ebook img

Algebraic Geometry I: Schemes With Examples and Exercises PDF

622 Pages·2010·4.387 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Geometry I: Schemes With Examples and Exercises

Ulrich Görtz | Torsten Wedhorn Algebraic Geometry I Ulrich Görtz | Torsten Wedhorn Algebraic Geometry I Schemes With Examples and Exercises Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Prof. Dr. Ulrich Görtz Institute of Experimental Mathematics University Duisburg-Essen Ellernstraße 29 45326 Essen [email protected] Prof. Dr. Torsten Wedhorn Department of Mathematics University of Paderborn Warburger Straße 100 33098 Paderborn [email protected] 1st Edition 2010 All rights reserved © Vieweg+Teubner Verlag|Springer Fachmedien Wiesbaden GmbH 2010 Editorial Office: Ulrike Schmickler-Hirzebruch Vieweg+Teubner Verlag is a brand of Springer Fachmedien. Springer Fachmedien is part of Springer Science+Business Media.. www.viewegteubner.de No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder. Registered and/or industrial names, trade names, trade descriptions etc. cited in this publication are part of the law for trade-mark protection and may not be used free in any form or by any means even if this is not specifically marked. Cover design:KünkelLopka Medienentwicklung, Heidelberg Printed on acid-free paper Printed in Germany ISBN 978-3-8348-0676-5 V Contents Introduction 1 1 Prevarieties 7 Affine algebraic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Affine algebraic sets as spaces with functions . . . . . . . . . . . . . . . . . . 17 Prevarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Projective varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2 Spectrum of a Ring 40 Spectrum of a ring as a topological space . . . . . . . . . . . . . . . . . . . . 41 Excursion: Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Spectrum of a ring as a locally ringed space . . . . . . . . . . . . . . . . . . . 57 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3 Schemes 66 Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Examples of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Basic properties of schemes and morphisms of schemes . . . . . . . . . . . . . 74 Prevarieties as Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Subschemes and Immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 Fiber products 93 Schemes as functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Fiber products of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Base change, Fibers of a morphism . . . . . . . . . . . . . . . . . . . . . . . . 105 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 Schemes over fields 118 Schemes over a field which is not algebraically closed . . . . . . . . . . . . . . 118 Dimension of schemes over a field . . . . . . . . . . . . . . . . . . . . . . . . . 120 Schemes over fields and extensions of the base field . . . . . . . . . . . . . . . 133 Intersections of plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6 Local Properties of Schemes 145 The tangent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Smooth morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Regular schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Normal schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 VI Contents 7 Quasi-coherent modules 169 Excursion: O -modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 X Quasi-coherent modules on a scheme . . . . . . . . . . . . . . . . . . . . . . . 181 Properties of quasi-coherent modules . . . . . . . . . . . . . . . . . . . . . . . 189 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8 Representable Functors 205 Representable Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 The example of the Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . 209 Brauer-Severi schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9 Separated morphisms 226 Diagonal of scheme morphisms and separated morphisms . . . . . . . . . . . 226 Rational maps and function fields. . . . . . . . . . . . . . . . . . . . . . . . . 232 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 10 Finiteness Conditions 241 Finiteness conditions (noetherian case) . . . . . . . . . . . . . . . . . . . . . . 242 Finiteness conditions in the non-noetherian case . . . . . . . . . . . . . . . . 249 Schemes over inductive limits of rings . . . . . . . . . . . . . . . . . . . . . . 258 Constructible properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 11 Vector bundles 286 Vector bundles and locally free modules . . . . . . . . . . . . . . . . . . . . . 286 Flattening stratification for modules . . . . . . . . . . . . . . . . . . . . . . . 296 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 Vector bundles on P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 12 Affine and proper morphisms 320 Affine morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Finite and quasi-finite morphisms . . . . . . . . . . . . . . . . . . . . . . . . . 324 Serre’s and Chevalley’s criteria to be affine . . . . . . . . . . . . . . . . . . . 334 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 Proper morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Zariski’s main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 13 Projective morphisms 366 Projective spectrum of a graded algebra . . . . . . . . . . . . . . . . . . . . . 367 Embeddings into projective space . . . . . . . . . . . . . . . . . . . . . . . . . 384 Blowing-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 VII 14 Flat morphisms and dimension 423 Flat morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Properties of flat morphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 Faithfully flat descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 Dimension and fibers of morphisms . . . . . . . . . . . . . . . . . . . . . . . . 463 Dimension and regularity conditions . . . . . . . . . . . . . . . . . . . . . . . 473 Hilbert schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 15 One-dimensional schemes 485 Morphisms into and from one-dimensional schemes . . . . . . . . . . . . . . . 485 Valuative criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Curves over fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Divisors on curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 16 Examples 503 Determinantal varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 Cubic surfaces and a Hilbert modular surface . . . . . . . . . . . . . . . . . . 520 Cyclic quotient singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 A The language of categories 541 B Commutative Algebra 547 C Permanence for properties of morphisms of schemes 573 D Relations between properties of morphisms of schemes 576 E Constructible and open properties 578 Bibliography 583 Detailed List of Contents 588 Index of Symbols 598 Index 602 1 Introduction Algebraic geometry has its origin in the study of systems of polynomial equations f (x ,...,x )=0, 1 1 n . . . f (x ,...,x )=0. r 1 n Here the f ∈k[X ,...,X ] are polynomials in n variables with coefficients in a field k. i 1 n ThesetofsolutionsisasubsetV(f ,...,f )ofkn.Polynomialequationsareomnipresent 1 r inandoutsidemathematics,andhavebeenstudiedsinceantiquity.Thefocusofalgebraic geometry is studying the geometric structure of their solution sets. If the polynomials f are linear, then V(f ,...,f ) is a subvector space of kn. Its i 1 r “size” is measured by its dimension and it can be described as the kernel of the linear map kn →kr, x=(x ,...,x )(cid:4)→(f (x),...,f (x)). 1 n 1 r For arbitrary polynomials, V(f ,...,f ) is in general not a subvector space. To study 1 r it, one uses the close connection of geometry and algebra which is a key property of algebraic geometry, and whose first manifestation is the following: If g =g f +...g f 1 1 r r is a linear combination of the f (with coefficients g ∈ k[T ,...,T ]), then we have i i 1 n V(f ,...,f ) =V (g,f ,...,f ). Thus the set of solutions depends only on the ideal 1 r 1 r a ⊆ k[T ,...,T ] generated by the f . On the other hand we may consider polynomials 1 n i f ∈k[T ,...,T ], view them as polynomial functions kn →k, and define the ideal a(cid:2) of 1 n thosef suchthatf vanishesonV(f ,...,f ).Itisoneofthefirstmainresults(Hilbert’s 1 r Nullstellensatz) that if k is algebraically closed, then a(cid:2) is closely related to a, more precisely a(cid:2) =rad(a):={f ∈k[T ,...,T ] ; ∃m>0:fm ∈a}. 1 n The quotient k[T ,...,T ]/a(cid:2) may be considered as thek -algebra of polynomial func- 1 n tions on the affine variety V(f ,...,f ). We obtain a close relation between ideals a of 1 r k[T ,...,T ] (or, equivalently, quotient algebras of k[T ,...,T ]) and affine varieties in 1 n 1 n kn –atleastifk isalgebraicallyclosed.Fornotalgebraicallyclosedfieldsk thisapproach is too naive. Besides this algebraic description, one can endow the sets V(f ,...,f ) with a “geo- 1 r metricstructure”.Theonlyreasonabletopologywhichcanbedefinedpurelyinalgebraic terms, i.e., without appealing to analytic notions as convergence, is the Zariski topology which is the coarsest topology (on kn, say) such that all zero sets of polynomials are closed. Not surprisingly, it is very coarse and therefore is not sufficient to determine the “geometric structure” of the spaces in question. The right way to remedy this, is to considereachspacetogetherwiththeentiretyoffunctionsonthespace.Similarlyasadif- ferentiable(orholomorphic)manifoldisdeterminedbyitstopologicalstructuretogether with the entirety of differentiable (or holomorphic) functions on all its open subsets, we obtain a satisfactory notion of algebraic geometric objects, “affine varieties over k”, by considering closed subsets of kn together with the entirety of functions on them, which in this case means all functions defined by rational polynomials. 2 Introduction Polynomial equations also arise in number theory, and especially in the last decades algebraic-geometricmethodshavebecomeextremelyfruitfulforsolvingnumber-theoretic problems. In this case the polynomials have coefficients in Q or Z (or more generally in numberfields,finitefields,orp-adicrings).OneofthemostfamousexamplesisFermat’s equation xm +ym = zm with x,y,z ∈ Z. The proof of Fermat’s Last Theorem which asserts that this equations has no solutions for m≥3, xyz (cid:8)=0, by Wiles and Taylor in 1995 relies heavily on modern algebraic geometry. The unifying approach to study polynomial equations f ,...,f over arbitrary (com- 1 r mutative) rings R is the theory of schemes developed by Grothendieck and his school. It allowstoattachtoanarbitrarycommutativeringA(e.g.,A=R[T ,...,T ]/(f ,...,f ) 1 n 1 r or A = Z[X,Y,Z]/(Xm +Ym −Zm)) a geometric object SpecA consisting of a topo- logical space X and a datum O of “systems of functions” on this space such that the X ring of “globally defined functions” on SpecA is the ring A itself. Such a pair (X,O ) is X a so-called locally ringed space. This allows us to view commutative rings as geometric objectscalledaffineschemes.TheaffinevarietyV(f ,...,f )⊆kn canberecoveredfrom 1 r the affine scheme Speck[T ,...,T ]/(f ,...,f ). 1 n 1 r Asinelementarygeometrysomeproblemsonlyhaveasatisfyingsolutionifweconsider them not in affine space but in projective space. For instance two different lines in the affine plane intersect always in one point except if they are parallel. By adding points at infinity (the “horizon”) we obtain the projective plane, where any two different lines intersect in precisely one point. The projective space can be obtained by gluing affine spaces. Vastly generalizing this process we arrive at the central notion of this book: a scheme. It is defined as a locally ringed space that is locally isomorphic to an affine scheme. Note the similarity to the definition of a smooth n-dimensional manifold which is a geometric object that is locally isomorphic – within the right category – to an open subset of Rn. For schemes geometric notions as dimension or smoothness are defined. As schemes are locally given by commutative rings, many of these notions are defined in terms of rings and ideals. Conversely, every definition or result in commutative algebra has its geometric counterpart in the theory of schemes. Thus algebra and geometry become two aspects of the same theory. Anotherreasonfortheimportanceofschemesisthatitisoftenpossibletoparameterize interesting objects by schemes. An example is the Grassmannian which is a scheme that parameterizes subvector spaces of a fixed dimension in a given finite-dimensional vector space. The general concept behind schemes as parameter spaces is the point of view of schemes representing certain functors. This plays an important role in modern algebraic geometry and beyond. It will be one of the main focuses in this book. Grothendieck’s theory of schemes is technically demanding but essential in modern algebraic geometry even for applications in classical complex algebraic geometry. Even more so it is indispensable in arithmetic geometry. For instance, the Fermat problem was solved in 1994 by Wiles and Taylor using techniques from algebraic geometry in its mostmodernform.Moreoveralgebraicgeometryhasalsobecomeanimportanttoolwith manyapplicationsinotherfieldsofmathematicssuchastopology,representationtheory, Lie theory, group theory, string theory, or cryptography. The goal of this book is to provide its reader with the background in algebraic geometry to go on to current research in algebraic geometry itself, in number theory, or in other fieldsofmathematics.Itstrivesforthenecessarygeneralitytobeastablesteppingstone for most of these fields. 3 There is a wealth of literature on algebraic geometry from which we learned a lot. It is a pleasure to acknowledge the overwhelming influence of the pioneering work of Grothendieck and Dieudonn´e ([EGAI],[EGAInew], [EGAII],[EGAIII], [EGAIV]). Other sources are Mumford’s red book [Mu1], and the books by Shafarevich [Sh], Hartshorne [Ha3]andPerrin[Per].Furthermorewelistthemorespecializedbooks,eachwithitsown focus, by Mumford [Mu2], Griffiths and Harris [GH], Liu [Liu], Harris [Har], Eisenbud and Harris [EH], and Harder [Ha]. Further sources had a more local impact. We followed Kurke [Ku1], [Ku2] and Pe- skine [Pes] quite closely in our proof of Zariski’s main theorem. In our treatment of geometric properties of schemes over a field one of our main references was Jouanolou’s book [Jo]. Our main source for determinantal varieties was the book [BV] by Bruns and Vetter.FortheexampleofcubicsurfacesweprofitedmuchfromBeauville[Bea]and[Ge] and for the example of Brauer-Severi varieties from Gille and Szamuely [GS]. Leitfaden The notion of scheme which is the main object of investigation of the whole book is introduced in Chapter 3, using the affine schemes defined in Chapter 2 as local building blocks. These two chapters are therefore indispensable for all of the book. In Chapter 1 we discuss a precursor of schemes, namely prevarieties (over an algebraically closed field). These prevarieties are much closer to geometric intuition, and on the other hand comprise a large number of interesting schemes. However, besides other defects of this notion, prevarieties are not suitable for discussing arithmetic questions because it is not easilypossibletolinkobjectslivingoverbasefieldsofdifferentcharacteristics.InChapter 4weintroducefiberproductsofschemeswhichareubiquitousinalloftheremainder.In particularfiberproductsallowustoviewthefibersofmorphismsofschemesasschemes, sothatwecanmakeprecisethephilosophythatamorphismf: X →S ofschemesshould beseenasafamily(f−1(s))s∈S ofschemes.Forbeginnersinalgebraicgeometry,working through all of Chapters 1 to 4 is therefore recommended. For those with a background in classical algebraic geometry, Chapter 1 can probably be skipped, and all readers with someknowledgeaboutschemesshouldbeabletostartwithChapter5withouttoomany problems. After this first part of the book, some choices can be made. In Chapter 5, the part on dimension of schemes over a field should be read in any case—not only since it is used at many places, but because the dimension of a scheme is a fundamental notion in algebraicgeometryasawhole.Thepartsonschemesovernon-algebraicallyclosedfields, andonbasechangeofthegroundfield,aremorespecializedandcanbeskippedatafirst reading. References to the latter can usually be avoided by assuming that the base field in question is perfect or algebraically closed. The part on intersections of plane curves with a proof of B´ezout’s theorem is one of the first applications of the theory developed sofar,butisnotstrictlynecessaryfortherestofthetext;theonlyplacewhereitisused again is the discussion of elliptic curves in Chapter 16. The topic of Chapter 6 are local properties of schemes, in particular the notions of tangent space, smooth, regular and singular points and of normality. We make essential use of the notion of normal scheme in Chapter 12 when we discuss normalizations and Zariski’s main theorem. Chapter 7 provides definitions and results on (quasi-coherent) O -modules. Its first X

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.