . . . . . . . . . 93 4.8 Consequences of Unique Factorization . . . . . . . . . . . . 96 4.9 The Ramanujan-Nagell Theorem . . . . . . . . . . . . . . . 98 4.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Ideals 103 5.1 Historical Background . . . . . . . . . . . . . . . . . . . . . 104 5.2 Prime Factorization of Ideals . . . . . . . . . . . . . . . . . 107 5.3 The Norm of an Ideal . . . . . . . . . . . . . . . . . . . . . 116 5.4 Non-Unique Factorization in Cyclotomic Fields . . . . . . . 124 5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 II Geometric Methods 129 6 Lattices 131 6.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 The Quotient Torus . . . . . . . . . . . . . . . . . . . . . . 134 6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7 Minkowski’s Theorem 139 7.1 Minkowski’s Theorem . . . . . . . . . . . . . . . . . . . . . 139 7.2 The Two-Squares Theorem . . . . . . . . . . . . . . . . . . 142 7.3 The Four-Squares Theorem . . . . . . . . . . . . . . . . . . 143 7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8 Geometric Representation of Algebraic Numbers 145 8.1 The Space Lst . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 ✐ ✐ ✐ ✐ ✐ ✐ “book˙2” — 2015/9/8 — 17:27 — page vii — #3 ✐ ✐ Contents vii 9 Class-Group and Class-Number 151 9.1 The Class-Group . . . . . . . . . . . . . . . . . . . . . . . . 152 9.2 An Existence Theorem . . . . . . . . . . . . . . . . . . . . . 153 9.3 Finiteness of the Class-Group . . . . . . . . . . . . . . . . . 157 9.4 How to Make an Ideal Principal . . . . . . . . . . . . . . . . 158 9.5 Unique Factorization of Elements in an Extension Ring . . 162 9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 III Number-Theoretic Applications 167 10 Computational Methods 169 10.1 Factorization of a Rational Prime . . . . . . . . . . . . . . . 169 10.2 Minkowski Constants . . . . . . . . . . . . . . . . . . . . . . 172 10.3 Some Class-Number Calculations . . . . . . . . . . . . . . . 176 10.4 Table of Class-Numbers . . . . . . . . . . . . . . . . . . . . 179 10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11 Kummer’s Special Case of Fermat’s Last Theorem 183 11.1 Some History . . . . . . . . . . . . . . . . . . . . . . . . . . 183 11.2 Elementary Considerations . . . . . . . . . . . . . . . . . . 186 11.3 Kummer’s Lemma . . . . . . . . . . . . . . . . . . . . . . . 188 11.4 Kummer’s Theorem . . . . . . . . . . . . . . . . . . . . . . 193 11.5 Regular Primes . . . . . . . . . . . . . . . . . . . . . . . . . 196 11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 12 The Path to the Final Breakthrough 201 12.1 The Wolfskehl Prize . . . . . . . . . . . . . . . . . . . . . . 201 12.2 Other Directions . . . . . . . . . . . . . . . . . . . . . . . . 203 12.3 Modular Functions and Elliptic Curves . . . . . . . . . . . . 205 12.4 The Taniyama–Shimura–WeilConjecture . . . . . . . . . . 206 12.5 Frey’s Elliptic Equation . . . . . . . . . . . . . . . . . . . . 207 12.6 The Amateur who Became a Model Professional . . . . . . 208 12.7 Technical Hitch . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.8 Flash of Inspiration. . . . . . . . . . . . . . . . . . . . . . . 211 12.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 13 Elliptic Curves 215 13.1 Review of Conics . . . . . . . . . . . . . . . . . . . . . . . . 216 13.2 Projective Space . . . . . . . . . . . . . . . . . . . . . . . . 217 13.3 Rational Conics and the PythagoreanEquation . . . . . . . 222 13.4 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . 224 13.5 The Tangent/Secant Process . . . . . . . . . . . . . . . . . 227 ✐ ✐ ✐ ✐ ✐ ✐ “book˙2” — 2015/9/8 — 17:27 — page viii — #4 ✐ ✐ viii Contents 13.6 Group Structure on an Elliptic Curve . . . . . . . . . . . . 228 13.7 Applications to Diophantine Equations . . . . . . . . . . . . 232 13.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 14 Elliptic Functions 235 14.1 Trigonometry Meets Diophantus . . . . . . . . . . . . . . . 235 14.2 Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . 243 14.3 Legendre and Weierstrass . . . . . . . . . . . . . . . . . . . 249 14.4 Modular Functions . . . . . . . . . . . . . . . . . . . . . . . 251 14.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 15 Wiles’s Strategy and Recent Developments 259 15.1 The Frey Elliptic Curve . . . . . . . . . . . . . . . . . . . . 259 15.2 The Taniyama–Shimura–WeilConjecture . . . . . . . . . . 261 15.3 Sketch Proof of Fermat’s Last Theorem . . . . . . . . . . . 264 15.4 Recent Developments. . . . . . . . . . . . . . . . . . . . . . 266 15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 IV Appendices 277 A Quadratic Residues 279 A.1 Quadratic Equations in Zm . . . . . . . . . . . . . . . . . . 280 A.2 The Units of Zm . . . . . . . . . . . . . . . . . . . . . . . . 282 A.3 Quadratic Residues . . . . . . . . . . . . . . . . . . . . . . . 287 A.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 B Dirichlet’s Units Theorem 299 B.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 299 B.2 Logarithmic Space . . . . . . . . . . . . . . . . . . . . . . . 300 B.3 Embedding the Unit Group in Logarithmic Space . . . . . . 301 B.4 Dirichlet’s Theorem . . . . . . . . . . . . . . . . . . . . . . 302 B.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Bibliography 309 Index 317 ✐ ✐ ✐ ✐ ✐ ✐ “book˙2” — 2015/9/8 — 17:27 — page ix — #5 ✐ ✐ Preface to the Third Edition Thetitleofthisbookindicatesadualpurpose. Ourfirstaimistointroduce fundamental ideas of algebraic numbers. The second is to tell one of the mostintriguingstoriesinthehistoryofmathematics—thequestforaproof of Fermat’s Last Theorem. We use this celebrated theorem to motivate a general study of the theory of algebraic numbers, from a reasonably concretepointofview. Therangeoftopicsthatwecoverisselectedtoallow students to make early progress in understanding the necessary concepts. ‘Algebraic Number Theory’ can be read in two distinct ways. One is the theory of numbers viewed algebraically, the other is the study of al- gebraic numbers. Both apply here. We illustrate how basic notions from the theory of algebraic numbers may be used to solve problems in number theory. However, our main focus is to extend properties of the natural numbers to more general number structures: algebraic number fields, and their rings of algebraic integers. These structures have most of the stan- dard properties that we associate with ordinary whole numbers, but some subtle properties concerning primes and factorization sometimes fail to generalize. ADiophantineequation(namedafterDiophantusofAlexandria,who— it is thought—lived around 250 and whose book Arithmetica systematized such concepts) is a polynomial equation, or a system of polynomial equa- tions, that is to be solved in integers or rational numbers. The central problem of this book concerns solutions of a very special Diophantine equation: xn+yn =zn wheretheexponentnisapositiveinteger. Forn=2therearemanyinteger solutions—in fact, infinitely many—which neatly relate to the theorem of ix ✐ ✐ ✐ ✐

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.