ALGEBRAIC CYCLES ON SEVERI-BRAUER SCHEMES OF PRIME DEGREE OVER A CURVE 7 0 0 CRISTIAN D. GONZA´LEZ-AVILE´S 2 n a J 9 Abstract. Let k be a perfect field and let p be a prime number 2 differentfromthecharacteristicofk. LetC beasmooth,projective and geometrically integral k-curve and let X be a Severi-Brauer ] T C-scheme of relative dimension p − 1 . In this paper we show d N that CH (X)tors contains a subgroup isomorphic to CH0(X/C) for every d in the range 2 ≤ d ≤ p. We deduce that, if k is a . h d number field, then CH (X) is finitely generatedfor everyd in the t a indicated range. m [ 1. Introduction. 1 v Let k be a perfect field with algebraic closure k. Very little is 1 known about algebraic cycles on algebraic k-varieties, especially in 6 codimension greater than 2 or dimension greater than zero. Let p 8 1 be a prime number different from the characteristic of k and let C be a 0 smooth, projective and geometrically integral k-curve. Inthis paper we 7 0 study a certain subgroup of CHd(X) for a Severi-Brauer C-scheme tors / q: X → C of relative dimension p − 1 and any integer d such that h t 2 ≤ d ≤ p. Let a m CH (X/C) = Ker CH (X) −q→∗ CH (C) : 0 0 0 v Xi and let π∗: CHd(X) → CHd hX be induced by thie extension-of- r scalars map X → X, where X = X ⊗ k. Then the following holds. a (cid:0) (cid:1) k Main Theorem. For any d as above, there exists a canonical isomor- phism Ker CHd(X) −π→∗ CHd X ≃ CH (X/C). 0 Consequently, if kh is a number field, t(cid:0)hen(cid:1)CiHd(X) is finitely generated. 2000 Mathematics Subject Classification. Primary 14C25; Secondary 14C15 . Key words and phrases. Algebraic cycles, Chow groups, curves, Severi-Brauer schemes. The author is partially supported by Fondecyt grant 1061209 and Universidad Andr´es Bello grant DI-29-05/R. 1 2 CRISTIAND. GONZA´LEZ-AVILE´S Acknowledgement. I thank B.Kahn for some helpful comments. 2. Preliminaries. Let k be a perfect field, fix an algebraic closure k of k and let Γ = Gal k/k . Now let C be a smooth, projective and geometri- cally integral k-curve and let X be a Severi-Brauer scheme over C [4, (cid:0) (cid:1) §8]. There exists a proper and flat k-morphism q: X → C all of whose fibers are Severi-Brauer varieties of dimension m−1 (m ≥ 1) over the appropriate residue field [loc.cit.]. We will write X for the generic η fiber X × Speck(C) of q and A for the central simple k(C)-algebra C associated to X . We define η CH (X/C) = Ker CH (X) −q→∗ CH (C) . 0 0 0 h i Now let C be the set of closed points of C. The group of divisorial 0 norms of X/C (cf. [6]) is the group k(C)∗ = {f ∈ k(C)∗: ∀y ∈ C ,ord (f) ∈ (q ) (CH (X ))} dn 0 y y ∗ 0 y where, for each y ∈ C , q : X → Speck(y) is the structural morphism 0 y y of the fiber X . This group is closely related to CH (X/C) (see [2, y 0 Proposition 3.1]). Indeed, there exists a canonical isomorphism CH (X/C) ≃ k(C)∗ /k∗NrdA∗. 0 dn Now fix an integer d such that 1 ≤ d ≤ m and let CHd(X)′ = Ker CHd(X) −π→∗ CHd X Γ , h i (cid:0) (cid:1) where π: X → X is the canonical map. A simple transfer argument shows that CHd(X)′ is a subgroup of CHd(X) . Now, since X → C tors has a section, X is a projective bundle over C. Thus there exists an isomorphism CHd X ≃ Z⊕CH C . 0 (see[3,Theorem3.3(b),p.3(cid:0)4]).(cid:1)Therefore, if(cid:0)J (cid:1)(k)isfinitelygenerated, C where J is the Jacobian variety of C (e.g., k is a number field or C C = P1), then CHd(X) is finitely generated if and only if CHd(X)′ is k finite. ALGEBRAIC CYCLES ON SEVERI-BRAUER SCHEMES 3 3. The general method. Let C be as above and let X be any smooth, projective and geo- metrically integral k-variety such that there exists a proper and flat morphism q: X → C whose generic fiber X is geometrically integral. η We have an exact sequence [7] (1) Hd−1(X ,K ) −→δ CHd−1(X ) → CHd(X) →j∗ CHd(X ) → 0, η d y η yM∈C0 where j: X → X is the natural map and the map which we have η labeled δ will play a role later when k = k. A similar exact sequence exists over k, and we have two natural exact commutative diagrams: 0 // Kerj∗ // CHd(X) // CHd(X ) // 0 η (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 // (Ker∗)Γ // CHd X Γ // CHd X Γ η and (cid:0) (cid:1) (cid:0) (cid:1) (2) 0 // Hd−1(Xη,Kd) // CHd−1(Xy) // // Kerj∗ j∗Hd−1(X,Kd) yM∈C0 (cid:15)(cid:15) (cid:15)(cid:15) ⊕y|yπy∗ 0 // Hd−1(Xη,Kd) Γ δ // CHd−1 Xy Γy // (Ker(cid:15)(cid:15)∗)Γ ∗Hd−1(X,Kd) y|y (cid:18) (cid:19) M (cid:0) (cid:1) where, for each y ∈ C , we have fixed a closed point y of C lying above 0 y and written Γ = Gal k/k(y) . Set y CHd(X )′ =(cid:0) Ker C(cid:1)Hd(X ) → CHd X Γ η η η h i and, for each y ∈ C , (cid:0) (cid:1) 0 CHd−1(X )′ = Ker CHd−1(X ) −π→y∗ CHd−1 X Γy . y y y (cid:20) (cid:21) (cid:0) (cid:1) Now define Γ Hd−1(X ,K ) Hd−1 X ,K η d η d (3) E X/C = Coker −→ . j∗Hd−1(X,Kd) ∗Hd−(cid:0)1 X,Kd(cid:1) ! (cid:0) (cid:1) (cid:0) (cid:1) 4 CRISTIAND. GONZA´LEZ-AVILE´S Then, applying the snake lemma to the preceding diagrams, we obtain1 Proposition 3.1. There exists a natural exact sequence CHd−1(X )′ → Ker CHd(X)′ → CHd(X )′ y η yM∈C0 (cid:2) (cid:3) CHd−1 X Γy y → Ker E X/C → → 0, π∗CHd−1(X ) " (cid:0) (cid:1) yM∈C0 y (cid:0) (cid:1)y # where E X/C is the group (3). As reg(cid:0)ards th(cid:1)e right-hand group in the exact sequence of the propo- sition, the following holds. Let Hd−1(X ,K )′ = Im Hd−1(X ,K ) → Hd−1 X ,K Γ η d η d η d h i (cid:0) (cid:1) and Sal (X/C) = f∈Hd−1 X ,K Γ :∀y ∈ C , δ (f) ∈ π∗CHd−1(X ) , d η d 0 y y y n o (cid:0) (cid:1) where δ and π∗ are the maps of diagram (2). y Proposition 3.2. There exists a natural exact sequence Sal (X/C) d 0 → Γ ∗Hd−1 X,K ·Hd−1(X ,K )′ d η d (cid:0) (cid:0) (cid:1)(cid:1) CHd−1 X Γy y → Ker E X/C → π∗CHd−1(X ) " (cid:0) (cid:1) yM∈C0 y (cid:0) (cid:1)y # → H1 Γ,∗Hd−1 X,K . d Proof. This follows b(cid:0)y applying(cid:0)the sna(cid:1)k(cid:1)e lemma to a diagram of the form 0 // A // B // B/A // 0 (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 // AΓ // BΓ // A/B Γ // H1 Γ,A (cid:0) (cid:1) (cid:0) (cid:1) with A = ∗Hd−1 X,K , B = Hd−1 X ,K , etc. (cid:3) d η d (cid:0) (cid:1) (cid:0) (cid:1) 1Proposition 3.1 was inspired by [1, Proposition 1.1]. ALGEBRAIC CYCLES ON SEVERI-BRAUER SCHEMES 5 4. Proof of the main theorem. Let C and A be as in Section 2, let p be a prime number different from the characteristic of k and let X be a Severi-Brauer scheme over C of relative dimension p−1. Lemma 4.1. There exists a Γ-isomorphism ∗Hd−1 X,K ≃ k∗. d Proof. Clearly, ∗Hd−1 X,K (cid:0)is the k(cid:1)ernel of the map d δ: Hd−(cid:0)1 X ,K(cid:1) → CHd−1 X η d y y|y (cid:0) (cid:1) M (cid:0) (cid:1) appearing in the exact sequence (1) over k. Now X ≃ Pp−1 and η η X ≃ Pp−1 for every y, whence we have Γ-isomorphisms y k Hd−1 X ,K ≃ k(C)∗ η d and (cid:0) (cid:1) CHd−1 X ≃ Z y for each y. Under these isomorphisms, the map δ above corresponds (cid:0) (cid:1) to the canonical map k(C)∗ → Z, y|y M f 7→ (ord (f)) , y y|y (cid:3) which yields the lemma. Theorem 4.2. For every d such that 2 ≤ d ≤ p, there exists a canon- ical isomorphism CHd(X)′ ≃ CH (X/C). 0 Proof. By Lemma 4.1, Hilbert’s Theorem 90 and Proposition 3.2, there exists a natural isomorphism CHd−1 X Γy Sal (X/C) y d Ker E X/C → ≃ . π∗CHd−1(X ) k∗Hd−1(X ,K )′ " (cid:0) (cid:1) yM∈C0 y (cid:0) (cid:1)y # η d On the other hand, by [5,(8.7.2)], Hd−1(X ,K )′ = NrdA∗ for every d η d such that 2 ≤ d ≤ p and, for each y ∈ C , 0 π∗CHd−1(X ) ≃ π∗CHp−1(X ) ≃ (q ) CH (X ) (= Z or pZ). y y y y y ∗ 0 y The latter implies that Sal (X/C) = k(C)∗ , whence d dn Sal (X/C)/k∗Hd−1(X ,K )′ ≃ k(C)∗ /k∗NrdA∗ d η d dn ≃ CH (X/C). 0 6 CRISTIAND. GONZA´LEZ-AVILE´S Finally, [loc.cit.] shows that the groups CHd(X ) and CHd−1(X ) η y (y ∈ C ) are torsion free, whence CHd(X )′ and CHd−1(X )′ vanish. 0 η y (cid:3) The theorem now follows from Proposition 3.1. Corollary 4.3. Let d be such that 2 ≤ d ≤ p. Then CHd(X)′ is finite if (1) k is a number field, or (2) k is a field of finite type over Q, C = P1 and X has a 0-cycle k of degree one. In each of these cases, the group CHd(X) is finitely generated. Proof. Indeed, in these cases the group CH (X/C) is finite [2]. (cid:3) 0 References [1] Colliot-Th´el`ene, J.-L. and Skorobogatov, A.: Groupe de Chow des z´ero-cycles sur les fibr´es en quadriques. K-Theory 7, pp. 477-500 (1993). [2] Frossard, E.: Groupe de Chow de dimension z´ero des fibrations en vari´et´es de Severi-Brauer. Comp. Math. 110, pp. 187-213(1998). [3] Fulton, W.: Intersection Theory. Second Ed. Springer-Verlag,1998. [4] Grothendieck, A.: Le Groupe de Brauer I. In: Dix Expos´essur la Cohomologie des Sch´emas. North-Holland, Amsterdam, pp. 46-66 (1968). [5] Merkurjev, A.S. and Suslin, A.A.: K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Math. USSR Izv. 21, No. 2, pp. 307-340 (1982). [6] Salberger, P.: Galois descent and class groups of orders. Lect. Notes in Math. 1142, pp. 239-255 (1985). [7] Sherman, C.: Some theorems on the K-Theory of coherent sheaves. Comm. in Alg. 7(14), pp. 1489-1508(1979). Departamento de Matema´ticas, Universidad Andr´es Bello, Chile E-mail address: [email protected]