Algebra of paravectors JÓZEF RADOMAN´SKI ul.BohaterówWarszawy9,48-300Nysa,Poland e-mail:[email protected] 6 1 0 2 y a M Abstract 7 Paravectorsjust like integers havea ring structure. By introducing an integrated product we get geometric propertieswhichmakeparavectorssimilartovectors.Theconceptsofparallelism,perpendicularityandtheangle ] A areconceptuallysimilartovectorcounterparts,knownfromtheEuclideangeometry. Paravectorsmeettheideaof parallelogramlaw,Pythagoreantheoremandmanyotherpropertieswell-knowntoeveryone. R h. Keywords:Paravector,multivector,GeometricAlgebra t a This article refers to professor William Baylis’ researches and shows a surprising similarity between m propertiesofparavectorsandvectorsintheEuclideanspace. Itcanbeconfusingatfirsttogetusedtoacolumn [ notationofparavectors,butthisformhasprovedtobethemostadequate.Themainadvantageofthisnotationis a transparency of mathematical transformations. The author hopes that in future paravector formalism will 2 replacethemultivectorsformalisminphysicsassimpler,moreintuitiveandimaginable.Theresultspresentedin v 5 thisarticlejustifyitfully. 6 9 2 1 Basicdefinitions 0 . 1 0 Definition1.1. Thetermparavectormeansapairconsistingofacomplexnumber(α)andavector(βββ)belonging 6 toathree-dimensionalcomplexspace. 1 α a+id : v Γ=: = (1) i βββ b+ic X r a Thenumberwillbecalledascalar.Paravectorswillbedenotedwithcapitalletters,eg:A,X,Γ.Greekletters willmeanacomplexsize,andRomanletters-arealone.AscalarcomponentofparavectorΓwillbedenotedwith index„S”,andavectorcomponentwith„V”,i.e.:Γ =αandΓ =βββ. S V Definition1.2. Thereversedelementofparavector(1)istheparavector a+id Γ−=: (2) b ic − − Definition1.3. Theconjugatedelementofparavector(1)istheparavector a id Γ∗=: − (3) b ic − 1 Definition1.4. ofthesummation: α α α +α 1 2 1 2 + =: (4) βββ βββ βββ +βββ 1 2 1 2 Conclusion1.1. Theneutralelementunderaddition(nullelement)istheparavector 0 0=: (5) 0 Definition1.5. Theoppositeelementofparavector(1)withrespecttotheadditionis α Γ=: − (6) − βββ − Definition1.6. ofthemultiplication: α α α α +βββ βββ 1 2 1 2 1 2 =: (7) βββ βββ α βββ +α βββ +iβββ βββ 1 2 2 1 1 2 1× 2 whereβββ βββ isascalar(dot)productofvectors,andβββ βββ isavector(cross)product. 1 2 1× 2 Conclusion1.2. Theneutralelementundermultiplicationistheparavector 1 1=: (8) 0 α Note:Thereisnodifferenceifwewritenumberαorparavector . 0 Conclusion1.3. Theoperationofmultiplicationisassociativebutnotcommutative,becausethevectorproduct isnon-commutative. Definition1.7. WecallanoutcomeofmultiplicationofanyparavectorΓbytheelementconjugateΓ thevigorof ∗ paravector: vigΓ=:ΓΓ∗ (9) Conclusion1.4. Toeachparavectorwecanassignavigorwhichisarealparavectoranditsscalarcomponentisa positivenumber. Proof. ΓΓ∗=αα∗= αα∗+ββββββ∗ = (a+id)(a−id)+(b+ic)(b−ic) = ββββββ∗∗∗ αβββ∗+α∗βββ+iβββ×βββ∗ (a+id)(b−ic)+(a−id)(b+ic)+i(b+ic)×(b−ic) a2+b2+c2+d2 = 2(ab+dc+b c) × Definition 1.8. We call an outcome of multiplication of any paravector Γ by the reverse element Γ the − determinantofaparavector detΓ=:ΓΓ−=Γ−Γ (10) 2 Conclusion1.5. Eachparavectorhasadeterminantwhichisacomplexnumber. Proof. α α α2 β2 (a+id)2 (b+ic)2 a2 b2+c2 d2+2i(ad bc) ΓΓ−= = − = − = − − − βββ βββ αβββ αβββ iβββ βββ i(b+ic) (b+ic) 0 − − − × − × Conclusion1.6. Thereversionandconjugationhavethefollowingproperties: Reversionofparavector Conjugationofparavector 1 (Γ−)−=Γ (Γ∗)∗=Γ 2 (Γ+Ψ)−=Γ−+Ψ− (Γ+Ψ)∗=Γ∗+Ψ∗ 3 (ΓΨ)−=Ψ−Γ− (ΓΨ)∗=Ψ∗Γ∗ 4 ΓΓ C ΓΓ R R3 −∈ ∗∈ +× 5 (Γ−)∗=(Γ∗)− Conclusion1.7. AsetofpravectorstogetherwithanoperationofsummationformsanAbeliangroup,andwith multiplicationformsasemigroup. Therefore,wecanconcludethatasetofparavectorstogetherwithoperations ofsummationandmultiplicationgivesaringwithmultiplicativeidentity. Definition1.9. WecalltheparavectorΓproperifdetΓ R 0 (thedeterminantisapositiverealnumber). ∈ +\{ } Definition1.10. WecalltheparavectorΓsingularifdetΓ=0. Bydefinitionofthedeterminantitfollows: Conclusion1.8. Eachproperorsingularparavector(1)mustfulfillthefollowingcondition: ad =bc (11) Itisadvisabletoremembertheaboveequation,becauseitwillbeusedwithmanyproofsonproperparavectors. Conclusion1.9. LetΓ ,Γ beparavectors,thenthefollowingstatementsaretrue: 1 2 det(Γ Γ )=detΓ detΓ • 1 2 1· 2 det(Γ )=detΓ • − det(Γ )=(detΓ) • ∗ ∗ Definition1.11. Foreachnon-singularparavectorΓ,thereexistsaninverseelementundermultiplication: Γ Γ−1=: − (12) detΓ Conclusion1.10. Asetofnon-singularparavectorstogetherwithmultiplicationisanon-commutativegroup. Conclusion1.11. Asetofproperparavectorstogetherwithmultiplicationisanon-commutativegroup. Definition1.12. Foreachproperand/orsingularparavectorwedefinethemoduleofparavector: Γ =:pdetΓ (13) | | Conclusion1.12. Themoduleofparavector(properorsingular!)satisfiesthefollowingconditions: 3 1. sΓ = s Γ wheres R | | | || | ∈ 2. Γ Γ = Γ Γ | 1|| 2| | 1 2| Definition1.13. WecalltheparavectorΛorthogonalifdetΛ=1,orequivalently: Γ Λ=: , whereΓisaproperparavector (14) pdetΓ Directlyfromtheabovedefinitionitfollows: Conclusion1.13. IfΛisanorthogonalparavector,thenΛ 1=Λ . − − Definition1.14. WecalltheparavectorΓspecialifΓ =Γ ,orequivalently: − ∗ a , wherea R,andc R3 ∈ ∈ ic Definition1.15. WecalltheparavectorΓunitarifΓΓ =1 ∗ Tosummarizethecurrentknowledgeaboutparavectors,wecansaythatverylittleismissingsothataset of paravectors with summation and multiplication operations is a field: multiplication of paravectors is not commutative,andtheroleofthenullelementundermultiplicationisplayedbysingularparavectors.Multiplying anyparavector bysingular one, wegetasingular paravector. Notethatalthoughthere aremanynull elements undermultiplication,onlyoneelementisneutralwithrespecttosummation. Conclusion 1.14. The set of special paravectors together with operations summation and multiplication is adivisionring. Inthediagram(fig.1)aringofparavectorswithsomeofitssubstructuresispresented: Figure1:Theringofparavectorswithsomesubstructures -Asetofproperparavectorstogetherwithmultiplicationisanoncommutativegroup. 4 -Asetoforthogonalparavectorstogetherwithmultiplicationisasubgroupofproperparavectorsgroup. Theblackpointmeanszero,andthebluepointisone. Toavoidmisunderstandings,werecallthefollowingnameswhichwewilluse: Γ -TheparavectorreverseofΓ • − Γ 1-TheparavectorinverseofΓ • − 2 Integratedproductofparavectors Synge[7]definesthescalarproductofcomplexquaternionsas€Γ1Γ−2 +Γ2Γ−1Š/2,Hestenes[6]asascalar partoftheproductofmultivectorsΓ1Γ2.AnalyzingtheexpressionΓ1Γ−2,wecanseethatitplaysasimilarbutmore universalroleintheparavectorsalgebraasthedotproductinvectorspace.Propertiesofitsscalarcomponentare thesameaspropertiesofthescalarproductofvectors,anditsvectorpartasacrossproductofvectors.Thetrouble isthattherecanbetwodifferentproductswhichhavethesameproperties(thesecondoneisΓ−1Γ2),sowedefine twointegratedproducts: Definition2.1. For anyparavectorsΓ and Γ , the rightintegratedproductofparavectors Γ and Γ , denoted 1 2 1 2 (Γ ,Γ ,isdefinedby 1 2〉 (Γ1,Γ2〉=:Γ1Γ−2 α α α α βββ βββ hence (Γ1,Γ2〉=Γ1Γ−2 =βββ1 βββ2 = α βββ +1α2βββ− 1iβββ2 βββ 1− 2 − 1 2 2 1− 1× 2 Definition2.2. ForanyparavectorsΓ andΓ theleftintegratedproductofparavectorsΓ andΓ ,denoted Γ ,Γ ), 1 2 1 2 〈 1 2 isdefinedby 〈Γ1,Γ2)=:Γ−1Γ2 α α α α βββ βββ or 〈Γ1,Γ2)=Γ−1Γ2= 1 2= 1 2− 1 2 βββ βββ α βββ α βββ iβββ βββ − 1 2 1 2− 2 1− 1× 2 Inbothcases,thescalarpartisthesame,then Definition2.3. ThescalarcomponentofanintegratedproductofparavectorsΓ andΓ ,iscalledascalarproduct 1 2 ofparavectors.Thescalarproductwillbedenoted Γ ,Γ =:(Γ ,Γ = Γ ,Γ ) . 〈 1 2〉 1 2〉S 〈 1 2 S Definition2.4. Thevectorcomponentofanintegratedproductwecallavectorproductofparavectors. (Γ1,Γ2}=:(Γ1,Γ2〉V =−〈Γ1,Γ2)∗V Itisnecessarytodistinguishtheorientationofavectorproduct,thesameasatintegratedproductcase. Therefore,wedenotetherightvectorproduct(Γ ,Γ ,andtheleftvectorproduct: Γ ,Γ ) 1 2} { 1 2 Forfurtherconsiderationitdoesnotmattermuchifaproductisrightorleft,sotalkingaboutanintegrated productwewillmeantherightproduct. Aswell,thismaybetheleftproduct,butitisimportanttouseonlyone productconstantly.Hencetheintegratedproductcanbedenotedasfollow: Γ ,Γ (Γ ,Γ (Γ ,Γ = 〈 1 2〉 = 1 2〉S (15) 1 2〉 (Γ ,Γ (Γ ,Γ 1 2} 1 2〉V and det(Γ ,Γ = Γ ,Γ 2 (Γ ,Γ 2=(Γ ,Γ 2 (Γ ,Γ 2 =detΓ detΓ (16) 1 2〉 〈 1 2〉 − 1 2} 1 2〉S− 1 2〉V 1 2 5 Theorem2.1. Anintegratedproductofparavectorshasthefollowingproperties: Rightintegratedproduct Leftintegratedproduct 1 Integratedproductisaparavector 2 (Γ +Γ ,Γ =(Γ ,Γ +(Γ ,Γ Γ +Γ ,Γ )= Γ ,Γ )+ Γ ,Γ ) 1 2 3〉 1 3〉 2 3〉 〈 1 2 3 〈 1 3 〈 2 3 3 (αΓ ,Γ =α(Γ ,Γ =(Γ ,αΓ αΓ ,Γ )=α Γ ,Γ )= Γ ,αΓ ) 1 2〉 1 2〉 1 2〉 〈 1 2 〈 1 2 〈 1 2 4 (Γ1,Γ2〉−=(Γ2,Γ1〉 〈Γ1,Γ2)−=〈Γ2,Γ1) 5 (Γ,Γ = Γ,Γ)=detΓ C 〉 〈 ∈ 6 det(Γ ,Γ =det Γ ,Γ )=detΓ detΓ 1 2〉 〈 1 2 1 2 Conclusion2.1. LetΓ ,Γ andΓ beanyparavectors,thenthefollowingtableshowsthepropertiesofthescalar 1 2 3 productofparavectorscomparedtothepropertiesofthescalarproductofvectorsinEuclideanspace: Scalarproductofparavectors Scalarproductofvectors 1 Γ ,Γ C x ,x R 〈 1 2〉∈ 〈 1 2〉∈ 2 Γ +Γ ,Γ = Γ ,Γ + Γ ,Γ same 〈 1 2 3〉 〈 1 3〉 〈 2 3〉 3 αΓ ,Γ =α Γ ,Γ = Γ ,αΓ same 〈 1 2〉 〈 1 2〉 〈 1 2〉 4 Γ ,Γ = Γ ,Γ same 〈 1 2〉 〈 2 1〉 5 Γ,Γ C x,x R 〈 〉∈ 〈 〉∈ + 6 If Γ,Γ =0,thenΓissingular If x,x =0,thenx=0 〈 〉 〈 〉 Rows5and6ofTable2.1showafundamentaldifferencebetweenthedefinitionofthescalarproductof paravectorsandknownalgebraicdefinitions. Thesepropertiesmakemewonderwhethertogiveanothername forscalarproduct.However,thetraditionalnameisleft,because: 1. thevalueoftheproductisascalar, 2. therolewhichthescalarproductplaysintheParavectorAlgebracorrespondscompletelytotheroleofthe dotproductofvectorsinEuclideanGeometry, 3. forspatialparavectors(Γ =0),thescalarproductofparavectorsbecomesthescalarproductofvectors. S 3 Geometricalpropertiesofparavectors Bycheckingupanintegratedproductofparavectors,anyonecanseeadeepsimilaritybetweenparavectors andvectorsinEuclideanspace.Usingtheintegratedproductweintroducegeometricconceptsintothealgebraof paravectors,whichcontributestoitsintuitiveunderstanding. 3.1 Parallelismandperpendicularityrelations. Definition3.1. Non-singularparavectorsΓ andΓ areparallel(Γ Γ )ifthevectorproduct(Γ ,Γ =0. 1 2 1k 2 1 2} Theorem3.1. Twonon-singularparavectorsΓ andΓ areparallelifandonlyifthereexistsanumberλ=0that 1 2 6 Γ =λΓ . 1 2 6 Proof. ParallelismmeansthatΓ1Γ−2 =α,whereαisacomplexnumber. Wemultiplythisequationontherightby paravectorΓ 2 Γ1(Γ−2Γ2)=αΓ2 SinceΓ2isnon-singularthenΓ−2Γ2=β isanon-zerocomplexnumber.HencewegetΓ1=λΓ2,whereλ=α/β. Theabovetheoremshowsthat Conclusion3.1. Theparallelismsatisfiestheconditionsofequivalencerelation. Definition3.2. Twonon-singularparavectorsΓ andΓ areperpendicular(Γ Γ )ifthescalarproduct Γ ,Γ = 1 2 1⊥ 2 〈 1 2〉 0. TheperpendicularityofparavectorshasthesamepropertiesastheperpendicularityofvectorsinEuclidean space. Theorem3.2. Foreachnon-singularparavector: 1. ∽(Γ Γ) ⊥ 2. IfΓ Γ thenΓ Γ 1⊥ 2 2⊥ 1 3. IfΓ Γ andΓ Γ thenΓ Γ 1⊥ 2 2k 3 1⊥ 3 Proof. 1. Itfollowsbydefinitionofperpendicularity. 2. Itfollowsbythefactthatthescalarproductissymmetrical: Γ ,Γ = Γ ,Γ and Γ ,Γ =0 〈 1 2〉 〈 2 1〉 〈 1 2〉 0 3. Γ Γ (Γ ,Γ = 1⊥ 2 ⇐⇒ 1 2〉 ωωω 0 Γ2kΓ3 ⇐⇒ (Γ2,Γ3〉=λhence (Γ1,Γ3〉=Γ1Γ−3 =Γ1Γ−21Γ2Γ−3 =deλtΓ2Γ1Γ−2 = λωωω detΓ2 Conclusion3.2. . 1. Theparavectorisperpendiculartoitselfifandonlyifitissingular. 2. Paravectorsmutuallyreversed(inversed)nottobeparallel. 3. Orthogonalparavectorsareparallelifandonlyiftheyareequaloropposite. Proof. 1. Itfollowsbyassumptionanddefinitionofthesingularparavector. αα α2+β2 2. (Γ,Γ =ΓΓ= = −〉 βββ βββ 2αβββ 7 3. ParallelismmeansthatΛ1Λ−2 =λ,hencedetΛ1detΛ2 =λ2. Paravectorsareorthogonalhenceλ=±1. First equalitygivesthatΛ =Λ orΛ = Λ . 1 2 1 − 2 Theorem3.3. Foranynon-singularparavectorsΓ andΓ itoccursthat: 1 2 1. IfΓ1⊥Γ2thenΓ∗1⊥Γ∗2 2. IfΓ1kΓ2thenΓ∗1kΓ∗2 3. IfΓ Γ thenvigΓ vigΓ 1k 2 1k 2 Proof. 1. 〈Γ1,Γ2〉=0 =⇒ 〈Γ2,Γ1〉=0,so¬Γ∗1,Γ∗2¶=〈Γ2,Γ1〉∗=0 α α 1 2 2. ( ) = α βββ +α βββ iβββ βββ =0 V − 1 2 2 1− 1× 2 βββ βββ 1− 2 Sincecomplexvectorsaregovernedbythesamelawsasrealones,soitmustbe: α βββ α βββ =000 and iβββ βββ =0 2 1− 1 2 1× 2 α α 2 1 Ontheotherhand,wehave€Γ∗1,Γ∗2¶=〈Γ2,Γ1)∗=( )∗, βββ βββ − 2 1 henceundertheassumption α α 2 1 ( ) =α βββ α βββ iβββ βββ =0 V 2 1− 1 2− 2× 1 βββ βββ − 2 1 3. €Γ1Γ∗1,Γ2Γ∗2¶=Γ1Γ∗1(Γ2Γ∗2)−=Γ1Γ∗1Γ∗2−Γ−2 =Γ1(Γ−2Γ1)∗Γ−2 Undertheassumption,theproductinparenthesesisanumber,sowecanmoveitinfrontoftheproduct λ (Γ ,Γ =λ λ ∗ 1 2〉 ∗ Theorem3.4. ForanyparavectorsΓ andΓ polarizationidentityoccurs: 1 2 det(Γ +Γ )=detΓ +2 Γ ,Γ +detΓ (17) 1 2 1 〈 1 2〉 2 Proof. det(Γ1+Γ2)=(Γ1+Γ2)(Γ1+Γ2)−=Γ1Γ−1 +Γ1Γ−2 +Γ2Γ−1 +Γ2Γ−2 = =detΓ +(Γ ,Γ +(Γ ,Γ +detΓ =detΓ +2 Γ ,Γ +detΓ 1 1 2〉 2 1〉 2 1 〈 1 2〉 2 Conclusion3.3. LetparavectorsΓ andΓ beperpendicular,thenthedeterminantoftheseparavectorsequalsthe 1 2 sumoftheirdeterminants: det(Γ +Γ )=detΓ +detΓ (18) 1 2 1 2 ThisconclusioncomplieswiththePythagoreantheoreminEuclideangeometry. Theorem3.4showsthatparavectorsmeettheparallelogramlaw,whichgivesthestructureconstructedby ussomeofthecharacteristicsofmetricspace. 8 Conclusion3.4. ForanyparavectorsΓ andΓ theparallelogramlawoccurs: 1 2 det(Γ +Γ )+det(Γ Γ )=2detΓ +2detΓ 1 2 1− 2 1 2 α α 1 2 Definition3.3. Twoparavectors and arespatiallyparallelifβββ βββ =0 1× 2 βββ βββ 1 2 Theorem3.5. Iftwonon-singularparavectorsareparallel,theyarealsospatiallyparallel. Proof. Γ Γ α βββ α βββ iβββ βββ =0 1k 2 ⇐⇒ 1 2− 2 1− 1× 2 Firstwemultiplytheaboveequationbyα βββ ,andthenbyα βββ .Hencewegettwoequations: 1 2 2 1 α βββ 2 α α βββ βββ =0 (cid:0) 1 2(cid:1) − 1 2 1 2 α α βββ βββ α βββ 2=0 1 2 1 2−(cid:0) 2 1(cid:1) Thedifferenceoftheaboveequationsyields α βββ α βββ 2=0,whichistruewhenα βββ =α βββ . (cid:0) 1 2− 2 1(cid:1) 1 2 2 1 Henceitfollowsthatβββ βββ =0 1× 2 Asaconsequence,wecansaythat Conclusion3.5. Spatialparallelismisanequivalencerelation. Conclusion 3.6. The spatial parallelism of paravectors is weaker than parallelism, ie.: If two paravectors are parallel,theymustbespatiallyparallel,too,butintheoppositedirection,implicationnolongermustoccur. Definition3.4. WecalltwosingularparavectorsΓ andΓ singularlyparallelif(Γ ,Γ =0 1 2 1 2〉 Conclusion3.7. Thefollowingconclusionsareeasytoprove: 1. Iftwoparavectorsaresingularlyparallel,thentheyaresingular. 2. Singularparallelismisanequivalencerelation. 3.2 Angles Definition3.5. Therightanglebetweentwoproperparavectors,denotedby∠(Γ ,Γ ,wecalltheparavector: 1 2〉 cosiΦ (Γ ,Γ Φ=∠(Γ ,Γ = =: 1 2〉, (19) 1 2〉 dexΦ |Γ1||Γ2| wherewecallthescalarcomponentcosinis,andthevectorcomponent–dextisofangleΦ. Definition3.6. Theleftanglebetweentwoproperparavectorswecalltheparavector: cosiΦ Γ ,Γ ) Φ=∠ Γ ,Γ )= =: 〈 1 2 , (20) 〈 1 2 siniΦ |Γ1||Γ2| wherewecallthescalarcomponentcosinis,andthevectorcomponent–sinisofangleΦ. 9 Note-Pleasenotethatthecomponentsarenottrigonometric(hyperbolic)functions-thesearejustnames, givenbecauseanglecomponentshavethesamepropertiesaswell-knowntrigonometricfunctions,makingthem easiertoimagineandtoremember. ThesenamesarederivedfromLatin.Sinistrammeansleft,anddextrammeansright. Inparavectorspace(whichisnotdefinedyet!) aswellasinEuclideanspace,weshouldidentifyapositive orientation.Wedon’tdothisinthispaper,nottoimposeanyrestrictions.Itseemsthatitwillbenecessarysooner orlater,butnotnow. Definition3.7. WecallanangleΦ=Φ Φ thecompositionof(left)anglesΦ andΦ . 1 2 1 2 cosiΦ cosiΦ 1 2 Φ Φ = = 1 2 siniΦ siniΦ 1 2 cosiΦ cosiΦ +siniΦ siniΦ 1 2 1 2 = = cosiΦ siniΦ +cosiΦ siniΦ +isiniΦ siniΦ 1 2 2 1 1× 2 cosi(Φ Φ ) cosiΦ 1 2 = = =Φ sini(Φ Φ ) siniΦ 1 2 Wecanwriteananalogouscompositionfortherightangles. Asaconsequence,wecanseefurtheranalogywithEuclideantrigonometry: Conclusion3.8. Theexplementofanangleis: ∠〈Γ1,Γ2)−=∠〈Γ2,Γ1) fortheleftangle or ∠(Γ1,Γ2〉−=∠(Γ2,Γ1〉 fortherightangle, (21) whichgives cosiΦ =cosiΦ • − siniΦ = siniΦ • − − dexΦ = dexΦ • − − Theleftandrightangleshaveanoppositeorientationinspace-theyarenotexplementary. ∠ Φ,Γ)= Φ−Γ, ∠(Φ,Γ = ΦΓ−, hencethecompositionofthisanglesis: 〈 Φ Γ 〉 Φ Γ | || | | || | Φ ΓΦΓ ∠ Φ,Γ)∠(Φ,Γ = − − =1 〈 〉 det(ΦΓ) 6 Theexplementoftheleftangle∠ Φ,Γ)istheleftangle∠ Γ,Φ),andthesameoccursfortherightangle. 〈 〈 InTable3.1areshownthepropertiesofleftanglecomponentstosimplyandintuitivelyjustifythenames chosenforthem.Therightanglehasanalogousformulas. Tab.3.1 Generalrecurrenceformulasforcomponentsoftheleftangle. 10