ebook img

Algebraic Number Theory PDF

40 Pages·2008·0.372 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Number Theory

Algebraic Number Theory Dr V. Dokchitser Michaelmas 2007 LATEXed by Sebastian Pancratz ii ThesenotesarebasedonacourseoflecturesgivenbyDrV.DokchitserinPartIIIofthe Mathematical Tripos at the University of Cambridge in the academic year 2007(cid:21)2008. These notes have not been checked by Dr V. Dokchitser and should not be regarded as o(cid:30)cial notes for the course. In particular, the responsibility for any errors is mine (cid:22) please email Sebastian Pancratz (sfp25) with any comments or corrections. Contents 1 Number Fields 1 1.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Ideal Class Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Primes and Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Factorising Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Decomposition of Primes 13 2.1 Action of Galois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Decomposition Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Counting Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Induced Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Induction and Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Counting More Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 L-Series 21 3.1 Convergence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Dirichlet L-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Primes in Arithmetic Progression . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Dirichlet Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 Artin L-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Properties of Artin L-Functions . . . . . . . . . . . . . . . . . . . . . . . 31 3.7 Density Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.8 Appendix (Local Fields) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.8.1 Residue (cid:28)elds and rami(cid:28)cation . . . . . . . . . . . . . . . . . . . 35 3.8.2 Galois groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.8.3 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 1 Number Fields De(cid:28)nition. A number (cid:28)eld K is a (cid:28)nite (cid:28)eld extension of Q. Its degree is [K : Q], i.e., its dimension as a Q-vector space. De(cid:28)nition. An algebraic number α is an algebraic integer if it satis(cid:28)es a monic polyno- mial with integer coe(cid:30)cients. Equivalently, its minimal polynomial over Q should have integer coe(cid:30)cients. De(cid:28)nition. Let K be a number (cid:28)eld. Its ring of integers O consists of the elements K of K which are algebraic integers. Proposition 1.1. (i) O is a Noetherian ring. K (ii) rankZOK = [K : Q], i.e., OK is a (cid:28)nitely generated abelian group under addition, and isomorphic to Z⊕[K:Q]. (iii) For every α ∈ K there exists n ∈ N with αn ∈ O . K (iv) O is the maximal subring of K which is (cid:28)nitely generated as an abelian group. K (v) O is integrally closed, i.e., if f(X) ∈ O [X] is monic and f(α) = 0 for some K K α ∈ K then α ∈ O . K Example. Number (cid:28)eld K Ring of integers O K Q Z √ √ Q( d), d ∈ Z−{0,1} squarefree Z[ d] if d ≡ 2,3 (mod 4), √ Z[(1+ d)/2] if d ≡ 1 (mod 4) Q(ζ ), ζ a primitive nth root of unity Z[ζ ] n n n √ √ Example. K = Q( −3) = Q(ζ ) since ζ = (−1+ −3)/2, O = Z[ζ ]. 3 3 K 3 1.1 Units De(cid:28)nition. A unit in a number (cid:28)eld K is an element α ∈ O such that α−1 ∈ O . K K The group of units in K is denoted by O×. K √ Example. For K = Q we have O = Z and O× = {±1}. For K = Q( −3) we have √ K K O = Z[(1+ −3)/2] and O× = {±1,±ζ ,±ζ2}. K K 3 3 2 Number Fields Theorem 1.2 (Dirichlet’s Unit Theorem). Let K be a number (cid:28)eld. Then O× is a K (cid:28)nitely generated abelian group. More precisely, O× = ∆×Zr1+r2−1 K where ∆ is the (cid:28)nite group of roots of unity in K, and r and r denote the number of 1 2 real embeddings K ,→ R and complex conjugate embeddings K ,→ C with image not contained in R, so r +2r = [K : Q]. 1 2 √ Corollary 1.3. The only number (cid:28)elds with (cid:28)nitely many units are Q and Q( −D), D > 0. 1.2 Factorisation Example. Z has unique factorisation. We do not have this luxury in O in general, √ √ K e.g., let K = Q( −5) with O = Z[ −5] then K √ √ 6 = 2·3 = (1+ −5)(1− −5) √ √ where 2,3,1± −5 are irreducible and 2,3 are not equal to 1± −5 up to units. Theorem 1.4 (Unique Factorisation of Ideals). Let K be a number (cid:28)eld. Then every non-zeroidealofO admitsafactorisationintoprimeideals. Thisfactorisationisunique K up to order. √ Example. In K = Q( −5), √ √ √ (6) = (2)(3) = (2,1+ −5)2(3,1+ −5)(3,1− −5) √ √ √ √ √ √ = (1+ −5)(1− −5) = (2,1+ −5)(3,1+ −5)(2,1+ −5)(3,1− 5) √ √ √ where (2,1+ −5),(3,1+ −5),(3,1− −5) are prime ideals. De(cid:28)nition. Let A,B ⊂ O be ideals. Then A divides B, A | B, if there exists C ⊂ O K K such that A·C = B. Equivalently, if in the prime factorisations A = Pm1···Pmk, B = Pn1···Pnk 1 k 1 k we have m ≤ m for all 1 ≤ i ≤ k. i i Remark. (i) For α,β ∈ O , (α) = (β) if and only if α = βu for some u ∈ O×. K K (ii) For ideals A,B ⊂ O , A | B if and only if A ⊃ B. K (iii) To multiply ideals, just multiply their generators, e.g., (2)(3) = (6) √ √ √ √ √ (2,1+ −5)(3,1+ −5) = (6,2+2 −5,3+3 −5,−4+2 −5) √ = (6,1+ −5) √ = (1+ −5). (iv) Addition of ideals works completely di(cid:27)erently, simply combine the generators, e.g., (2)+(3) = (2,3) = (1) = O . K 3 1.3 Ideals √ √ Example. K = Q( −5), O = Z[ −5]. K - • •- • •(cid:17) • - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) -(cid:17) - (cid:17)- •- • •(cid:17)- • •(cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) -(cid:17) -(cid:17) -(cid:17) √ -(cid:17) • (cid:17)•(cid:17)-- −5 • (cid:17)•(cid:17)-- • (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) - (cid:17) -(cid:17) - (cid:17) (cid:17) • • • • • 0 −1 An ideal is, in particular, a sublattice of O . In fact, it always has (cid:28)nite index in O . K K Lemma 1.5. Let K be a number (cid:28)eld, α ∈ O −{0}. Then there exists β ∈ O −{0} K K such that αβ ∈ Z. Proof. Let f ∈ Z[X] be the minimal polynomial of α, so f(X) = (X −α)(X −γ )···(X −γ ) 1 n in a splitting (cid:28)eld. Observe that αQγ = N ∈ Z−{0}, so i Y N γ = ∈ K i α and all γ are algebraic integers, so i Y β = γ ∈ O −{0} i K with αβ = N ∈ Z−{0}. Corollary 1.6. LetA ⊂ OK beanon-zeroideal. Then[OK : A]is(cid:28)nite,i.e.,rankZA = [K : Q]. Proof. Let α ∈ A−{0} and β ∈ O such that αβ = N ∈ Z−{0}, and N ∈ A ⊂ O as K K A is an ideal. [O : A] ≤ [O : (α)] ≤ [O : (N)] K K K = [O : NO ] K K = |N|[K:Q] < ∞. 4 Number Fields De(cid:28)nition. The norm of a non-zero ideal A is the index [O : A]. K Lemma 1.7. Let α ∈ O −{0}. Then K (cid:0) (cid:1) |N (α)| = N (α) . K/Q Proof. Let v ,...,v be a Z-basis for O . Write T : K → K for the Q-linear map 1 n K α x 7→ αx. Then N (α) = detT K/Q α = det(αv ,...,αv ) 1 n = ±[hv ,...,v i : hαv ,...,αv i] 1 n 1 n = ±[O : αO ] K K = ±N((α)). 1.4 Ideal Class Groups Let K be a number (cid:28)eld. De(cid:28)ne an equivalence relation ∼ on non-zero ideals by A ∼ B if A = λB for some λ ∈ K×. The ideal class group Cl(K) of K is the set of equivalence classes. This is in fact a group, the group structure comes from multiplication of ideals. The identity element is the class of principal ideals. In particular, O is a unique factorisation domain if and only if Cl(K) = 1. K Theorem 1.8. Cl(K) is (cid:28)nite. √ Exercise. Let K = Q( −D) be an imaginary quadratic (cid:28)eld. Then two non-zero ideals belong to the same class in Cl(K) if and only if the lattices they give in C are homeothetic, i.e., related by scaling and rotation about 0. 1.5 Primes and Modular Arithmetic De(cid:28)nition. A prime P in a number (cid:28)eld K is a non-zero prime ideal in O . Its residue K (cid:28)eld is O /P. K Example. K = Q, O = Z, P = (p), O /P = Z/(p) = F , where p is a prime number. K K p De(cid:28)nition. The absolute residue degree of P is [O /P : F ], K p where p = charO /P. K Lemma 1.9. O /P is a (cid:28)nite (cid:28)eld. K Proof. P is a prime ideal hence O /P is an integral domain and K |O /P| = [O : P] = N(P) < ∞, K K hence O /P is a (cid:28)eld. K 5 Note that |O /P| = N(P). K Example. K = Q(i), O = Z[i]. K (i) P = (2+i) then O /P ∼= F with representatives 0,i,i+1,2i,2i+1. K 5 (ii) P = (3) then O /P ∼= F . K 9 Notation. If A ⊂ O is a non-zero ideal we say that K x ≡ y (mod A) if x−y ∈ A. Lemma 1.10. Let A,B ⊂ O be ideals with prime factorisations K k k Y Y A = Pmi, B = Pni i i i=1 i=1 where m ,n ≥ 0 and the P are distinct prime ideals. Then i i i (i) A∩B = Q Pmax{mi,ni}, i i (ii) A+B = Q Pmin{mi,ni}. i i Proof. (i) This is the largest ideal contained in both A and B. (ii) This is the smallest ideal containing both A and B. Lemma 1.11. Let P be prime in K. Then (i) |O /Pn| = N(P)n, K (ii) Pn/Pn+1 ∼= O /P as O -modules. K K Proof. Note (ii) implies (i) by writing |O /Pn| = |O /P||P/P2|···|Pn−1/Pn| = N(P)n. K K By unique factorisation, Pn 6= Pn+1. Pick π ∈ Pn\Pn+1 and de(cid:28)ne φ: O → Pn/Pn+1,x 7→ πx mod Pn+1 K then kerφ = {x : πx ∈ Pn+1} = {x : Pn+1 | (π)(x)} = {x : P | (x)} = P. Note Imφ = Pn/Pn+1 for otherwise Pn ) π +Pn ) Pn+1, a contradiction by unique factorisation. Now apply the First Isomorphism Theorem. Theorem 1.12 (Chinese Remainder Theorem). Let K be a number (cid:28)eld, P ,...,P 1 k distinct prime ideals. Then O /Pn1···Pnk ∼= O /Pn1 ×···×O /Pnk K 1 k K 1 K k via x mod Pn1···Pnk 7→ (x mod Pn1,...,x mod Pnk). 1 k 1 k 6 Number Fields Proof. Let ψ: O → O /Pn1 ×···×O /Pnk K K 1 K k x 7→ (x mod Pn1,...,x mod Pnk). 1 k Then \ Y kerψ = {x : ∀i x ∈ Pni} = Pni = Pni. i i i We claim Imψ contains (0,...,0,1,0,...,0), so ψ is surjective. Then by the First Isomorphism Theorem the result follows. Indeed, by Lemma 1.10, Pnj +P = O = O = (1) j K K where P = Q Pni. Hence there exist α ∈ Pnj, β ∈ P with α+β = 1. Then β ≡ 0 i6=j i j (mod P), β ≡ 1 (mod Pnj), so ψ(β) = (0,...,0,1,0,...,0). j Remark. The Chinese Remainder Theorem says we can solve congruences x ≡ a (mod pn1) 1 1 . . . x ≡ a (mod pnk) k k for any given a ,...,a . This is called the Weak Approximation Theorem. 1 k Corollary 1.13. N(AB) = N(A)N(B). Corollary 1.14. N(A) ∈ A. 1.6 Factorising Primes Example. Take primes in Q and factorise them in Q(i). (2) = (1+i)2 (3) = (3) (5) = (2+i)(2−i) (7) = (7) (11) = (11) (13) = (3+2i)(3−2i) Remark. If P is a prime of Q(i) then P 3 N(P) ∈ Z, so P contains a prime number p so P | (p). In other words, factorising 2,3,5,7,... we (cid:28)nd all primes in Q(i). De(cid:28)nition. Let L/K be an extension of number (cid:28)elds, and A ⊂ O an ideal. The K conorm of A is the ideal AO of O , i.e., it is generated by the elements of A. Equiva- L L lently, if A = (α ,...,α ) as an O -ideal then AO = (α ,...,α ) as an O -ideal. 1 n K L 1 n L In particular, (AO )(BO ) = (AB)O , and if M/L/K is a tower of number (cid:28)elds then L L L AO = (AO )O . M L M De(cid:28)nition. Let L/K be an extension of number (cid:28)elds. Say a prime Q of L lies above a prime P of K if Q | PO . Equivalently, Q ⊃ P. L

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.