algebraic geometry: start up course A. L. G∗ ThisisGeometricintroductionintoAlgebraicgeometry. Ihopetoac- quaintthereaderswithsomebasicfiguresunderlyingthemodernal- gebraic technique and show how to translate things from infinitely rich (but quite intuitive) world of figures to restrictive (in fact, finite) butpreciselanguageofformulas. Lecturenotesaresuppliedwithex- ercises actually discussed in classes and important for understanding thesubject. Someofthemarecommentedattheendofthebook. Moscow,2014 ∗NRUHSE,ITEP,IUM,e-mail:[email protected],http://gorod.bogomolov-lab.ru/ Contents Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 §1 ProjectiveSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Algebraicvarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Projectivespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Projectivealgebraicvarieties . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Complementarysubspacesandprojections . . . . . . . . . . . . . . . 10 1.5 Linearprojectivetransformations . . . . . . . . . . . . . . . . . . . . 11 1.6 Cross-ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 §2 Projectiveadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1 Remindersfromlinearalgebra . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Tangentlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 adraticsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Linearsubspaceslyingonasmoothquadric . . . . . . . . . . . . . . 31 2.7 Digression: orthogonalgeometryoverarbitraryfield . . . . . . . . . 32 §3 TensorGuide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1 TensorproductsandSegrevarieties . . . . . . . . . . . . . . . . . . . 40 3.2 Tensoralgebraandcontractions . . . . . . . . . . . . . . . . . . . . . 43 3.3 SymmetricandGrassmannianalgebras . . . . . . . . . . . . . . . . . 46 3.4 Symmetricandskew-symmetrictensors . . . . . . . . . . . . . . . . 50 3.5 Polarisationofcommutativepolynomials . . . . . . . . . . . . . . . . 52 3.6 Polarizationofgrassmannianpolynomials . . . . . . . . . . . . . . . 57 §4 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1 Plücker’squadricandgrassmanianGr(2,4) . . . . . . . . . . . . . . . 60 4.2 LagrangiangrassmannianLGr(2,4) . . . . . . . . . . . . . . . . . . . 63 4.3 GrassmanniansGr(𝑘,𝑛) . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4 Celldecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Commentstosomeexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2 §1 ProjectiveSpaces 1.1 Algebraicvarieties.Algebraicgeometrystudiesgeometricfiguresthatarelookinglocally¹ asasolutionsetofasystemofpolynomialequationsinaffinespace. Letmerecallbrieflywhat doesthelaermean. 1.1.1 Polynomials.Let𝑉 be𝑛-dimensionalvectorspaceoveranarbitraryfield𝕜. Itsdual space 𝑉∗ isthespaceofall𝕜-linearmaps𝑉 → 𝕜. Wewrite⟨𝜑, 𝑣⟩ = 𝜑(𝑣) ∈ 𝕜forthevalueof linearform𝜑 ∈ 𝑉∗onvector𝑣 ∈ 𝑉. Givenabasis𝑒 ,𝑒 ,…,𝑒 ∈ 𝑉,itsdualbasis𝑥 ,𝑥 ,…,𝑥 ∈ (cid:2869) (cid:2870) (cid:3041) (cid:2869) (cid:2870) (cid:3041) 𝑉∗ consistsofthecoordinateformsdefinedbyprescriptions 1 if 𝑖 = 𝑗 (cid:3564)𝑥(cid:3036), 𝑒(cid:3037)(cid:3565) = (cid:3696)0 otherwise. Let us write 𝑆𝑉∗ = 𝕜[𝑥 ,𝑥 ,…,𝑥 ] for the algebra of polynomials in 𝑥 ’s with coefficients in (cid:2869) (cid:2870) (cid:3041) (cid:3036) 𝕜. Another choice of a basis in 𝑉∗ leads to isomorphic algebra obtained from the initial one by an invertible linear change of variables. We write 𝑆(cid:3031)𝑉∗ ⊂ 𝑆𝑉∗ for the subspace of homo- geneous polynomials of degree 𝑑. It is stable under linear changes of variables and has a basis (cid:3040) (cid:3040) (cid:3040) 𝑥 (cid:3117)𝑥 (cid:3118)…𝑥 (cid:3289) numbered by all collections 𝑚 = (𝑚 ,𝑚 ,…,𝑚 ) of integers 0 ⩽ 𝑚 ⩽ 𝑑 with (cid:2869) (cid:2870) (cid:3041) (cid:2869) (cid:2870) (cid:3041) (cid:3036) ∑𝑚 = 𝑑. (cid:3036) E1.1. Showthatdim𝑆(cid:3031)𝑉∗ = (cid:3512)(cid:3041)+(cid:3031)−(cid:2869)(cid:3513)assoondim𝑉 = 𝑛. (cid:3031) In fact, symmetric powers 𝑆(cid:3031)𝑉∗ and symmetric algebra 𝑆𝑉∗ of vector space 𝑉∗ admit intrinsic coordinate-freedefinitionbutwepostponeitforn∘3.3.1onp.46below. Notethat 𝑆𝑉∗ = (cid:3026)𝑆(cid:3031)𝑉∗ and 𝑆(cid:3038)𝑉∗⋅𝑆(cid:3040)𝑉∗ ⊂ 𝑆(cid:3038)+(cid:3040)𝑉∗. (cid:3031)⩾(cid:2868) 1.1.2 Polynomial functions. Each polynomial 𝑓 = ∑𝑎 𝑥(cid:3040)(cid:3117)…𝑥(cid:3040)(cid:3289) ∈ 𝑆𝑉∗ produces a (cid:3040) (cid:2869) (cid:3041) (cid:3040) polynomialfunction𝑉 → 𝕜thattakes (cid:3040) (cid:3040) 𝑣 ↦ (cid:3037)𝑎(cid:3040)(cid:3564)𝑥(cid:2869), 𝑣(cid:3565) (cid:3117)…(cid:3564)𝑥(cid:3041), 𝑣(cid:3565) (cid:3289) (1-1) (cid:3040) (evaluationof𝑓 atthecoordinatesof𝑣). Wegetahomomorphismofalgebras 𝑆𝑉∗ → {functions𝑉 → 𝕜}. (1-2) that takes polynomial 𝑓 to function (1-1), which we will denote by the same leer 𝑓 in spite of thenextclaimsayingthatthisnotationisnotquitecorrectforfinitefields. P1.1 Homomorphism(1-2)isinjectiveifanonlyifthegroundfield𝕜isinfinite. P. If𝕜consistsof𝑞elements,thenthespaceofallfunctions𝑉 → 𝕜consistsof𝑞(cid:3044)(cid:3289) elements whereasthepolynomialalgebra𝕜[𝑥 ,𝑥 ,…,𝑥 ]isinfinite. Hence,homomorphism(1-2)cannot (cid:2869) (cid:2870) (cid:3041) be injective. Now let 𝕜 be infinite. For 𝑛 = 1 each non zero polynomial 𝑓 ∈ 𝕜[𝑥 ] vanishes (cid:2869) ¹i.e. inaneighboorofeachpoint 3 4 §1ProjectiveSpaces in at most deg𝑓 pints of 𝑉 ≃ 𝕜. Hence, the polynomial function 𝑓 ∶ 𝑉 → 𝕜 is not the zero function. For 𝑛 > 1 we proceed inductively. Expand 𝑓 ∈ 𝕜[𝑥 ,𝑥 ,…,𝑥 ] as polynomial in 𝑥 (cid:2869) (cid:2870) (cid:3041) (cid:3041) withcoefficientsin𝕜[𝑥 ,𝑥 ,…,𝑥 ]: (cid:2869) (cid:2870) (cid:3041)−(cid:2869) 𝑓 = 𝑓(𝑥 ,𝑥 ,…,𝑥 ; 𝑥 ) = (cid:3037)𝑓 (𝑥 ,𝑥 ,…,𝑥 )⋅𝑥(cid:3092). (cid:2869) (cid:2870) (cid:3041)−(cid:2869) (cid:3041) (cid:3092) (cid:2869) (cid:2870) (cid:3041)−(cid:2869) (cid:3041) (cid:3092) Letthepolynomialfunction𝑓 ∶ 𝑉 → 𝕜vanishidenticallyon𝕜(cid:3041). Evaluatingthecoefficients𝑓 (cid:3092) atany𝑤 ∈ 𝕜(cid:3041)−(cid:2869),wegetpolynomial𝑓(𝑤;𝑥 ) ∈ 𝕜[𝑥 ]thatproducesidenticallyzerofunctionof (cid:3041) (cid:3041) 𝑥 . Hence, 𝑓(𝑤;𝑥 ) = 0 in 𝕜[𝑥 ]. us, all coefficients 𝑓 (𝑤) are identically zero functions of (cid:3041) (cid:3041) (cid:3041) (cid:3092) 𝑤 ∈ 𝕜(cid:3041)−(cid:2869). Byinduction,theyarezeropolynomials. (cid:3) E1.2. Let𝑝beaprimenumber,𝔽 = ℤ∕(𝑝)betheresiduefieldmod𝑝. Giveanexplicit (cid:3043) exampleofnon-zeropolynomial𝑓 ∈ 𝔽 [𝑥]thatproducesidenticallyzerofunction𝔽 → 𝔽 . (cid:3043) (cid:3043) (cid:3043) 1.1.3 Affinespaceandaffinevarieties.Associatedwith𝑛-dimensionalvectorspace𝑉isan affine space 𝔸(cid:3041) = 𝔸(𝑉) of dimension 𝑛 also called an affinization of 𝑉. By the definition, points of 𝔸(𝑉) are the vectors of 𝑉. A point corresponding to thezerovectoriscalledanoriginanddenotedby𝑂. All otherpointscanbeimaginedasthe«ends»ofnonzero vectors«drawn»fromtheorigin. Eachpolynomial𝑓 ∈ 𝑆𝑉∗on𝑉producespolynomial function 𝑓 ∶ 𝔸(𝑉) → 𝕜. e set of its zeros is denoted (cid:24)) n by 𝑉(𝑓) ≝ {𝑝 ∈ 𝔸(𝑉)| 𝑓(𝑝) = 0} and is called an affine n A algebraic hypersurface. An intersection of (any set¹ o) P( O affine hypersurfaces is called an affine algebraic variety. y t In other words, an algebraic variety is a figure 𝑋 ⊂ 𝔸(cid:3041) fini n definedbyanarbitrarysystemofpolynomialequations. i e simplest hypersurface is an affine hyperplane given by affine linear equation 𝜑(𝑣) = 𝑐, where 𝜑 ∈ 𝑉∗ is non-zero linear form and 𝑐 ∈ 𝕜. Such a hyperplane passes through the origin iff 𝑐 = 0. In this case it coin- cideswiththeaffinespace𝔸(Ann𝜑)associatedwiththe affine chart U (cid:24) vectorsubspaceAnn(𝜑) = {𝑣 ∈ 𝑉| 𝜑(𝑣) = 0}. Ingeneral Fig.1⋄1.Projectiveword. case,affinehyperplane𝜑(𝑣) = 𝑐isashiof𝔸(Ann𝜑)by anyvector𝑢suchthat𝜑(𝑢) = 𝑐. 1.2 Projective space. Associated with (𝑛 +1)-dimensional vector space 𝑉 is a projective space ℙ = ℙ(𝑉)ofdimension𝑛alsocalledaprojectivizationof𝑉. Bythedefinition,pointsofℙ(𝑉)are (cid:3041) 1-dimensional vector subspaces in 𝑉, i.e. the lines in 𝔸(cid:3041)+(cid:2869) = 𝔸(𝑉) passing through the origin. To see them as «usual» points we have to use a screen — an affine hyperplane 𝑈 ⊂ 𝔸(𝑉) that (cid:3093) doesnotcontaintheorigin,likeonfig. 1⋄1. Itisgivenbyaffinelinearequation𝜉(𝑣) = 1,where 𝜉 ∈ 𝑉∗ ∖ 0 is uniquely determined by 𝑈 , and is called an affine chart. us, affine charts on (cid:3093) ℙ(𝑉)stayinbijectionwithnon-zero𝜉 ∈ 𝑉∗. Noaffinechartdoescoverthewholeofℙ(𝑉). e differenceℙ ⧵𝑈 = ℙ(Ann𝜉) ≃ ℙ consistsofalllineslyingintheparallelcopyof𝑈 drawn (cid:3041) (cid:3093) (cid:3041)−(cid:2869) (cid:3093) through𝑂. Itiscalledaninfinity ofchart𝑈 . Wegetdecompositionℙ = 𝔸(cid:3041)⊔ℙ . Repeating (cid:3093) (cid:3041) (cid:3041)−(cid:2869) ¹maybeaninfiniteset 1.2.Projectivespace 5 itforℙ andfurther,wesplitℙ intodisjointunionofaffinespaces: (cid:3041)−(cid:2869) (cid:3041) ℙ = 𝔸(cid:3041) ⊔𝔸(cid:3041)−(cid:2869)⊔ℙ = ⋯ = 𝔸(cid:3041) ⊔𝔸(cid:3041)−(cid:2869)⊔ … ⊔𝔸(cid:2868) (1-3) (cid:3041) (cid:3041)−(cid:2870) (notethat𝔸(cid:2868) = ℙ isonepointset). (cid:2868) E1.3. Considerdecomposition(1-3)overfinitefield𝔽 of𝑞 elements,computecardi- (cid:3044) nalitiesofbothsidesindependently,andlookatanidentityon𝑞 youwillget. 1.2.1 Homogeneouscoordinates.Achoiceofbasis𝜉 ,𝜉 ,…,𝜉 ∈ 𝑉∗identifies𝑉with𝕜(cid:3041)+(cid:2869) (cid:2868) (cid:2869) (cid:3041) bysending𝑣 ∈ 𝑉to(𝜉 (𝑣),𝜉 (𝑣),… , 𝜉 (𝑣)) ∈ 𝕜(cid:3041)+(cid:2869). Twonon-zerocoordinaterows𝑥,𝑦 ∈ 𝕜(cid:3041)+(cid:2869) (cid:2868) (cid:2869) (cid:3041) representthesamepoint𝑝 ∈ ℙ(𝑉)ifftheyareproportional,i.e. 𝑥 ∶ 𝑥 = 𝑦 ∶ 𝑦 forall 0 ⩽ 𝜇 ≠ 𝜈 ⩽ 𝑛 (cid:3091) (cid:3092) (cid:3091) (cid:3092) (wheretheidentities0 ∶ 𝑥 = 0 ∶ 𝑦and𝑥 ∶ 0 = 𝑦 ∶ 0areallowedaswell). us,points𝑝 ∈ ℙ(𝑉) stayinbijectionwithcollectionsofratios(𝑥 ∶ 𝑥 ∶ … ∶ 𝑥 )calledhomogeneouscoordinateson (cid:2868) (cid:2869) (cid:3041) ℙ(𝑉)w.r.t. thechosenbasis. 1.2.2 Local affine coordinates. Pick up an affine chart 𝑈 = {𝑣 ∈ 𝑉| 𝜉(𝑣) = 1} on (cid:3093) ℙ = ℙ(𝑉). Any 𝑛 covectors 𝜉 ,𝜉 ,…,𝜉 ∈ 𝑉∗ such that 𝜉, 𝜉 ,𝜉 ,…,𝜉 form a basis of 𝑉∗ (cid:3041) (cid:2869) (cid:2870) (cid:3041) (cid:2869) (cid:2870) (cid:3041) provide 𝑈 with local affine coordinates. Namely, consider the basis 𝑒 ,𝑒 ,…,𝑒 ∈ 𝑉 dual to (cid:3093) (cid:2868) (cid:2869) (cid:3040) 𝜉, 𝜉 ,𝜉 ,…,𝜉 andlet𝑒 ∈ 𝑈 betheoriginofaffinecoordinatesystemand𝑒 ,𝑒 ,…,𝑒 ∈ Ann𝜉 (cid:2869) (cid:2870) (cid:3041) (cid:2868) (cid:3093) (cid:2869) (cid:2870) (cid:3041) be its axes. Given a point 𝑝 ∈ ℙ with homogeneous coordinates (𝑥 ∶ 𝑥 ∶ … ∶ 𝑥 ), its local (cid:3041) (cid:2868) (cid:2869) (cid:3041) affinecoordinatesinoursystemarecomputedasfollows: rescale𝑝togetvector𝑢 = 𝑝∕𝜉(𝑝) ∈ 𝑈 (cid:3043) (cid:3093) and evaluate 𝑛 covectors 𝜉(cid:3092) at 𝑢(cid:3043) to get an 𝑛-tiple 𝑡(𝑝) = (cid:3512)𝑡(cid:2869)(𝑝), 𝑡(cid:2870)(𝑝), … , 𝑡(cid:3041)(𝑝)(cid:3513) in which 𝑡 (𝑝) ≝ 𝜉 (𝑢 ) = 𝜉 (𝑝)∕𝜉(𝑝). Notethatlocalaffinecoordinates(𝑡 ,𝑡 ,…,𝑡 )arenon-linear func- (cid:3036) (cid:3036) (cid:3043) (cid:3036) (cid:2869) (cid:2870) (cid:3041) tionsofhomogeneouscoordinates(𝑥 ∶ 𝑥 ∶ … ∶ 𝑥 ). (cid:2868) (cid:2869) (cid:3041) x1 (p0:p1)=(1:t)=(s:1) U1:x1=1 s=p0/p1 (0,1) t=p1/p0 (1,0) O x0 1 = 0 x : 0 U Fig.1⋄2.estandardchartsonℙ (cid:2869) E1.1() Projectivelineℙ = ℙ(𝕜(cid:2870))iscoveredbytwoaffinecharts𝑈 = 𝑈 and𝑈 = 𝑈 ,whicharethe (cid:2869) (cid:2868) (cid:3051) (cid:2869) (cid:3051) (cid:3116) (cid:3117) linesin𝔸(cid:2870) = 𝔸(𝕜(cid:2870))givenbyequations𝑥 = 1and𝑥 = 1(see.fig. 1⋄2). echart𝑈 coversthe (cid:2868) (cid:2869) (cid:2868) 6 §1ProjectiveSpaces wholeofℙ exceptforonepoint (0 ∶ 1)correspondingtotheverticalcoordinateaxisin𝕜(cid:2870). A (cid:2869) (cid:3051) point(𝑥 ∶ 𝑥 )with𝑥 ≠ 0isvisiblein𝑈 as 1 ∶ (cid:3117) . Function𝑡 = 𝑥 | = 𝑥 ∕𝑥 canbetaken (cid:2868) (cid:2869) (cid:2868) (cid:2868) (cid:3585) (cid:3051)(cid:3116)(cid:3586) (cid:2869) (cid:3022)(cid:3116) (cid:2869) (cid:2868) (cid:3051) as local affine coordinate in 𝑈 . Similarly, the chart 𝑈 covers all points (𝑥 ∶ 𝑥 ) = (cid:3116) ∶ 1 (cid:2868) (cid:2869) (cid:2868) (cid:2869) (cid:3585)(cid:3051) (cid:3586) (cid:3117) with𝑥 ≠ 0and𝑠 = 𝑥 | = 𝑥 ∕𝑥 canbeusedaslocalaffinecoordinatein𝑈 . einfinitepoint (cid:2869) (cid:2868) (cid:3022) (cid:2868) (cid:2869) (cid:2869) (cid:3117) of𝑈 is(1 ∶ 0)correspondingtothehorizontalaxisin𝕜(cid:2870). Assoonasapoint(𝑥 ∶ 𝑥 ) ∈ ℙ is (cid:2869) (cid:2868) (cid:2869) (cid:2869) visibleinthebothcharts,itslocalaffinecoordinates𝑠and𝑡satisfytherelation𝑠 = 1∕𝑡. E1.4. Checkit. N t=1/s p 1 ∅ S s=1/t Fig.1⋄3.ℙ (ℝ) ≃ 𝑆(cid:2869) (cid:2869) usℙ isobtainedbygluingtwodistinctcopiesof𝔸(cid:2869) alongthecomplementstotheoriginby (cid:2869) the following rule: point 𝑠 of the first 𝔸(cid:2869) is glued with point 1∕𝑠 of the second. Over 𝕜 = ℝ wegetinthiswayacircleofdiameter1gluedfromtwooppositetangentlines(see.fig. 1⋄3)via thecentralprojectionofeachtangentlineonthecirclefromthetangencypointoftheopposite tangentline. N 1 t=1/s U0≃C i p i 1 S s=1/t U1≃C Fig.1⋄4.ℙ (ℂ) ≃ 𝑆(cid:2870) (cid:2869) Similargluingover𝕜 = ℂalsocanberealizedbymeansofcentralprojectionsoftwotangent planes drown through south and nord poles of the sphere of diameter 1 onto the sphere from the poles opposite to the tangency poles, see fig. 1⋄4. If we identify each tangent plane with ℂ respectingtheirorientations¹likeonfig. 1⋄4,thenthecomplexnumbers𝑠,𝑡layingondifferent ¹oneℂshouldbeobtainedfromtheotherbycontinuousmovealongthesphere 1.3.Projectivealgebraicvarieties 7 planes are projected to the same point of sphere iff they have opposite arguments and inverse absolutevalues¹,i.e. 𝑡 = 1∕𝑠. us,complexprojectivelineisnothingbutasphere. E 1.5. Make sure that ) real projective plane ℙ (ℝ) is the Möbius tape glued with (cid:2870) disc along the boundary circle² ) real projective 3D-space ℙ (ℝ) coincides with the Lie (cid:2871) groupSO (ℝ)ofrotationsofEuclideanspaceℝ(cid:2871) abouttheorigin. (cid:2871) E1.2(ℙ ) (cid:3041) Acollectionof(𝑛+1)affinecharts𝑈 = 𝑈 givenin𝕜(cid:3041)+(cid:2869)byaffinelinearequations{𝑥 = 1}is (cid:3092) (cid:3051) (cid:3092) (cid:3340) calledastandardaffinecoveringofℙ = ℙ(𝕜(cid:3041)+(cid:2869)). Foreach𝜈 = 0, 1, … , 𝑛wetakethefunctions (cid:3041) 𝑥 𝑡((cid:3092)) = 𝑥 | = (cid:3036) , where0 ⩽ 𝑖 ⩽ 𝑛, 𝑖 ≠ 𝜈, (cid:3036) (cid:3036) (cid:3022)(cid:3340) 𝑥 (cid:3092) as 𝑛 standard local affine coordinates inside 𝑈 . One can think of ℙ as the result of gluing (cid:3092) (cid:3041) (𝑛 + 1) distinct copies 𝑈 ,𝑈 ,…,𝑈 of affine space 𝔸(cid:3041) along their actual intersections inside (cid:2868) (cid:2869) (cid:3041) ℙ . In terms of homogeneous coordinates 𝑥 = (𝑥 ∶ 𝑥 ∶ … ∶ 𝑥 ) on ℙ intersection 𝑈 ∩𝑈 (cid:3041) (cid:2868) (cid:2869) (cid:3041) (cid:3041) (cid:3091) (cid:3092) consistsofall𝑥with𝑥 ≠ 0and𝑥 ≠ 0. Intermsoflocalaffinecoordinatesinside𝑈 and𝑈 this (cid:3091) (cid:3092) (cid:3091) (cid:3092) intersectionisgivenbyinequalities𝑡((cid:3091)) ≠ 0and𝑡((cid:3092)) ≠ 0respectively. Twopoints𝑡((cid:3091)) ∈ 𝑈 and (cid:3092) (cid:3091) (cid:3091) 𝑡((cid:3092)) ∈ 𝑈 aregluedwitheachotherinℙ iff𝑡((cid:3091)) = 1∕𝑡((cid:3092)) and𝑡((cid:3091)) = 𝑡((cid:3092))∕𝑡((cid:3092)) for𝑖 ≠ 𝜇,𝜈. RHSof (cid:3092) (cid:3041) (cid:3092) (cid:3091) (cid:3036) (cid:3036) (cid:3091) theserelationsarecalledtransitionfunctionsfromlocalcoordinates𝑡((cid:3092)) tolocalcoordinates𝑡((cid:3091)). 1.3 Projective algebraic varieties. If a basis 𝑥 ,𝑥 ,…,𝑥 ∈ 𝑉∗ is chosen, non-constant poly- (cid:2868) (cid:2869) (cid:3041) nomials in 𝑥 ’s do not produce the functions on ℙ(𝑉) any more, because the values 𝑓(𝑣) and (cid:3036) 𝑓(𝜆𝑣) are different in general. However for any homogeneous polynomial 𝑓 ∈ 𝑆(cid:3031)𝑉∗ its zero set 𝑉(𝑓) ≝ {𝑣 ∈ 𝑉| 𝑓(𝑣) = 0}isstillwelldefinedasafigureinℙ(𝑉),because 𝑓(𝑣) = 0 ⟺ 𝑓(𝜆𝑣) = 𝜆(cid:3031)𝑓(𝑣) = 0. In other words, affine hypersurface 𝑉(𝑓) ⊂ 𝔸(𝑉) defined by homogeneous 𝑓 is a cone ruled by lines passing through the origin. e set of these lines is denoted by 𝑉(𝑓) ⊂ ℙ(𝑉) as well and is called a projective hypersurface of degree 𝑑. Intersections of such hypersurfaces³ are called projectivealgebraicvarieties. esimplestexamplesofprojectivevarietiesareprojectivesubspacesℙ(𝑈) ⊂ ℙ(𝑉)associated withvectorsubspaces𝑈 ⊂ 𝑉 andgivenbysystemsoflinearhomogeneousequations𝜑(𝑣) = 0, where𝜑runsthroughAnn𝑈 ⊂ 𝑉∗. Say,aline(𝑎𝑏)isassociatedwiththelinearspanof𝑎,𝑏and consistsofpoints𝜆𝑎+𝜇𝑏. Itcouldbegivenbylinearequations𝜉(𝑥) = 0with𝜉runningthrough Ann(𝑎)∩Ann(𝑏)oranybasisofthisspace. Ratio(𝜆 ∶ 𝜇)betweencoefficientsin𝜆𝑎+𝜇𝑏 ∈ (𝑎,𝑏) canbetakenasinternalhomogeneouscoordinateon(𝑎𝑏). E 1.6. Show that 𝐾 ∩ 𝐿 ≠ ∅ for any two projective subspaces 𝐾,𝐿 ⊂ ℙ such that (cid:3041) dim𝐾+dim𝐿 ⩾ 𝑛. Forexample,anytwolinesonℙ havenonemptyintersection. (cid:2870) ¹wehaveseenthisonfig.1⋄3before ²theboundaryoftheMöbiustapeisacircleaswellastheboundaryofthedisc;thisallowstogluethe disktothetapealongthiscircle ³maybeinfinitecollectionsofhypersurfacesofdifferentdegrees 8 §1ProjectiveSpaces E1.3() Ontherealprojectiveplaneℙ(ℝ(cid:2871))letusconsideracurvegivenbyhomogeneousequation 𝑥(cid:2870)+𝑥(cid:2870) = 𝑥(cid:2870) (1-4) (cid:2868) (cid:2869) (cid:2870) andlookatitsimprintsinseveralaffinecharts. Inthestandardchart𝑈 ,where𝑥 = 1,inlocal (cid:3051) (cid:2869) (cid:3117) affinecoordinates𝑡 = 𝑥 | = 𝑥 ∕𝑥 ,𝑡 = 𝑥 | = 𝑥 ∕𝑥 equation(1-4)turnstohyperbola (cid:2868) (cid:2868) (cid:3022) (cid:2868) (cid:2869) (cid:2870) (cid:2870) (cid:3022) (cid:2870) (cid:2869) (cid:3299)(cid:3117) (cid:3299)(cid:3117) 𝑡(cid:2870)−𝑡(cid:2870) = 1. (cid:2870) (cid:2868) Inotherstandardchart𝑈 , where𝑥 = 1, inco- (cid:3051) (cid:2870) (cid:3118) ordinates 𝑡 = 𝑥 | = 𝑥 ∕𝑥 (cid:2868) (cid:2868) (cid:3022) (cid:2868) (cid:2870) (cid:3299)(cid:3118) 𝑡 = 𝑥 | = 𝑥 ∕𝑥 (cid:2869) (cid:2869) (cid:3022) (cid:2869) (cid:2870) (cid:3299)(cid:3118) itturnstocircle𝑡(cid:2870)+𝑡(cid:2870) = 1. Inslantedchart𝑈 , (cid:2868) (cid:2869) (cid:3051)(cid:3117)+(cid:3051)(cid:3118) where𝑥 +𝑥 = 1,inlocalcoordinates (cid:2869) (cid:2870) 𝑡 = 𝑥 | = 𝑥 ∕(𝑥 +𝑥 ) (cid:2868) (cid:3022) (cid:2868) (cid:2869) (cid:2870) (cid:3299)(cid:3117)+(cid:3299)(cid:3118) 𝑢 = (𝑥 −𝑥 )| = (𝑥 −𝑥 )∕(𝑥 +𝑥 ) (cid:2870) (cid:2869) (cid:3022) (cid:2870) (cid:2869) (cid:2870) (cid:2869) (cid:3299)(cid:3117)+(cid:3299)(cid:3118) we get parabola¹ 𝑡(cid:2870) = 𝑢. us, affine ellipse, hy- perbolaandparabolaarejusttheseveralpiecesof one projective curve 𝐶 visible in different affine Fig.1⋄5.Realprojectiveconic. charts. Howdoes𝐶looklikeinagivenchart𝑈 ⊂ (cid:3093) ℙ dependsonpositionalrelationshipbetween𝐶andtheinfinitelineℓ = ℙ(Ann𝜉)ofthechart: (cid:2870) ∞ ellipse,hyperbolaandparabolaappearwhenℓ doesnotintersect𝐶,doestouch𝐶 atonepoint ∞ ordoesintersect𝐶 intwodistinctpointsrespectively(see.fig. 1⋄5). 1.3.1 Projectiveclosureofanaffinevariety.Eachaffinealgebraichypersurface 𝑆 = 𝑉(𝑓) ⊂ 𝔸(cid:3041) givenbynon-homogeneouspolynomial𝑓(𝑥 ,𝑥 ,…,𝑥 )ofdegree𝑑iscanonicallyextenttopro- (cid:2869) (cid:2870) (cid:3041) jectivehypersurface𝑆 = 𝑉(𝑓) ⊂ ℙ givenbyhomogeneouspolynomial𝑓(𝑥 ,𝑥 , …, 𝑥 ) ∈ 𝑆(cid:3031)𝑉∗ (cid:3041) (cid:2868) (cid:2869) (cid:3041) ofthesamedegree𝑑andsuchthat𝑆∩𝑈 = 𝑆,where𝑈 = 𝑈 isthestandardaffinechartonℙ . (cid:2868) (cid:2868) (cid:3051) (cid:3041) (cid:3116) If𝑓(𝑥 ,𝑥 ,…,𝑥 ) = 𝑓 +𝑓 (𝑥 ,𝑥 ,…,𝑥 )+𝑓 (𝑥 ,𝑥 ,…,𝑥 )+ ⋯ +𝑓 (𝑥 ,𝑥 ,…,𝑥 )where𝑓 (cid:2869) (cid:2870) (cid:3041) (cid:2868) (cid:2869) (cid:2869) (cid:2870) (cid:3041) (cid:2870) (cid:2869) (cid:2870) (cid:3041) (cid:3031) (cid:2869) (cid:2870) (cid:3041) (cid:3036) ishomogeneousofdegree𝑖,then 𝑓(𝑥 ,𝑥 , …, 𝑥 ) = 𝑓 ⋅𝑥(cid:3031) +𝑓 (𝑥 ,𝑥 ,…,𝑥 )⋅𝑥(cid:3031)−(cid:2869)+ ⋯ +𝑓 (𝑥 ,𝑥 ,…,𝑥 ), (cid:2868) (cid:2869) (cid:3041) (cid:2868) (cid:2868) (cid:2869) (cid:2869) (cid:2870) (cid:3041) (cid:2868) (cid:3031) (cid:2869) (cid:2870) (cid:3041) whichturnsto𝑓 as𝑥 = 1. ecomplement𝑆∖𝑆 = 𝑆∩𝑈(∞),thatistheintersectionof𝑆 with (cid:2868) (cid:2868) the infinite hyperplane 𝑥 = 0, is given in homogeneous coordinates (𝑥 ∶ 𝑥 ∶ ⋯ ∶ 𝑥 ) on (cid:2868) (cid:2869) (cid:2870) (cid:3041) the infinite hyperplane by equation 𝑓 (𝑥 ,𝑥 ,…,𝑥 ) = 0, that is by vanishing the top degree (cid:3031) (cid:2869) (cid:2870) (cid:3041) component of 𝑓. us, infinite points of 𝑆 are nothing else than asymptotic directions of affine hypersurface𝑆. For example, projective closure of affine cubic curve 𝑥 = 𝑥(cid:2871) is projective cubic 𝑥(cid:2870)𝑥 = 𝑥(cid:2871) (cid:2869) (cid:2870) (cid:2868) (cid:2869) (cid:2870) that has exactlyone infinite point 𝑝 = (0 ∶ 1 ∶ 0). Note that in the standard chart 𝑈 , which ∞ (cid:2869) containsthispoint,𝐶 lookslikesemi-cubicparabola𝑥(cid:2870) = 𝑥(cid:2871) withacuspat𝑝 . (cid:2868) (cid:2870) ∞ ¹move𝑥(cid:2870)toR.H.S.of (1-4)anddividethebothsidesby𝑥 +𝑥 (cid:2869) (cid:2870) (cid:2869) 1.3.Projectivealgebraicvarieties 9 1.3.2 Space of hypersurfaces. Since proportional polynomials define the same hypersur- faces𝑉(𝑓) = 𝑉(𝜆𝑓),projectivehypersurfacesoffixeddegree𝑑arethepointsofprojectivespace 𝒮 = 𝒮 (𝑉) ≝ ℙ(𝑆(cid:3031)𝑉∗)calledaspaceofdegree𝑑hypersufacesinℙ(𝑉). (cid:3031) (cid:3031) E1.7. Finddim𝒮 (𝑉)assumingdim𝑉 = 𝑛+1. (cid:3031) Since,. Projective subspaces of 𝒮 are called linear systems¹ of hypersurfaces. For example, all (cid:3031) degree 𝑑 hypersurfaces passing through a given point form a a linear system of codimension 1,i.e. ahyperplanein𝒮 ,becauseequation𝑓(𝑝) = 0islinearin𝑓 ∈ 𝑆(cid:3031)𝑉∗foranyfixed𝑝 ∈ ℙ(𝑉). (cid:3031) Eachhypersurfacelayinginalinearsystemspannedby𝑉(𝑓 ), 𝑉(𝑓 ), … , 𝑉(𝑓 ),isgivenbyan (cid:2869) (cid:2870) (cid:3040) equationoftheform𝜆 𝑓 +𝜆 𝑓 +⋯+𝜆 𝑓 = 0,where𝜆 ,𝜆 ,…,𝜆 ∈ 𝕜aresomeconstants. (cid:2869) (cid:2869) (cid:2870) (cid:2870) (cid:3040) (cid:3040) (cid:2869) (cid:2870) (cid:3040) In particular, any such a hypersurface contains the intersection 𝑉(𝑓 ) ∩ 𝑉(𝑓 ) ∩ … ∩ 𝑉(𝑓 ). (cid:2869) (cid:2870) (cid:3040) Traditionally,linearsystemsofdimensions1,2and3arecalledpencils,netsandwebs. E1.8. Showthateachpencilofhypersurfacescontainsahypersurfacepassingthrough anyprescribedpoint(overanarbitraryfield𝕜). 1.3.3 Workingexample: collectionsofpointsonℙ .Let𝑈 = 𝕜(cid:2870) withthestandardcoordi- 𝟏 nates𝑥 ,𝑥 . Eachfinitesetofpoints²𝑝 ,𝑝 ,…,𝑝 ∈ ℙ = ℙ(𝑈)isthesetofzerosforaunique (cid:2868) (cid:2869) (cid:2869) (cid:2870) (cid:3031) (cid:2869) upascalarfactorhomogeneouspolynomialofdegree𝑑 (cid:3031) (cid:3031) 𝑓(𝑥 ,𝑥 ) = (cid:3038)det(𝑥,𝑝 ) = (cid:3038)(𝑝 𝑥 −𝑝 𝑥 ) , where𝑝 = (𝑝 ∶ 𝑝 ). (1-5) (cid:2868) (cid:2869) (cid:3092) (cid:3092),(cid:2869) (cid:2868) (cid:3092),(cid:2868) (cid:2869) (cid:3092) (cid:3092),(cid:2868) (cid:3092),(cid:2869) (cid:3092)=(cid:2869) (cid:3092)=(cid:2869) We will say that the points 𝑝 are the roots of 𝑓. Each non-zero homogeneous polynomial of (cid:3036) degree 𝑑 has at most 𝑑 distinct roots on ℙ . If the ground field 𝕜 is algebraically closed, the (cid:2869) number of roots³ equals 𝑑 precisely and there is a bijection between the points of ℙ(𝑆(cid:3031)𝑈∗) and non-orderedcollectionsof𝑑 pointsonℙ . (cid:2869) Overanarbitraryfield𝕜thosecollectionswhereall𝑑 pointscoincideformacurve 𝐶 ⊂ ℙ = ℙ(𝑆(cid:3031)𝑈∗) (cid:3031) (cid:3031) calledVeronesecurve⁴ofdegree𝑑. ItcoincideswithanimageoftheVeroneseembedding (cid:3101)↦(cid:3101)(cid:3279) 𝑣(cid:3031) ∶ ℙ×(cid:2869) = ℙ(cid:3512)𝑈∗(cid:3513) −−−−−→ ℙ(cid:3031) = ℙ(cid:3512)𝑆(cid:3031)𝑈∗(cid:3513) (1-6) that takes a linear polynomial 𝜑 ∈ 𝑈∗, whose zero set is some point 𝑝 ∈ ℙ(𝑈), to 𝑑th power 𝜑(cid:3031) ∈ 𝑆(cid:3031)(𝑈∗),whosezerosetis𝑑-tiplepoint𝑝. Letuswritepolynomials𝜑 ∈ 𝑈∗ and𝑓 ∈ 𝑆(cid:3031)(𝑈∗)as 𝑑 𝜑(𝑥) = 𝛼 𝑥 +𝛼 𝑥 and 𝑓(𝑥) = (cid:3037)𝑎 ⋅ 𝑥(cid:3031)−(cid:3092)𝑥(cid:3092) (cid:2868) (cid:2868) (cid:2869) (cid:2869) (cid:3092) (cid:3585)𝜈(cid:3586) (cid:2868) (cid:2869) (cid:3092) and use (𝛼 ∶ 𝛼 ) and (𝑎 ∶ 𝑎 ∶ … ∶ 𝑎 ) as homogeneous coordinates in ℙ× = ℙ(𝑈∗) and in (cid:2868) (cid:2869) (cid:2868) (cid:2869) (cid:3031) (cid:2869) ℙ = ℙ(𝑆(cid:3031)𝑈∗)respectively. entheVeronesecurvecomeswiththeparametrization (cid:3031) (𝛼(cid:2868) ∶ 𝛼(cid:2869)) ↦ (𝑎(cid:2868)∶ 𝑎(cid:2869)∶ … ∶ 𝑎(cid:3031)) = (cid:3512)𝛼(cid:2868)(cid:3031) ∶ 𝛼(cid:2868)(cid:3031)−(cid:2869)𝛼(cid:2869) ∶ 𝛼(cid:2868)(cid:3031)−(cid:2870)𝛼(cid:2869)(cid:2870) ∶ ⋯ ∶ 𝛼(cid:2869)(cid:3031)(cid:3513) (1-7) ¹orlinearseriesinoldterminology ²someofpointsmaycoincide ³countedwithmultiplicities,whereamultiplicityofaroot𝑝isdefinedasmaximal𝑘suchthatdet(cid:3038)(𝑥,𝑝) divides𝑓 ⁴thereareseveralothernames: rationalnormalcurve,twistedrationalcurveofdegree𝑑etc 10 §1ProjectiveSpaces by the points of ℙ . It follows from (1-7) that 𝐶 consists of all (𝑎 ∶ 𝑎 ∶ … ∶ 𝑎 ) ∈ ℙ that (cid:2869) (cid:3031) (cid:2868) (cid:2869) (cid:3031) (cid:3031) formageometricprogression,i.e. suchthattherowsofmatrix 𝑎 𝑎 𝑎 … 𝑎 𝑎 𝐴 = (cid:2868) (cid:2869) (cid:2870) (cid:3031)−(cid:2870) (cid:3031)−(cid:2869) (cid:3638)𝑎 𝑎 𝑎 … 𝑎 𝑎 (cid:3639) (cid:2869) (cid:2870) (cid:2871) (cid:3031)−(cid:2869) (cid:3031) areproportional. econditionrk𝐴 = 1isequivalenttovanishingofall2×2-minorsof𝐴. us, 𝐶 ⊂ ℙ isgivenbyasystemofquadraticequations. (cid:3031) (cid:3031) Anintersectionof𝐶 withanarbitraryhyperplanegivenbyequation (cid:3031) 𝐴 𝑎 +𝐴 𝑎 +⋯+𝐴 𝑎 = 0, (cid:2868) (cid:2868) (cid:2869) (cid:2869) (cid:3031) (cid:3031) consistsoftheVeronese-imagesoftheroots(𝛼 ∶ 𝛼 ) ∈ ℙ ofhomogeneouspolynomial (cid:2868) (cid:2869) (cid:2869) (cid:3037)𝐴 ⋅𝛼(cid:3031)−(cid:3092)𝛼(cid:3092) (cid:3092) (cid:2868) (cid:2869) (cid:3092) ofdegree𝑑. Sinceithasatmost𝑑 roots,any𝑑+1distinctpointsontheVeronesecurvedonot lieinahyperplane. isimpliesthatany𝑚pointsof𝐶 spanasubspaceofdimension𝑚+1and (cid:3031) donotlieinacommonsubspaceofdimension(𝑚−2)assoon2 ⩽ 𝑚 ⩽ 𝑑+1. If𝕜isalgebraicallyclosed,𝐶 intersectsanyhyperplaneinprecisely𝑑points(someofwhich (cid:3031) maycoincide). isexplainswhywedidsaythat𝐶 hasdegree𝑑. (cid:3031) E1.4(V) e Veronese conic 𝐶 ⊂ ℙ consists of quadratic trinomials 𝑎 𝑥(cid:2870) + 2𝑎 𝑥 𝑥 + 𝑎 𝑥(cid:2870) that are (cid:2870) (cid:2870) (cid:2868) (cid:2868) (cid:2869) (cid:2868) (cid:2869) (cid:2870) (cid:2869) perfectsquaresoflinearforms. Itisgivenbywellknownequation 𝑎 𝑎 𝐷∕4 = −det (cid:2868) (cid:2869) = 𝑎(cid:2870)−𝑎 𝑎 = 0 (1-8) (cid:3638)𝑎 𝑎 (cid:3639) (cid:2869) (cid:2868) (cid:2870) (cid:2869) (cid:2870) andcomeswithrationalparametrization 𝑎 = 𝛼(cid:2870) , 𝑎 = 𝛼 𝛼 , 𝑎 = 𝛼(cid:2870) . (1-9) (cid:2868) (cid:2868) (cid:2869) (cid:2868) (cid:2869) (cid:2870) (cid:2869) 1.4 Complementarysubspacesandprojections.Projectivesubspaces𝐾 = ℙ(𝑈)and𝐿 = ℙ(𝑊) in ℙ = ℙ(𝑉) are called complementary, if 𝐾 ∩𝐿 = ∅ and dim𝐾 +dim𝐿 = 𝑛−1. For example, (cid:3041) any two non-intersecting lines in ℙ are complementary. In terms of linear algebra, the vector (cid:2871) subspaces𝑈,𝑊 ⊂ 𝑉 havezerointersection𝑈∩𝑉 = {0}and dim𝑈+dim𝑊 = dim𝐾+1+dim𝐿+1 = (𝑛+1) = dim𝑉. us,𝑉 = 𝑈⊕𝑊andeach𝑣 ∈ 𝑉hasauniquedecomposition𝑣 = 𝑢+𝑤where𝑢∈𝑈and𝑤∈𝑊. If 𝑣 lies neither in 𝑈 nor in 𝑊, both components 𝑢, 𝑤 are non zero vectors. us, each point 𝑝 ∉ 𝐾⊔𝐿liesonauniquelineintersectingbothsubspaces𝐾,𝐿. E1.9. Makeitsure. Givenapairofcomplementarysubspaces𝐾,𝐿 ⊂ ℙ ,aprojectionfrom𝐾to𝐿isamap (cid:3041) 𝜋(cid:3012) ∶ (ℙ ⧵𝐾) → 𝐿 (cid:3013) (cid:3041) that sends each point 𝑝 ∈ ℙ ⧵(𝐾 ⊔𝐿) to a unique point 𝑏 ∈ 𝐿 such that line 𝑝𝑏 intersects 𝐾 (cid:3041) and sends each point of 𝐿 to itself. In homogeneous coordinates (𝑥 ∶ 𝑥 ∶ … ∶ 𝑥 ) such that (cid:2868) (cid:2869) (cid:3041) (𝑥 ∶ 𝑥 ∶ … ∶ 𝑥 ) are the coordinates in 𝐾 and (𝑥 ∶ 𝑥 ∶ … ∶ 𝑥 ) are the coordinates (cid:2868) (cid:2869) (cid:3040) (cid:3040)+(cid:2869) (cid:3040)+(cid:2870) (cid:3041) in𝐿,projection𝜋(cid:3012) removesthefirst(𝑚+1)coordinates𝑥 ,0 ⩽ 𝜈 ⩽ 𝑚. (cid:3013) (cid:3092)