ebook img

Algebraic Geometry PDF

221 Pages·2017·1.998 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Geometry

Algebraic Geometry J.S. Milne Version6.02 March19,2017 Thesenotesareanintroductiontothetheoryofalgebraicvarietiesemphasizingthesimi- larities to the theory of manifolds. In contrast to most such accounts they study abstract algebraicvarieties,andnotjustsubvarietiesofaffineandprojectivespace. Thisapproach leadsmorenaturallyintoschemetheory. BibTeX information @misc{milneAG, author={Milne, James S.}, title={Algebraic Geometry (v6.02)}, year={2017}, note={Available at www.jmilne.org/math/}, pages={221} } v2.01 (August24,1996). Firstversionontheweb. v3.01 (June13,1998). v4.00 (October30,2003). Fixederrors;manyminorrevisions;addedexercises;addedtwo sections/chapters;206pages. v5.00 (February20,2005). Heavilyrevised;mostnumberingchanged;227pages. v5.10 (March19, 2008). Minorfixes; TEXstylechanged, sopagenumberschanged; 241 pages. v5.20 (September14,2009). Minorcorrections;revisedChapters1,11,16;245pages. v5.22 (January13,2012). Minorfixes;260pages. v6.00 (August24,2014). Majorrevision;223pages. v6.01 (August23,2015). Minorfixes;226pages. v6.02 (March19,2017). Minorfixes;221pages. Availableatwww.jmilne.org/math/ Pleasesendcommentsandcorrectionstomeattheaddressonmywebpage. Thecurvesareatacnode,aramphoidcusp,andanordinarytriplepoint. Copyright(cid:13)c 1996–2017J.S.Milne. Singlepapercopiesfornoncommercialpersonalusemaybemadewithoutexplicitpermission fromthecopyrightholder. Contents Contents 3 Introduction 7 1 Preliminariesfromcommutativealgebra 11 a. Ringsandideals,11 ;b. Ringsoffractions,15 ;c. Uniquefactorization,21;d. Integral dependence,24;e. TensorProducts,30 ;f. Transcendencebases,33;Exercises,33. 2 AlgebraicSets 35 a. Definition of an algebraic set, 35 ; b. The Hilbert basis theorem, 36; c. The Zariski topology,37;d. TheHilbertNullstellensatz,38;e. Thecorrespondencebetweenalgebraic setsandradicalideals,39 ; f. Findingtheradicalofanideal,43; g. Propertiesofthe Zariskitopology,43;h. Decompositionofanalgebraicsetintoirreduciblealgebraicsets, 44;i. Regularfunctions;thecoordinateringofanalgebraicset,47;j. Regularmaps,48;k. Hypersurfaces;finiteandquasi-finitemaps,48;l. Noethernormalizationtheorem,50;m. Dimension,52 ;Exercises,56. 3 AffineAlgebraicVarieties 57 a. Sheaves,57;b. Ringedspaces,58;c. Theringedspacestructureonanalgebraicset,59 ;d. Morphismsofringedspaces,62;e. Affinealgebraicvarieties,63;f. Thecategoryof affinealgebraicvarieties,64;g. Explicitdescriptionofmorphismsofaffinevarieties,65; h. Subvarieties,68;i. PropertiesoftheregularmapSpm.˛/,69;j. Affinespacewithout coordinates,70;k. Birationalequivalence,71;l. NoetherNormalizationTheorem,72;m. Dimension,73;Exercises,77. 4 LocalStudy 79 a. Tangentspacestoplanecurves,79 ;b. Tangentconestoplanecurves,81;c. Thelocal ringatapointonacurve,83;d. TangentspacestoalgebraicsubsetsofAm,84 ;e. The differentialofaregularmap,86;f. Tangentspacestoaffinealgebraicvarieties,87 ;g. Tangentcones,91;h. Nonsingularpoints;thesingularlocus,92;i. Nonsingularityand regularity,94;j. Examplesoftangentspaces,95;Exercises,96. 5 AlgebraicVarieties 97 a. Algebraicprevarieties,97;b. Regularmaps,98;c. Algebraicvarieties,99;d. Mapsfrom varietiestoaffinevarieties,101;e. Subvarieties,101 ;f. Prevarietiesobtainedbypatching, 102; g. Products of varieties, 103 ; h. The separation axiom revisited, 108; i. Fibred products,110;j. Dimension,111;k. Dominantmaps,113;l. Rationalmaps;birational equivalence,113; m. Localstudy,114; n. E´talemaps,115 ; o. E´taleneighbourhoods, 118 ; p. Smoothmaps,120; q. Algebraicvarietiesasafunctors,121; r. Rationaland unirationalvarieties,124;Exercises,125. 6 ProjectiveVarieties 127 3 a. AlgebraicsubsetsofPn,127;b. TheZariskitopologyonPn,131;c. Closedsubsetsof An andPn,132;d. Thehyperplaneatinfinity,133;e. Pn isanalgebraicvariety,133;f. Thehomogeneouscoordinateringofaprojectivevariety,135;g. Regularfunctionsona projectivevariety,136;h. Mapsfromprojectivevarieties,137;i. Someclassicalmapsof projectivevarieties,138 ;j. Mapstoprojectivespace,143;k. Projectivespacewithout coordinates,143;l. Thefunctordefinedbyprojectivespace,144;m. Grassmannvarieties, 144 ;n. Bezout’stheorem,148;o. Hilbertpolynomials(sketch),149;p. Dimensions,150; q. Products,152 ;Exercises,153. 7 CompleteVarieties 155 a. Definitionandbasicproperties,155 ;b. Propermaps,157;c. Projectivevarietiesare complete,158;d. Eliminationtheory,159 ;e. Therigiditytheorem;abelianvarieties, 163; f. Chow’s Lemma, 165 ; g. Analytic spaces; Chow’s theorem, 167; h. Nagata’s EmbeddingTheorem,168;Exercises,169. 8 NormalVarieties;(Quasi-)finitemaps;Zariski’sMainTheorem 171 a. Normalvarieties, 171; b. Regularfunctionsonnormalvarieties, 174; c. Finiteand quasi-finitemaps, 176 ; d. The fibresof finitemaps, 182; e. Zariski’s maintheorem, 184 ;f. Steinfactorization,189;g. Blow-ups,190 ;h. Resolutionofsingularities,190; Exercises,191. 9 RegularMapsandTheirFibres 193 a. Theconstructibilitytheorem,193;b. Thefibresofmorphisms,196;c. Flatmapsand theirfibres, 199 ; d. Linesonsurfaces, 206; e. Bertini’stheorem, 211; f. Birational classification,211;Exercises,212. Solutionstotheexercises 213 Index 219 4 Notations Weusethestandard(Bourbaki)notations: NDf0;1;2;:::g,ZDringofintegers,RDfield of real numbers, CD field of complex numbers, Fp DZ=pZD field of p elements, p a primenumber. Givenanequivalencerelation,Œ(cid:3)(cid:141)denotestheequivalenceclasscontaining(cid:3). AfamilyofelementsofasetAindexedbyasecondsetI,denoted.ai/i2I,isafunction i 7!a WI !A. WesometimeswritejSjforthenumberofelementsinafinitesetS. i Throughout,kisanalgebraicallyclosedfield. Unadornedtensorproductsareoverk. For ak-algebraRandk-moduleM,weoftenwriteM forR˝M. ThedualHom .E;k/ R k-linear _ ofafinite-dimensionalk-vectorspaceE isdenotedbyE . Allringswillbecommutativewith1,andhomomorphismsofringsarerequiredtomap 1to1. WeuseGothic(fraktur)lettersforideals: a b c m n p q A B C M N P Q a b c m n p q A B C M N P Q Finally X DdefY X isdefinedtobeY,orequalsY bydefinition; X (cid:26)Y X isasubsetofY (notnecessarilyproper,i.e.,X mayequalY); X (cid:25)Y X andY areisomorphic; X 'Y X andY arecanonicallyisomorphic(orthereisagivenoruniqueisomorphism). Areference“Section3m”istoSectionminChapter3;areference“(3.45)”istothis iteminchapter3;areference“(67)”isto(displayed)equation67(usuallygivenwithapage referenceunlessitisnearby). Prerequisites Thereaderisassumedtobefamiliarwiththebasicobjectsofalgebra,namely,rings,modules, fields,andsoon. References AtiyahandMacDonald1969: IntroductiontoCommutativeAlgebra,Addison-Wesley. CA:Milne,J.S.,CommutativeAlgebra,v4.02,2017. FT:Milne,J.S.,FieldsandGaloisTheory,v4.52,2017. Hartshorne1977: AlgebraicGeometry,Springer. Shafarevich1994: BasicAlgebraicGeometry,Springer. A reference monnnn (resp. sxnnnn) is to question nnnn on mathoverflow.net (resp. math.stackexchange.com). Wesometimesrefertothecomputeralgebraprograms CoCoA (ComputationsinCommutativeAlgebra)http://cocoa.dima.unige.it/. Macaulay2 (GraysonandStillman)http://www.math.uiuc.edu/Macaulay2/. 5 Acknowledgements Ithankthefollowingforprovidingcorrectionsandcommentsonearlierversionsofthese notes: JorgeNicola´sCaroMontoya,SandeepChellapilla,RankeyaDatta,UmeshV.Dubey, ShalomFeigelstock,TonyFeng,B.J.Franklin,SergeiGelfand,DanielGerig,DarijGrinberg, LucioGuerberoff,IsacHede´n,GuidoHelmers,FlorianHerzig,ChristianHirsch,Cheuk-Man Hwang, Jasper Loy Jiabao, Dan Karliner, Lars Kindler, John Miller, Joaquin Rodrigues, SeanRostami,DavidRufino,HosseinSabzrou,JyotiPrakashSaha,TomSavage,Nguyen QuocThang,BhupendraNathTiwari,IsraelVainsencher,SoliVishkautsan,DennisBouke Westra,FelipeZaldivar,LuochenZhao,andothers. QUESTION: Ifwetrytoexplaintoalaymanwhatalgebraicgeometryis,itseemstomethat thetitleoftheoldbookofEnriquesisstilladequate: GeometricalTheoryofEquations.... GROTHENDIECK: Yes! butyour“layman”shouldknowwhatasystemofalgebraicequations is. ThiswouldcostyearsofstudytoPlato. QUESTION: Itshouldbenicetohavealittlefaiththataftertwothousandyearseverygood highschoolgraduatecanunderstandwhatanaffineschemeis... From the notes of a lecture series that Grothendieck gave at SUNY at Buffalo in the summerof1973(in167pages,Grothendieckmanagestocoververylittle). 6 Introduction Thereisalmostnothinglefttodiscoverin geometry. Descartes,March26,1619 Just as the starting point of linear algebra is the study of the solutions of systems of linearequations, n X a X Db ; i D1;:::;m; (1) ij j i jD1 thestartingpointforalgebraicgeometryisthestudyofthesolutionsofsystemsofpolynomial equations, f .X ;:::;X /D0; i D1;:::;m; f 2kŒX ;:::;X (cid:141): i 1 n i 1 n Oneimmediatedifferencebetweenlinearequationsandpolynomialequationsisthattheo- remsforlinearequationsdon’tdependonwhichfieldk youareworkingover,1 butthosefor polynomialequationsdependonwhetherornotk isalgebraicallyclosedand(toalesser extent)whetherk hascharacteristiczero. Abetterdescriptionofalgebraicgeometryisthatitisthestudyofpolynomialfunctions andthespacesonwhichtheyaredefined(algebraicvarieties),justastopologyisthestudy of continuous functions and the spaces on which they are defined (topological spaces), differentialtopologythestudyofinfinitelydifferentiablefunctionsandthespacesonwhich theyaredefined(differentiablemanifolds),andsoon: algebraicgeometry regular(polynomial)functions algebraicvarieties topology continuousfunctions topologicalspaces differentialtopology differentiablefunctions differentiablemanifolds complexanalysis analytic(powerseries)functions complexmanifolds. The approach adopted in this course makes plain the similarities between these different areasofmathematics. Ofcourse,thepolynomialfunctionsformamuchlessrichclassthan theothers,butbyrestrictingourstudytopolynomialsweareabletodocalculusoverany field: wesimplydefine d Xa Xi DXia Xi(cid:0)1: i i dX Moreover,calculationswithpolynomialsareeasierthanwithmoregeneralfunctions. 1Forexample,supposethatthesystem(1)hascoefficientsa 2kandthatKisafieldcontainingk.Then ij (1)hasasolutioninknifandonlyifithasasolutioninKn,andthedimensionofthespaceofsolutionsisthe sameforbothfields.(Exercise!) 7 8 INTRODUCTION Consider a nonzero differentiable function f.x;y;z/. In calculus, we learn that the equation f.x;y;z/DC (2) defines a surface S in R3, and that the tangent plane to S at a point P D .a;b;c/ has equation2 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) @f @f @f .x(cid:0)a/C .y(cid:0)b/C .z(cid:0)c/D0: (3) @x @y @z P P P Theinversefunctiontheoremsaysthatadifferentiablemap˛WS !S0 ofsurfacesisalocal isomorphism at a point P 2S if it maps the tangent plane at P isomorphically onto the tangentplaneatP0D˛.P/. Consideranonzeropolynomialf.x;y;z/withcoefficientsinafieldk. Inthesenotes, weshalllearnthattheequation(2)definesasurfaceink3, andweshallusetheequation (3)todefinethetangentspaceatapointP onthesurface. However,andthisisoneofthe essentialdifferencesbetweenalgebraicgeometryandtheotherfields,theinversefunction theoremdoesn’tholdinalgebraicgeometry. Oneotheressentialdifferenceisthat1=X is notthederivativeofanyrationalfunctionofX,andnorisXnp(cid:0)1 incharacteristicp¤0— thesefunctionscannotbeintegratedinthefieldofrationalfunctionsk.X/. These notes form a basic course on algebraic geometry. Throughout, we require the groundfieldtobealgebraicallyclosedinordertobeabletoconcentrateonthegeometry. Additionalchapters,treatingmoreadvancedtopics,canbefoundonmywebsite. The approach to algebraic geometry taken in these notes Indifferentialgeometryitisimportanttodefinedifferentiablemanifoldsabstractly,i.e.,not assubmanifoldsofsomeEuclideanspace. Forexample,itisdifficulteventomakesense ofastatementsuchas“theGausscurvatureofasurfaceisintrinsictothesurfacebutthe principalcurvaturesarenot”withouttheabstractnotionofasurface. Untilthemid1940s,algebraicgeometrywasconcernedonlywithalgebraicsubvarieties ofaffineorprojectivespaceoveralgebraicallyclosedfields. Then,inordertogivesubstance tohisproofofthecongruenceRiemannhypothesisforcurvesandabelianvarieties,Weil wasforcedtodevelopatheoryofalgebraicgeometryfor“abstract”algebraicvarietiesover arbitraryfields,3 buthis“foundations”areunsatisfactoryintwomajorrespects: ˘ Lackingasheaftheory,hismethodofpatchingtogetheraffinevarietiestoformabstract varietiesisclumsy.4 ˘ Hisdefinitionofavarietyoverabasefieldk isnotintrinsic;specifically,hefixessome large“universal”algebraicallyclosedfield˝ anddefinesanalgebraicvarietyoverk tobeanalgebraicvarietyover˝ togetherwithak-structure. Intheensuingyears,severalattemptsweremadetoresolvethesedifficulties. In1955, Serreresolvedthefirstbyborrowingideasfromcomplexanalysisanddefininganalgebraic varietyoveranalgebraicallyclosedfieldtobeatopologicalspacewithasheafoffunctions thatislocallyaffine.5 Then,inthelate1950sGrothendieckresolvedallsuchdifficultiesby developingthetheoryofschemes. 2ThinkofS asalevelsurfaceforthefunctionf,andnotethattheequationisthatofaplanethrough .a;b;c/perpendiculartothegradientvector.Of/ off atP. P 3Weil,Andre´.Foundationsofalgebraicgeometry.AmericanMathematicalSociety,Providence,R.I.1946. 4NordidWeilusetheZariskitopologyin1946. 5Serre,Jean-Pierre.Faisceauxalge´briquescohe´rents.Ann.ofMath.(2)61,(1955).197–278,commonly referredtoasFAC. 9 Inthesenotes,wefollowGrothendieckexceptthat,byworkingonlyoverabasefield, weareabletosimplifyhislanguagebyconsideringonlytheclosedpointsintheunderlying topologicalspaces. Inthisway,wehopetoprovideabridgebetweentheintuitiongivenby differentialgeometryandtheabstractionsofschemetheory.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.