Ulrich Görtz | Torsten Wedhorn Algebraic Geometry I Ulrich Görtz | Torsten Wedhorn Algebraic Geometry I Schemes With Examples and Exercises Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Prof. Dr. Ulrich Görtz Institute of Experimental Mathematics University Duisburg-Essen Ellernstraße 29 45326 Essen [email protected] Prof. Dr. Torsten Wedhorn Department of Mathematics University of Paderborn Warburger Straße 100 33098 Paderborn [email protected] 1st Edition 2010 All rights reserved © Vieweg+Teubner Verlag|Springer Fachmedien Wiesbaden GmbH 2010 Editorial Office: Ulrike Schmickler-Hirzebruch Vieweg+Teubner Verlag is a brand of Springer Fachmedien. Springer Fachmedien is part of Springer Science+Business Media.. www.viewegteubner.de No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder. Registered and/or industrial names, trade names, trade descriptions etc. cited in this publication are part of the law for trade-mark protection and may not be used free in any form or by any means even if this is not specifically marked. Cover design:KünkelLopka Medienentwicklung, Heidelberg Printed on acid-free paper Printed in Germany ISBN 978-3-8348-0676-5 V Contents Introduction 1 1 Prevarieties 7 Affine algebraic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Affine algebraic sets as spaces with functions . . . . . . . . . . . . . . . . . . 17 Prevarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Projective varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2 Spectrum of a Ring 40 Spectrum of a ring as a topological space . . . . . . . . . . . . . . . . . . . . 41 Excursion: Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Spectrum of a ring as a locally ringed space . . . . . . . . . . . . . . . . . . . 57 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3 Schemes 66 Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Examples of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Basic properties of schemes and morphisms of schemes . . . . . . . . . . . . . 74 Prevarieties as Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Subschemes and Immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 Fiber products 93 Schemes as functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Fiber products of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Base change, Fibers of a morphism . . . . . . . . . . . . . . . . . . . . . . . . 105 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 Schemes over fields 118 Schemes over a field which is not algebraically closed . . . . . . . . . . . . . . 118 Dimension of schemes over a field . . . . . . . . . . . . . . . . . . . . . . . . . 120 Schemes over fields and extensions of the base field . . . . . . . . . . . . . . . 133 Intersections of plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6 Local Properties of Schemes 145 The tangent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Smooth morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Regular schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Normal schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 VI Contents 7 Quasi-coherent modules 169 Excursion: O -modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 X Quasi-coherent modules on a scheme . . . . . . . . . . . . . . . . . . . . . . . 181 Properties of quasi-coherent modules . . . . . . . . . . . . . . . . . . . . . . . 189 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8 Representable Functors 205 Representable Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 The example of the Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . 209 Brauer-Severi schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9 Separated morphisms 226 Diagonal of scheme morphisms and separated morphisms . . . . . . . . . . . 226 Rational maps and function fields. . . . . . . . . . . . . . . . . . . . . . . . . 232 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 10 Finiteness Conditions 241 Finiteness conditions (noetherian case) . . . . . . . . . . . . . . . . . . . . . . 242 Finiteness conditions in the non-noetherian case . . . . . . . . . . . . . . . . 249 Schemes over inductive limits of rings . . . . . . . . . . . . . . . . . . . . . . 258 Constructible properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 11 Vector bundles 286 Vector bundles and locally free modules . . . . . . . . . . . . . . . . . . . . . 286 Flattening stratification for modules . . . . . . . . . . . . . . . . . . . . . . . 296 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 Vector bundles on P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 12 Affine and proper morphisms 320 Affine morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Finite and quasi-finite morphisms . . . . . . . . . . . . . . . . . . . . . . . . . 324 Serre’s and Chevalley’s criteria to be affine . . . . . . . . . . . . . . . . . . . 334 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 Proper morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Zariski’s main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 13 Projective morphisms 366 Projective spectrum of a graded algebra . . . . . . . . . . . . . . . . . . . . . 367 Embeddings into projective space . . . . . . . . . . . . . . . . . . . . . . . . . 384 Blowing-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 VII 14 Flat morphisms and dimension 423 Flat morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Properties of flat morphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 Faithfully flat descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 Dimension and fibers of morphisms . . . . . . . . . . . . . . . . . . . . . . . . 463 Dimension and regularity conditions . . . . . . . . . . . . . . . . . . . . . . . 473 Hilbert schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 15 One-dimensional schemes 485 Morphisms into and from one-dimensional schemes . . . . . . . . . . . . . . . 485 Valuative criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Curves over fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Divisors on curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 16 Examples 503 Determinantal varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 Cubic surfaces and a Hilbert modular surface . . . . . . . . . . . . . . . . . . 520 Cyclic quotient singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 A The language of categories 541 B Commutative Algebra 547 C Permanence for properties of morphisms of schemes 573 D Relations between properties of morphisms of schemes 576 E Constructible and open properties 578 Bibliography 583 Detailed List of Contents 588 Index of Symbols 598 Index 602 1 Introduction Algebraic geometry has its origin in the study of systems of polynomial equations f (x ,...,x )=0, 1 1 n . . . f (x ,...,x )=0. r 1 n Here the f ∈k[X ,...,X ] are polynomials in n variables with coefficients in a field k. i 1 n ThesetofsolutionsisasubsetV(f ,...,f )ofkn.Polynomialequationsareomnipresent 1 r inandoutsidemathematics,andhavebeenstudiedsinceantiquity.Thefocusofalgebraic geometry is studying the geometric structure of their solution sets. If the polynomials f are linear, then V(f ,...,f ) is a subvector space of kn. Its i 1 r “size” is measured by its dimension and it can be described as the kernel of the linear map kn →kr, x=(x ,...,x )(cid:4)→(f (x),...,f (x)). 1 n 1 r For arbitrary polynomials, V(f ,...,f ) is in general not a subvector space. To study 1 r it, one uses the close connection of geometry and algebra which is a key property of algebraic geometry, and whose first manifestation is the following: If g =g f +...g f 1 1 r r is a linear combination of the f (with coefficients g ∈ k[T ,...,T ]), then we have i i 1 n V(f ,...,f ) =V (g,f ,...,f ). Thus the set of solutions depends only on the ideal 1 r 1 r a ⊆ k[T ,...,T ] generated by the f . On the other hand we may consider polynomials 1 n i f ∈k[T ,...,T ], view them as polynomial functions kn →k, and define the ideal a(cid:2) of 1 n thosef suchthatf vanishesonV(f ,...,f ).Itisoneofthefirstmainresults(Hilbert’s 1 r Nullstellensatz) that if k is algebraically closed, then a(cid:2) is closely related to a, more precisely a(cid:2) =rad(a):={f ∈k[T ,...,T ] ; ∃m>0:fm ∈a}. 1 n The quotient k[T ,...,T ]/a(cid:2) may be considered as thek -algebra of polynomial func- 1 n tions on the affine variety V(f ,...,f ). We obtain a close relation between ideals a of 1 r k[T ,...,T ] (or, equivalently, quotient algebras of k[T ,...,T ]) and affine varieties in 1 n 1 n kn –atleastifk isalgebraicallyclosed.Fornotalgebraicallyclosedfieldsk thisapproach is too naive. Besides this algebraic description, one can endow the sets V(f ,...,f ) with a “geo- 1 r metricstructure”.Theonlyreasonabletopologywhichcanbedefinedpurelyinalgebraic terms, i.e., without appealing to analytic notions as convergence, is the Zariski topology which is the coarsest topology (on kn, say) such that all zero sets of polynomials are closed. Not surprisingly, it is very coarse and therefore is not sufficient to determine the “geometric structure” of the spaces in question. The right way to remedy this, is to considereachspacetogetherwiththeentiretyoffunctionsonthespace.Similarlyasadif- ferentiable(orholomorphic)manifoldisdeterminedbyitstopologicalstructuretogether with the entirety of differentiable (or holomorphic) functions on all its open subsets, we obtain a satisfactory notion of algebraic geometric objects, “affine varieties over k”, by considering closed subsets of kn together with the entirety of functions on them, which in this case means all functions defined by rational polynomials.
Description: