ebook img

Algebraic Curves and Riemann Surfaces for Undergraduates: The Theory of the Donut PDF

456 Pages·2023·8.523 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebraic Curves and Riemann Surfaces for Undergraduates: The Theory of the Donut

Anil Nerode · Noam Greenberg Algebraic Curves and Riemann Surfaces for Undergraduates The Theory of the Donut Algebraic Curves and Riemann Surfaces for Undergraduates Anil Nerode • Noam Greenberg Algebraic Curves and Riemann Surfaces for Undergraduates The Theory of the Donut AnilNerode NoamGreenberg DepartmentofMathematics SchoolofMathematics,Statistics CornellUniversity andOperationsResearch Ithaca,NY,USA VictoriaUniversityofWellington Wellington,NewZealand ThisworkwassupportedbyRoyalSocietyTeApa¯rangi,MarsdenFundgrant,andRutherfordDiscovery Fellowship ISBN978-3-031-11615-5 ISBN978-3-031-11616-2 (eBook) https://doi.org/10.1007/978-3-031-11616-2 MathematicsSubjectClassification:51-01,14-01,30-01,30Fxx,14Hxx,14H52,33E05 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The Sumeriansand Babylonians(2000–700BCE) and the Greeks(700 BCE–150 CE)madeperiodicmeasurementsofthelocationsofthesunandtheknownplanets. They concluded that these bodies travel in circles with the earth as their center, withsmallretrogradedeviations.Theirtablesandsimpleastronomicalinstruments were used to guide travelers on camels over the silk roads of Asia and captains of ships on the high seas. These methods were codified in the great Almagest of Ptolemy(100–170CE).Thisbookwasusedfornavigationforwelloverathousand years.Copernicus(1473–1543)re-didthecalculationsbasedoncircularorbitswith the sun as center. Tycho Brahe (1542–1601)improved the observations, resulting in Kepler’s three laws. They imply that the orbits around the sun are ellipses which are not circles. Mathematicians introduced elliptic analogs of the circular functions.It turnedoutthatthe elliptic analoguesof the arcsine and arccosineare doubly periodic functions of a complex variable. This led to a unified theory of algebraiccurvesand Riemannsurfaces,incorporatingalgebra,analysis, geometry, andtopology.Thepurposeofthisbookistomaketheunityofmathematicsapparent to undergraduates. It is intended to serve as a textbook for a capstone course in undergraduate mathematics. This book originates in a semester-long such course taughtbyProf.NerodeatCornellUniversity. Thebookconsistsofthreeparts.Thefirstdealswithalgebraiccurves.Itfocuses ontheprojectiveplane,tangents,andintersectionmultiplicitiesandculminatesina proofoftheassociativityofthe“chord-and-tangent”groupoperationonnonsingular cubiccurves.Itcanbeusedonitsownforashortcourse.Thesecondworkstoward Riemannsurfaces;ittakestimetobuildtherequiredtoolsfromtopology,calculus, and complex analysis. The third ties together the first two parts, explaining how complex curvescan be given the structure of a Riemann surface. It ends with the isomorphism theorem for complex tori and elliptic curves, and with the use of analyticparameterisationsofcurvestoredefineintersectionmultiplicities. Thebook’sstyleandcontentareamixtureofmodernandoldermathematics.We liveinthemodernmathematicalworld:atourdisposalaresettheoryandlogic.The argumentswe give conformto modernstandardsof rigor. And we allow a certain levelofabstraction:forexample,wegiveaxiomaticdefinitionsofgroupsandrings; we define path homotopyand simple connectedness.We do, however,try to keep this kindof abstractionto a minimum,and overall,to give the reader some of the v vi Preface flavorofmid-nineteenth-centurymathematics,priortotheabstractturnchampioned byDedekindinthe1870s.Wedefineandstudyalgebraiccurveswithoutintroducing thenotionofanidealinaring.Wedonotgiveanaxiomaticdefinitionoftopological spaces: rather, we restrict ourselves to topological subspaces of manifolds. Most prominently, we make heavy use of Kronecker’s elimination theory, which uses purelycomputationalmethodstodefine,forexample,intersectionmultiplicitiesof curves. Weattempttobeself-contained.Wereviewtherequiredbackgroundmaterialin somedetail.Weexpect,however,thatareaderwillhavealreadystudiedsomelinear algebra,groups,andsomemultivariablecalculus,andsothesetopicsarediscussed abitmorebriefly. Greenberg would like to thank Moshe Zadka and Alex Usvyatsov, for their support during the writing of an early version of the book; and his colleagues JoeMiller,DenisHirschfeldt,Dan Turetsky,Rod Downey,andRobGoldblatt,for theirsupportovertheyears.WewouldliketothankVUWstudentsLennoxLeary, Giovanna Le Gros, Jim Paterson, Tim Caldwell, Jayden Mudge, Eli Gadsby, and AntoniaKing,whohaveworkedthroughvariousiterationsofthebook. Ithaca,NY,USA AnilNerode Wellington,NewZealand NoamGreenberg Contents 1 Introduction................................................................. 1 1.1 TheTheoryoftheCircle ............................................ 1 1.1.1 PythagoreanTriples ........................................ 1 1.1.2 TheCircularFunctions .................................... 2 1.1.3 TheTheoryoftheDonut,inaNutshell ................... 5 1.2 OverviewoftheBook ............................................... 7 1.2.1 PartI:AlgebraicCurves ................................... 7 1.2.2 PartII:RiemannSurfaces ................................. 9 1.2.3 PartIII:CurvesandSurfaces .............................. 11 1.3 Preliminaries,andSomeNotation .................................. 12 PartI AlgebraicCurves 2 Algebra ...................................................................... 17 2.1 PolynomialsandPowerSeries ...................................... 17 2.1.1 TheCategoryofRings ..................................... 19 2.1.2 BacktoFormalPowerSeries .............................. 21 2.1.3 MoreonPolynomials ...................................... 23 2.2 UniqueFactorisation ................................................ 25 2.2.1 DivisibilityinIntegralDomains ........................... 25 2.2.2 UniqueFactorisationDomains ............................ 28 2.2.3 UniqueFactorisationinPolynomialRings ............... 30 2.3 Groups................................................................ 35 2.3.1 TheCategoryofGroups ................................... 35 2.3.2 QuotientGroups ........................................... 38 2.3.3 CyclicGroups .............................................. 39 2.3.4 TheSymmetricGroup ..................................... 40 2.4 LinearAlgebraOverIntegralDomains ............................. 41 2.4.1 Matrices,LinearSpaces,andLinearMaps ............... 41 2.4.2 DimensionandComplements ............................. 44 2.4.3 TheDeterminant ........................................... 45 2.4.4 DetectingSingularity ...................................... 47 vii viii Contents 2.5 FurtherExercises .................................................... 48 3 AffineSpace................................................................. 55 3.1 DefinitionofHypersurfaces ......................................... 56 3.2 TheResultant ........................................................ 58 3.2.1 TheSylvesterMatrix ...................................... 58 3.2.2 TheResultant,CommonRoots,andMoreVariables ..... 60 3.2.3 TheResultantisaLinearCombination ................... 62 3.3 Study’sLemma ...................................................... 64 3.3.1 ProofofStudy’sLemma ................................... 65 3.4 AffineLinesandRationalParameterisations ....................... 66 3.4.1 AffineLines ................................................ 66 3.4.2 RationalParameterisations ................................ 67 3.5 FurtherExercises .................................................... 69 4 ProjectiveSpace ............................................................ 73 4.1 HomogeneousPolynomials ......................................... 74 4.2 ProjectiveSpace ..................................................... 76 4.3 ProjectiveLinesandMaps .......................................... 78 4.3.1 ProjectiveMaps ............................................ 80 4.4 EmbeddingAffineSpaceintoProjectiveSpace .................... 81 4.5 ChangesofCoordinates ............................................. 87 4.5.1 ChangeofVariable ......................................... 87 4.5.2 FourPointLemma ......................................... 90 4.6 SpacesofCurves .................................................... 92 4.6.1 TheDualPlane ............................................. 93 4.6.2 Desargues’Theorem ....................................... 94 4.7 ProductsofProjectiveSpaces ....................................... 95 4.8 FurtherExercises .................................................... 99 5 Tangents ..................................................................... 105 5.1 Introduction:AffineTangentsandIntersectionswithLines ....... 105 5.1.1 IntersectionMultiplicities ................................. 106 5.1.2 HomogeneousCoordinates ................................ 109 5.2 FormalPartialDerivatives ........................................... 110 5.2.1 PropertiesofDerivatives................................... 110 5.2.2 TheDiscriminant........................................... 113 5.3 HigherOrderTangents .............................................. 113 5.3.1 TheModuliSpaceofTangents ............................ 117 5.3.2 InvarianceoftheHigherOrderTangent .................. 118 5.4 TheIntersectionofaLinewithaCurve ............................ 120 5.4.1 DefinitionofIntersectionMultiplicity .................... 121 5.4.2 InvarianceofMultiplicityofIntersectionwitha Line ......................................................... 122 5.4.3 TangentsandIntersectionswithLines .................... 124 5.4.4 SimpleIntersectionsAretheNorm ....................... 126 Contents ix 5.5 FurtherExercises .................................................... 127 6 Bézout’sTheorem........................................................... 133 6.1 AFirstLookattheIntersectionofCurves ......................... 134 6.1.1 TheResultantofHomogeneousPolynomialsIs Homogeneous .............................................. 135 6.1.2 AWeakVersionofBézout’sTheorem .................... 137 6.2 TheHomogeneousResultant ........................................ 139 6.2.1 MainPropertyoftheHomogeneousResultant ........... 141 6.3 MultiplicityofIntersectionandBézout’sTheorem ................ 143 6.3.1 CodingLinesinP2×P2 .................................. 143 6.3.2 The Resultant of the General Intersection Polynomials ................................................ 144 6.3.3 IntersectionMultiplicityandBézout’sTheorem ......... 146 6.3.4 GeometricInvariance ...................................... 147 6.4 CoincidencewithEarlierDefinitions ............................... 148 6.4.1 UsingtheFamilyofVerticalLines ........................ 148 6.4.2 IntersectingLines .......................................... 150 6.5 CategoricityofMultiplicityofIntersection ........................ 151 6.5.1 Symmetry .................................................. 151 6.5.2 Products .................................................... 151 6.5.3 InfiniteMultiplicities ...................................... 155 6.5.4 Shifts ....................................................... 155 6.5.5 CategoricityofMultiplicityofIntersection ............... 156 6.6 AffineCalculations .................................................. 158 6.7 Multiplicities,OrdersandTangents ................................ 159 6.8 FurtherExercises .................................................... 161 7 TheEllipticGroup.......................................................... 167 7.1 Flexes................................................................. 168 7.1.1 FlexesandtheSecondOrderTangent..................... 168 7.1.2 TheHessian ................................................ 169 7.2 TheGroupOperationonaNonsingularCubicCurve ............. 171 7.2.1 TheComplementCurve ................................... 172 7.2.2 AssociativityoftheGroupOperation ..................... 174 7.3 NormalFormsforNonsingularCubics ............................. 178 7.3.1 ExplicitCalculationsoftheGroupOperation ............ 182 7.4 FurtherExercises .................................................... 183 PartII RiemannSurfaces 8 Quasi-EuclideanSpaces.................................................... 191 8.1 TopologyofRn ...................................................... 192 8.2 Manifolds ............................................................ 194 8.2.1 TopologyofPre-manifolds ................................ 197 8.2.2 Subspaces .................................................. 198 x Contents 8.2.3 TheHausdorffProperty .................................... 199 8.2.4 TopologicalCountability .................................. 200 8.2.5 Manifolds ................................................... 201 8.2.6 SpacesandContinuity ..................................... 202 8.3 Compactness ......................................................... 204 8.3.1 ClosedSets ................................................. 205 8.3.2 SequencesandLimits ...................................... 206 8.3.3 Interlude:Completeness ................................... 208 8.3.4 CompactnessinEuclideanSpace ......................... 210 8.4 QuotientsbyDiscreteSubgroups ................................... 212 8.5 FurtherExercises .................................................... 217 9 Connectedness,SmoothandSimple...................................... 221 9.1 Connectedness,PathandSimple .................................... 222 9.1.1 Homotopy;SimpleConnectedness........................ 224 9.2 LiftingMaps ......................................................... 226 9.2.1 TheWindingNumber ...................................... 228 9.3 Differentiability:AReminder ....................................... 230 9.3.1 MeanValueInequalities ................................... 233 9.3.2 PartialDerivatives .......................................... 235 9.3.3 InverseFunctions .......................................... 236 9.3.4 SecondDerivatives ......................................... 238 9.4 DifferentiableManifolds ............................................ 239 9.5 PartitionsofUnity ................................................... 241 9.5.1 ProofofTheorem9.66 ..................................... 243 9.6 DifferentiableConnectedness ....................................... 245 9.6.1 PiecewiseSmoothPaths ................................... 248 9.7 FurtherExercises .................................................... 249 10 PathIntegrals............................................................... 255 10.1 IntegratingFormsAlongPaths ...................................... 255 10.1.1 TheLengthofaPath ....................................... 259 10.2 IntegratingAlongSmoothPaths .................................... 260 10.2.1 LinearForms ............................................... 262 10.2.2 RelatingtheGeneralandFamiliarIntegrals .............. 262 10.3 IntegratingVectorFields ............................................ 266 10.3.1 ConservativeVectorFields ................................ 267 10.3.2 TheWindingNumberRevisited ........................... 269 10.4 SymmetricVectorFields ............................................ 270 10.4.1 MissingaPoint ............................................. 273 10.5 FurtherExercises .................................................... 276 11 ComplexDifferentiation................................................... 281 11.1 ComplexDerivativesandIntegrals ................................. 281 11.1.1 ComplexIntegrals.......................................... 285 11.2 Cauchy’sIntegralFormula .......................................... 286

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.