Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Engineering Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] c Jean Gallier (cid:13) April 24, 2017 2 Contents 1 Introduction 13 2 Vector Spaces, Bases, Linear Maps 15 2.1 Groups, Rings, and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Linear Independence, Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5 Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 Matrices and Linear Maps 55 3.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Haar Basis Vectors and a Glimpse at Wavelets . . . . . . . . . . . . . . . . 71 3.3 The Effect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . 88 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4 Direct Sums, The Dual Space, Duality 93 4.1 Sums, Direct Sums, Direct Products . . . . . . . . . . . . . . . . . . . . . . 93 4.2 The Dual Space E and Linear Forms . . . . . . . . . . . . . . . . . . . . . 108 ∗ 4.3 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.4 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 127 4.5 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 136 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5 Determinants 141 5.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 141 5.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.3 Definition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 155 5.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 158 5.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.7 The Cayley–Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 3 4 CONTENTS 5.9 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6 Gaussian Elimination, LU, Cholesky, Echelon Form 169 6.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 169 6.2 Gaussian Elimination and LU-Factorization . . . . . . . . . . . . . . . . . . 173 6.3 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 199 6.4 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 202 6.5 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.6 Transvections and Dilatations . . . . . . . . . . . . . . . . . . . . . . . . . . 224 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 7 Vector Norms and Matrix Norms 231 7.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.3 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 250 7.4 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 259 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 8 Eigenvectors and Eigenvalues 263 8.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 263 8.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 270 8.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 9 Iterative Methods for Solving Linear Systems 279 9.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 279 9.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 282 9.3 Methods of Jacobi, Gauss-Seidel, and Relaxation . . . . . . . . . . . . . . . 284 9.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 10 Euclidean Spaces 297 10.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 297 10.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 305 10.3 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 317 10.4 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 320 10.5 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 322 10.6 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 326 10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 11 QR-Decomposition for Arbitrary Matrices 329 11.1 Orthogonal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 11.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 333 CONTENTS 5 11.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 12 Basics of Affine Geometry 339 12.1 Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 12.2 Examples of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 12.3 Chasles’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 12.4 Affine Combinations, Barycenters . . . . . . . . . . . . . . . . . . . . . . . . 349 12.5 Affine Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 12.6 Affine Independence and Affine Frames . . . . . . . . . . . . . . . . . . . . . 358 12.7 Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 12.8 Affine Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 12.9 Affine Geometry: A Glimpse . . . . . . . . . . . . . . . . . . . . . . . . . . 372 12.10 Affine Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 12.11 Intersection of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 13 Embedding an Affine Space in a Vector Space 381 13.1 The “Hat Construction,” or Homogenizing . . . . . . . . . . . . . . . . . . . 381 ˆ 13.2 Affine Frames of E and Bases of E . . . . . . . . . . . . . . . . . . . . . . . 388 ˆ 13.3 Another Construction of E . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 13.4 Extending Affine Maps to Linear Maps . . . . . . . . . . . . . . . . . . . . . 393 14 Basics of Projective Geometry 399 14.1 Why Projective Spaces? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 14.2 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 14.3 Projective Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 14.4 Projective Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 14.5 Projective Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 14.6 Finding a Homography Between Two Projective Frames . . . . . . . . . . . 432 14.7 Affine Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 14.8 Projective Completion of an Affine Space . . . . . . . . . . . . . . . . . . . 448 14.9 Making Good Use of Hyperplanes at Infinity . . . . . . . . . . . . . . . . . 453 14.10 The Cross-Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 14.11 Fixed Points of Homographies and Homologies . . . . . . . . . . . . . . . . 460 14.12 Duality in Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 474 14.13 Cross-Ratios of Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 14.14 Complexification of a Real Projective Space . . . . . . . . . . . . . . . . . . 480 14.15 Similarity Structures on a Projective Space . . . . . . . . . . . . . . . . . . 482 14.16 Some Applications of Projective Geometry . . . . . . . . . . . . . . . . . . . 491 15 The Cartan–Dieudonn´e Theorem 497 15.1 The Cartan–Dieudonn´e Theorem for Linear Isometries . . . . . . . . . . . . 497 15.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 509 15.3 Fixed Points of Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 6 CONTENTS 15.4 Affine Isometries and Fixed Points . . . . . . . . . . . . . . . . . . . . . . . 513 15.5 The Cartan–Dieudonn´e Theorem for Affine Isometries . . . . . . . . . . . . 519 16 Hermitian Spaces 523 16.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 523 16.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 532 16.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 537 16.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 539 16.5 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 542 16.6 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 16.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 17 Isometries of Hermitian Spaces 551 17.1 The Cartan–Dieudonn´e Theorem, Hermitian Case . . . . . . . . . . . . . . . 551 17.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 560 18 Spectral Theorems 565 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 18.2 Normal Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 18.3 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 574 18.4 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 581 18.5 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 584 18.6 Rayleigh Ratios and the Courant-Fischer Theorem . . . . . . . . . . . . . . 587 18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 19 Introduction to The Finite Elements Method 597 19.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 597 19.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 607 19.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 610 20 Singular Value Decomposition and Polar Form 619 20.1 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . 619 20.2 Singular Value Decomposition for Rectangular Matrices . . . . . . . . . . . 627 20.3 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 630 20.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631 21 Applications of SVD and Pseudo-Inverses 633 21.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 633 21.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 638 21.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 21.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 644 21.5 Best Affine Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 21.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 CONTENTS 7 22 The Geometry of Bilinear Forms; Witt’s Theorem 657 22.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 22.2 Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 22.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 22.4 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 22.5 Isometries Associated with Sesquilinear Forms . . . . . . . . . . . . . . . . . 676 22.6 Totally Isotropic Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 680 22.7 Witt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686 22.8 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 22.9 Orthogonal Groups and the Cartan–Dieudonn´e Theorem . . . . . . . . . . . 698 22.10 Witt’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 23 Polynomials, Ideals and PID’s 711 23.1 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711 23.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 23.3 Euclidean Division of Polynomials . . . . . . . . . . . . . . . . . . . . . . . 718 23.4 Ideals, PID’s, and Greatest Common Divisors . . . . . . . . . . . . . . . . . 720 23.5 Factorization and Irreducible Factors in K[X] . . . . . . . . . . . . . . . . . 728 23.6 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 23.7 Polynomial Interpolation (Lagrange, Newton, Hermite) . . . . . . . . . . . . 739 24 Annihilating Polynomials; Primary Decomposition 747 24.1 Annihilating Polynomials and the Minimal Polynomial . . . . . . . . . . . . 747 24.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 749 24.3 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 755 24.4 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 764 25 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem 771 25.1 Unique Factorization Domains (Factorial Rings) . . . . . . . . . . . . . . . . 771 25.2 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 785 25.3 Noetherian Rings and Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . 791 25.4 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795 26 Tensor Algebras and Symmetric Algebras 797 26.1 Linear Algebra Preliminaries: Dual Spaces and Pairings . . . . . . . . . . . 798 26.2 Tensors Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 26.3 Bases of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 26.4 Some Useful Isomorphisms for Tensor Products . . . . . . . . . . . . . . . . 816 26.5 Duality for Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 26.6 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824 26.7 Symmetric Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 26.8 Bases of Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 26.9 Some Useful Isomorphisms for Symmetric Powers . . . . . . . . . . . . . . . 838 8 CONTENTS 26.10 Duality for Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . 838 26.11 Symmetric Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841 27 Exterior Tensor Powers and Exterior Algebras 845 27.1 Exterior Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 27.2 Bases of Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 27.3 Some Useful Isomorphisms for Exterior Powers . . . . . . . . . . . . . . . . 853 27.4 Duality for Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 27.5 Exterior Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856 27.6 The Hodge -Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 ∗ (cid:126) 27.7 Left and Right Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 (cid:126) 27.8 Testing Decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . 872 (cid:126) 27.9 The Grassmann-Plu¨cker’s Equations and Grassmannians . . . . . . . . . 875 27.10 Vector-Valued Alternating Forms . . . . . . . . . . . . . . . . . . . . . . . . 879 28 Introduction to Modules; Modules over a PID 883 28.1 Modules over a Commutative Ring . . . . . . . . . . . . . . . . . . . . . . . 883 28.2 Finite Presentations of Modules . . . . . . . . . . . . . . . . . . . . . . . . . 892 28.3 Tensor Products of Modules over a Commutative Ring . . . . . . . . . . . . 898 28.4 Torsion Modules over a PID; Primary Decomposition . . . . . . . . . . . . . 901 28.5 Finitely Generated Modules over a PID . . . . . . . . . . . . . . . . . . . . 907 28.6 Extension of the Ring of Scalars . . . . . . . . . . . . . . . . . . . . . . . . 923 29 Normal Forms; The Rational Canonical Form 929 29.1 The Torsion Module Associated With An Endomorphism . . . . . . . . . . 929 29.2 The Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . 937 29.3 The Rational Canonical Form, Second Version . . . . . . . . . . . . . . . . . 944 29.4 The Jordan Form Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 945 29.5 The Smith Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948 30 Topology 961 30.1 Metric Spaces and Normed Vector Spaces . . . . . . . . . . . . . . . . . . . 961 30.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967 30.3 Continuous Functions, Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 976 30.4 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983 30.5 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 30.6 Sequential Compactness in Metric Spaces . . . . . . . . . . . . . . . . . . . 1003 30.7 Complete Metric Spaces and Compactness . . . . . . . . . . . . . . . . . . . 1011 30.8 The Contraction Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . 1012 30.9 Continuous Linear and Multilinear Maps . . . . . . . . . . . . . . . . . . . . 1017 30.10 Normed Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 30.11 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 CONTENTS 9 31 A Detour On Fractals 1023 31.1 Iterated Function Systems and Fractals . . . . . . . . . . . . . . . . . . . . 1023 32 Differential Calculus 1031 32.1 Directional Derivatives, Total Derivatives . . . . . . . . . . . . . . . . . . . 1031 32.2 Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045 32.3 The Implicit and The Inverse Function Theorems . . . . . . . . . . . . . . . 1053 32.4 Tangent Spaces and Differentials . . . . . . . . . . . . . . . . . . . . . . . . 1057 32.5 Second-Order and Higher-Order Derivatives . . . . . . . . . . . . . . . . . . 1058 32.6 Taylor’s formula, Faa` di Bruno’s formula . . . . . . . . . . . . . . . . . . . . 1063 32.7 Vector Fields, Covariant Derivatives, Lie Brackets . . . . . . . . . . . . . . . 1067 32.8 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 33 Quadratic Optimization Problems 1071 33.1 Quadratic Optimization: The Positive Definite Case . . . . . . . . . . . . . 1071 33.2 Quadratic Optimization: The General Case . . . . . . . . . . . . . . . . . . 1079 33.3 Maximizing a Quadratic Function on the Unit Sphere . . . . . . . . . . . . 1083 33.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088 34 Schur Complements and Applications 1091 34.1 Schur Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 34.2 SPD Matrices and Schur Complements . . . . . . . . . . . . . . . . . . . . . 1093 34.3 SP Semidefinite Matrices and Schur Complements . . . . . . . . . . . . . . 1095 35 Convex Sets, Cones, -Polyhedra 1097 H 35.1 What is Linear Programming? . . . . . . . . . . . . . . . . . . . . . . . . . 1097 35.2 Affine Subsets, Convex Sets, Hyperplanes, Half-Spaces . . . . . . . . . . . . 1099 35.3 Cones, Polyhedral Cones, and -Polyhedra . . . . . . . . . . . . . . . . . . 1102 H 36 Linear Programs 1109 36.1 Linear Programs, Feasible Solutions, Optimal Solutions . . . . . . . . . . . 1109 36.2 Basic Feasible Solutions and Vertices . . . . . . . . . . . . . . . . . . . . . . 1115 37 The Simplex Algorithm 1123 37.1 The Idea Behind the Simplex Algorithm . . . . . . . . . . . . . . . . . . . . 1123 37.2 The Simplex Algorithm in General . . . . . . . . . . . . . . . . . . . . . . . 1132 37.3 How Perform a Pivoting Step Efficiently . . . . . . . . . . . . . . . . . . . . 1139 37.4 The Simplex Algorithm Using Tableaux . . . . . . . . . . . . . . . . . . . . 1142 37.5 Computational Efficiency of the Simplex Method . . . . . . . . . . . . . . . 1152 38 Linear Programming and Duality 1155 38.1 Variants of the Farkas Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 1155 38.2 The Duality Theorem in Linear Programming . . . . . . . . . . . . . . . . . 1160 10 CONTENTS 38.3 Complementary Slackness Conditions . . . . . . . . . . . . . . . . . . . . . 1168 38.4 Duality for Linear Programs in Standard Form . . . . . . . . . . . . . . . . 1170 38.5 The Dual Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 1173 38.6 The Primal-Dual Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178 39 Extrema of Real-Valued Functions 1189 39.1 Local Extrema and Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 1189 39.2 Using Second Derivatives to Find Extrema . . . . . . . . . . . . . . . . . . . 1199 39.3 Using Convexity to Find Extrema . . . . . . . . . . . . . . . . . . . . . . . 1202 39.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212 40 Newton’s Method and Its Generalizations 1213 40.1 Newton’s Method for Real Functions of a Real Argument . . . . . . . . . . 1213 40.2 Generalizations of Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 1214 40.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220 41 Basics of Hilbert Spaces 1221 41.1 The Projection Lemma, Duality . . . . . . . . . . . . . . . . . . . . . . . . 1221 41.2 Farkas–Minkowski Lemma in Hilbert Spaces . . . . . . . . . . . . . . . . . . 1238 42 General Results of Optimization Theory 1241 42.1 Existence of Solutions of an Optimization Problem . . . . . . . . . . . . . . 1241 42.2 Gradient Descent Methods for Unconstrained Problems . . . . . . . . . . . 1255 42.3 Conjugate Gradient Methods for Unconstrained Problems . . . . . . . . . . 1271 42.4 Gradient Projection for Constrained Optimization . . . . . . . . . . . . . . 1281 42.5 Penalty Methods for Constrained Optimization . . . . . . . . . . . . . . . . 1284 42.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 43 Introduction to Nonlinear Optimization 1287 43.1 The Cone of Feasible Directions . . . . . . . . . . . . . . . . . . . . . . . . . 1287 43.2 The Karush–Kuhn–Tucker Conditions . . . . . . . . . . . . . . . . . . . . . 1301 43.3 Hard Margin Support Vector Machine . . . . . . . . . . . . . . . . . . . . . 1311 43.4 Lagrangian Duality and Saddle Points . . . . . . . . . . . . . . . . . . . . . 1322 43.5 Uzawa’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338 43.6 Handling Equality Constraints Explicitly . . . . . . . . . . . . . . . . . . . . 1343 43.7 Conjugate Function and Legendre Dual Function . . . . . . . . . . . . . . . 1351 43.8 Some Techniques to Obtain a More Useful Dual Program . . . . . . . . . . 1361 43.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1370 44 Soft Margin Support Vector Machines 1373 44.1 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . . 1374 s1 44.2 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . . 1383 s2 44.3 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . 1389 s2(cid:48)
Description: