ebook img

Algebra of paravectors PDF

0.24 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebra of paravectors

Algebra of paravectors JÓZEF RADOMAN´SKI ul.BohaterówWarszawy9,48-300Nysa,Poland e-mail:[email protected] 6 1 0 2 y a M Abstract 7 Paravectorsjust like integers havea ring structure. By introducing an integrated product we get geometric propertieswhichmakeparavectorssimilartovectors.Theconceptsofparallelism,perpendicularityandtheangle ] A areconceptuallysimilartovectorcounterparts,knownfromtheEuclideangeometry. Paravectorsmeettheideaof parallelogramlaw,Pythagoreantheoremandmanyotherpropertieswell-knowntoeveryone. R h. Keywords:Paravector,multivector,GeometricAlgebra t a This article refers to professor William Baylis’ researches and shows a surprising similarity between m propertiesofparavectorsandvectorsintheEuclideanspace. Itcanbeconfusingatfirsttogetusedtoacolumn [ notationofparavectors,butthisformhasprovedtobethemostadequate.Themainadvantageofthisnotationis a transparency of mathematical transformations. The author hopes that in future paravector formalism will 2 replacethemultivectorsformalisminphysicsassimpler,moreintuitiveandimaginable.Theresultspresentedin v 5 thisarticlejustifyitfully. 6 9 2 1 Basicdefinitions 0 . 1 0 Definition1.1. Thetermparavectormeansapairconsistingofacomplexnumber(α)andavector(βββ)belonging 6 toathree-dimensionalcomplexspace. 1 α a+id : v Γ=: = (1) i βββ b+ic X r a Thenumberwillbecalledascalar.Paravectorswillbedenotedwithcapitalletters,eg:A,X,Γ.Greekletters willmeanacomplexsize,andRomanletters-arealone.AscalarcomponentofparavectorΓwillbedenotedwith index„S”,andavectorcomponentwith„V”,i.e.:Γ =αandΓ =βββ. S V Definition1.2. Thereversedelementofparavector(1)istheparavector a+id Γ−=: (2)   b ic − −  Definition1.3. Theconjugatedelementofparavector(1)istheparavector a id Γ∗=: − (3)   b ic  −  1 Definition1.4. ofthesummation: α  α  α +α  1 2 1 2 + =: (4) βββ  βββ  βββ +βββ   1  2  1 2 Conclusion1.1. Theneutralelementunderaddition(nullelement)istheparavector 0 0=: (5)   0   Definition1.5. Theoppositeelementofparavector(1)withrespecttotheadditionis  α Γ=: − (6) −   βββ −  Definition1.6. ofthemultiplication: α α   α α +βββ βββ  1 2 1 2 1 2 =: (7) βββ βββ  α βββ +α βββ +iβββ βββ   1 2  2 1 1 2 1× 2 whereβββ βββ isascalar(dot)productofvectors,andβββ βββ isavector(cross)product. 1 2 1× 2 Conclusion1.2. Theneutralelementundermultiplicationistheparavector 1 1=: (8)   0   α Note:Thereisnodifferenceifwewritenumberαorparavector .   0   Conclusion1.3. Theoperationofmultiplicationisassociativebutnotcommutative,becausethevectorproduct isnon-commutative. Definition1.7. WecallanoutcomeofmultiplicationofanyparavectorΓbytheelementconjugateΓ thevigorof ∗ paravector: vigΓ=:ΓΓ∗ (9) Conclusion1.4. Toeachparavectorwecanassignavigorwhichisarealparavectoranditsscalarcomponentisa positivenumber. Proof. ΓΓ∗=αα∗= αα∗+ββββββ∗ = (a+id)(a−id)+(b+ic)(b−ic) = ββββββ∗∗∗ αβββ∗+α∗βββ+iβββ×βββ∗ (a+id)(b−ic)+(a−id)(b+ic)+i(b+ic)×(b−ic) a2+b2+c2+d2 = 2(ab+dc+b c)  ×  Definition 1.8. We call an outcome of multiplication of any paravector Γ by the reverse element Γ the − determinantofaparavector detΓ=:ΓΓ−=Γ−Γ (10) 2 Conclusion1.5. Eachparavectorhasadeterminantwhichisacomplexnumber. Proof. α α   α2 β2  (a+id)2 (b+ic)2 a2 b2+c2 d2+2i(ad bc) ΓΓ−= = − = − = − − − βββ βββ αβββ αβββ iβββ βββ  i(b+ic) (b+ic)  0   −   − − ×  − ×    Conclusion1.6. Thereversionandconjugationhavethefollowingproperties: Reversionofparavector Conjugationofparavector 1 (Γ−)−=Γ (Γ∗)∗=Γ 2 (Γ+Ψ)−=Γ−+Ψ− (Γ+Ψ)∗=Γ∗+Ψ∗ 3 (ΓΨ)−=Ψ−Γ− (ΓΨ)∗=Ψ∗Γ∗ 4 ΓΓ C ΓΓ R R3 −∈ ∗∈ +× 5 (Γ−)∗=(Γ∗)− Conclusion1.7. AsetofpravectorstogetherwithanoperationofsummationformsanAbeliangroup,andwith multiplicationformsasemigroup. Therefore,wecanconcludethatasetofparavectorstogetherwithoperations ofsummationandmultiplicationgivesaringwithmultiplicativeidentity. Definition1.9. WecalltheparavectorΓproperifdetΓ R 0 (thedeterminantisapositiverealnumber). ∈ +\{ } Definition1.10. WecalltheparavectorΓsingularifdetΓ=0. Bydefinitionofthedeterminantitfollows: Conclusion1.8. Eachproperorsingularparavector(1)mustfulfillthefollowingcondition: ad =bc (11) Itisadvisabletoremembertheaboveequation,becauseitwillbeusedwithmanyproofsonproperparavectors. Conclusion1.9. LetΓ ,Γ beparavectors,thenthefollowingstatementsaretrue: 1 2 det(Γ Γ )=detΓ detΓ • 1 2 1· 2 det(Γ )=detΓ • − det(Γ )=(detΓ) • ∗ ∗ Definition1.11. Foreachnon-singularparavectorΓ,thereexistsaninverseelementundermultiplication: Γ Γ−1=: − (12) detΓ Conclusion1.10. Asetofnon-singularparavectorstogetherwithmultiplicationisanon-commutativegroup. Conclusion1.11. Asetofproperparavectorstogetherwithmultiplicationisanon-commutativegroup. Definition1.12. Foreachproperand/orsingularparavectorwedefinethemoduleofparavector: Γ =:pdetΓ (13) | | Conclusion1.12. Themoduleofparavector(properorsingular!)satisfiesthefollowingconditions: 3 1. sΓ = s Γ wheres R | | | || | ∈ 2. Γ Γ = Γ Γ | 1|| 2| | 1 2| Definition1.13. WecalltheparavectorΛorthogonalifdetΛ=1,orequivalently: Γ Λ=: , whereΓisaproperparavector (14) pdetΓ Directlyfromtheabovedefinitionitfollows: Conclusion1.13. IfΛisanorthogonalparavector,thenΛ 1=Λ . − − Definition1.14. WecalltheparavectorΓspecialifΓ =Γ ,orequivalently: − ∗ a , wherea R,andc R3   ∈ ∈ ic   Definition1.15. WecalltheparavectorΓunitarifΓΓ =1 ∗ Tosummarizethecurrentknowledgeaboutparavectors,wecansaythatverylittleismissingsothataset of paravectors with summation and multiplication operations is a field: multiplication of paravectors is not commutative,andtheroleofthenullelementundermultiplicationisplayedbysingularparavectors.Multiplying anyparavector bysingular one, wegetasingular paravector. Notethatalthoughthere aremanynull elements undermultiplication,onlyoneelementisneutralwithrespecttosummation. Conclusion 1.14. The set of special paravectors together with operations summation and multiplication is adivisionring. Inthediagram(fig.1)aringofparavectorswithsomeofitssubstructuresispresented: Figure1:Theringofparavectorswithsomesubstructures -Asetofproperparavectorstogetherwithmultiplicationisanoncommutativegroup. 4 -Asetoforthogonalparavectorstogetherwithmultiplicationisasubgroupofproperparavectorsgroup. Theblackpointmeanszero,andthebluepointisone. Toavoidmisunderstandings,werecallthefollowingnameswhichwewilluse: Γ -TheparavectorreverseofΓ • − Γ 1-TheparavectorinverseofΓ • − 2 Integratedproductofparavectors Synge[7]definesthescalarproductofcomplexquaternionsas€Γ1Γ−2 +Γ2Γ−1Š/2,Hestenes[6]asascalar partoftheproductofmultivectorsΓ1Γ2.AnalyzingtheexpressionΓ1Γ−2,wecanseethatitplaysasimilarbutmore universalroleintheparavectorsalgebraasthedotproductinvectorspace.Propertiesofitsscalarcomponentare thesameaspropertiesofthescalarproductofvectors,anditsvectorpartasacrossproductofvectors.Thetrouble isthattherecanbetwodifferentproductswhichhavethesameproperties(thesecondoneisΓ−1Γ2),sowedefine twointegratedproducts: Definition2.1. For anyparavectorsΓ and Γ , the rightintegratedproductofparavectors Γ and Γ , denoted 1 2 1 2 (Γ ,Γ ,isdefinedby 1 2〉 (Γ1,Γ2〉=:Γ1Γ−2 α  α   α α βββ βββ  hence (Γ1,Γ2〉=Γ1Γ−2 =βββ1 βββ2 = α βββ +1α2βββ− 1iβββ2 βββ   1− 2 − 1 2 2 1− 1× 2 Definition2.2. ForanyparavectorsΓ andΓ theleftintegratedproductofparavectorsΓ andΓ ,denoted Γ ,Γ ), 1 2 1 2 〈 1 2 isdefinedby 〈Γ1,Γ2)=:Γ−1Γ2  α α   α α βββ βββ  or 〈Γ1,Γ2)=Γ−1Γ2= 1  2= 1 2− 1 2  βββ βββ α βββ α βββ iβββ βββ − 1 2  1 2− 2 1− 1× 2 Inbothcases,thescalarpartisthesame,then Definition2.3. ThescalarcomponentofanintegratedproductofparavectorsΓ andΓ ,iscalledascalarproduct 1 2 ofparavectors.Thescalarproductwillbedenoted Γ ,Γ =:(Γ ,Γ = Γ ,Γ ) . 〈 1 2〉 1 2〉S 〈 1 2 S Definition2.4. Thevectorcomponentofanintegratedproductwecallavectorproductofparavectors. (Γ1,Γ2}=:(Γ1,Γ2〉V =−〈Γ1,Γ2)∗V Itisnecessarytodistinguishtheorientationofavectorproduct,thesameasatintegratedproductcase. Therefore,wedenotetherightvectorproduct(Γ ,Γ ,andtheleftvectorproduct: Γ ,Γ ) 1 2} { 1 2 Forfurtherconsiderationitdoesnotmattermuchifaproductisrightorleft,sotalkingaboutanintegrated productwewillmeantherightproduct. Aswell,thismaybetheleftproduct,butitisimportanttouseonlyone productconstantly.Hencetheintegratedproductcanbedenotedasfollow:  Γ ,Γ  (Γ ,Γ  (Γ ,Γ = 〈 1 2〉 = 1 2〉S (15) 1 2〉 (Γ ,Γ  (Γ ,Γ   1 2}  1 2〉V and det(Γ ,Γ = Γ ,Γ 2 (Γ ,Γ 2=(Γ ,Γ 2 (Γ ,Γ 2 =detΓ detΓ (16) 1 2〉 〈 1 2〉 − 1 2} 1 2〉S− 1 2〉V 1 2 5 Theorem2.1. Anintegratedproductofparavectorshasthefollowingproperties: Rightintegratedproduct Leftintegratedproduct 1 Integratedproductisaparavector 2 (Γ +Γ ,Γ =(Γ ,Γ +(Γ ,Γ Γ +Γ ,Γ )= Γ ,Γ )+ Γ ,Γ ) 1 2 3〉 1 3〉 2 3〉 〈 1 2 3 〈 1 3 〈 2 3 3 (αΓ ,Γ =α(Γ ,Γ =(Γ ,αΓ αΓ ,Γ )=α Γ ,Γ )= Γ ,αΓ ) 1 2〉 1 2〉 1 2〉 〈 1 2 〈 1 2 〈 1 2 4 (Γ1,Γ2〉−=(Γ2,Γ1〉 〈Γ1,Γ2)−=〈Γ2,Γ1) 5 (Γ,Γ = Γ,Γ)=detΓ C 〉 〈 ∈ 6 det(Γ ,Γ =det Γ ,Γ )=detΓ detΓ 1 2〉 〈 1 2 1 2 Conclusion2.1. LetΓ ,Γ andΓ beanyparavectors,thenthefollowingtableshowsthepropertiesofthescalar 1 2 3 productofparavectorscomparedtothepropertiesofthescalarproductofvectorsinEuclideanspace: Scalarproductofparavectors Scalarproductofvectors 1 Γ ,Γ C x ,x R 〈 1 2〉∈ 〈 1 2〉∈ 2 Γ +Γ ,Γ = Γ ,Γ + Γ ,Γ same 〈 1 2 3〉 〈 1 3〉 〈 2 3〉 3 αΓ ,Γ =α Γ ,Γ = Γ ,αΓ same 〈 1 2〉 〈 1 2〉 〈 1 2〉 4 Γ ,Γ = Γ ,Γ same 〈 1 2〉 〈 2 1〉 5 Γ,Γ C x,x R 〈 〉∈ 〈 〉∈ + 6 If Γ,Γ =0,thenΓissingular If x,x =0,thenx=0 〈 〉 〈 〉 Rows5and6ofTable2.1showafundamentaldifferencebetweenthedefinitionofthescalarproductof paravectorsandknownalgebraicdefinitions. Thesepropertiesmakemewonderwhethertogiveanothername forscalarproduct.However,thetraditionalnameisleft,because: 1. thevalueoftheproductisascalar, 2. therolewhichthescalarproductplaysintheParavectorAlgebracorrespondscompletelytotheroleofthe dotproductofvectorsinEuclideanGeometry, 3. forspatialparavectors(Γ =0),thescalarproductofparavectorsbecomesthescalarproductofvectors. S 3 Geometricalpropertiesofparavectors Bycheckingupanintegratedproductofparavectors,anyonecanseeadeepsimilaritybetweenparavectors andvectorsinEuclideanspace.Usingtheintegratedproductweintroducegeometricconceptsintothealgebraof paravectors,whichcontributestoitsintuitiveunderstanding. 3.1 Parallelismandperpendicularityrelations. Definition3.1. Non-singularparavectorsΓ andΓ areparallel(Γ Γ )ifthevectorproduct(Γ ,Γ =0. 1 2 1k 2 1 2} Theorem3.1. Twonon-singularparavectorsΓ andΓ areparallelifandonlyifthereexistsanumberλ=0that 1 2 6 Γ =λΓ . 1 2 6 Proof. ParallelismmeansthatΓ1Γ−2 =α,whereαisacomplexnumber. Wemultiplythisequationontherightby paravectorΓ 2 Γ1(Γ−2Γ2)=αΓ2 SinceΓ2isnon-singularthenΓ−2Γ2=β isanon-zerocomplexnumber.HencewegetΓ1=λΓ2,whereλ=α/β. Theabovetheoremshowsthat Conclusion3.1. Theparallelismsatisfiestheconditionsofequivalencerelation. Definition3.2. Twonon-singularparavectorsΓ andΓ areperpendicular(Γ Γ )ifthescalarproduct Γ ,Γ = 1 2 1⊥ 2 〈 1 2〉 0. TheperpendicularityofparavectorshasthesamepropertiesastheperpendicularityofvectorsinEuclidean space. Theorem3.2. Foreachnon-singularparavector: 1. ∽(Γ Γ) ⊥ 2. IfΓ Γ thenΓ Γ 1⊥ 2 2⊥ 1 3. IfΓ Γ andΓ Γ thenΓ Γ 1⊥ 2 2k 3 1⊥ 3 Proof. 1. Itfollowsbydefinitionofperpendicularity. 2. Itfollowsbythefactthatthescalarproductissymmetrical: Γ ,Γ = Γ ,Γ and Γ ,Γ =0 〈 1 2〉 〈 2 1〉 〈 1 2〉 0 3. Γ Γ (Γ ,Γ = 1⊥ 2 ⇐⇒ 1 2〉   ωωω    0  Γ2kΓ3 ⇐⇒ (Γ2,Γ3〉=λhence (Γ1,Γ3〉=Γ1Γ−3 =Γ1Γ−21Γ2Γ−3 =deλtΓ2Γ1Γ−2 = λωωω  detΓ2 Conclusion3.2. . 1. Theparavectorisperpendiculartoitselfifandonlyifitissingular. 2. Paravectorsmutuallyreversed(inversed)nottobeparallel. 3. Orthogonalparavectorsareparallelifandonlyiftheyareequaloropposite. Proof. 1. Itfollowsbyassumptionanddefinitionofthesingularparavector. αα α2+β2 2. (Γ,Γ =ΓΓ= = −〉      βββ βββ 2αβββ      7 3. ParallelismmeansthatΛ1Λ−2 =λ,hencedetΛ1detΛ2 =λ2. Paravectorsareorthogonalhenceλ=±1. First equalitygivesthatΛ =Λ orΛ = Λ . 1 2 1 − 2 Theorem3.3. Foranynon-singularparavectorsΓ andΓ itoccursthat: 1 2 1. IfΓ1⊥Γ2thenΓ∗1⊥Γ∗2 2. IfΓ1kΓ2thenΓ∗1kΓ∗2 3. IfΓ Γ thenvigΓ vigΓ 1k 2 1k 2 Proof. 1. 〈Γ1,Γ2〉=0 =⇒ 〈Γ2,Γ1〉=0,so¬Γ∗1,Γ∗2¶=〈Γ2,Γ1〉∗=0 α  α  1 2 2. ( ) = α βββ +α βββ iβββ βββ =0    V − 1 2 2 1− 1× 2 βββ βββ  1− 2 Sincecomplexvectorsaregovernedbythesamelawsasrealones,soitmustbe: α βββ α βββ =000 and iβββ βββ =0 2 1− 1 2 1× 2  α α  2 1 Ontheotherhand,wehave€Γ∗1,Γ∗2¶=〈Γ2,Γ1)∗=(  )∗, βββ βββ − 2 1 henceundertheassumption  α α  2 1 ( ) =α βββ α βββ iβββ βββ =0    V 2 1− 1 2− 2× 1 βββ βββ − 2 1 3. €Γ1Γ∗1,Γ2Γ∗2¶=Γ1Γ∗1(Γ2Γ∗2)−=Γ1Γ∗1Γ∗2−Γ−2 =Γ1(Γ−2Γ1)∗Γ−2 Undertheassumption,theproductinparenthesesisanumber,sowecanmoveitinfrontoftheproduct λ (Γ ,Γ =λ λ ∗ 1 2〉 ∗ Theorem3.4. ForanyparavectorsΓ andΓ polarizationidentityoccurs: 1 2 det(Γ +Γ )=detΓ +2 Γ ,Γ +detΓ (17) 1 2 1 〈 1 2〉 2 Proof. det(Γ1+Γ2)=(Γ1+Γ2)(Γ1+Γ2)−=Γ1Γ−1 +Γ1Γ−2 +Γ2Γ−1 +Γ2Γ−2 = =detΓ +(Γ ,Γ +(Γ ,Γ +detΓ =detΓ +2 Γ ,Γ +detΓ 1 1 2〉 2 1〉 2 1 〈 1 2〉 2 Conclusion3.3. LetparavectorsΓ andΓ beperpendicular,thenthedeterminantoftheseparavectorsequalsthe 1 2 sumoftheirdeterminants: det(Γ +Γ )=detΓ +detΓ (18) 1 2 1 2 ThisconclusioncomplieswiththePythagoreantheoreminEuclideangeometry. Theorem3.4showsthatparavectorsmeettheparallelogramlaw,whichgivesthestructureconstructedby ussomeofthecharacteristicsofmetricspace. 8 Conclusion3.4. ForanyparavectorsΓ andΓ theparallelogramlawoccurs: 1 2 det(Γ +Γ )+det(Γ Γ )=2detΓ +2detΓ 1 2 1− 2 1 2 α  α  1 2 Definition3.3. Twoparavectors and arespatiallyparallelifβββ βββ =0     1× 2 βββ βββ  1  2 Theorem3.5. Iftwonon-singularparavectorsareparallel,theyarealsospatiallyparallel. Proof. Γ Γ α βββ α βββ iβββ βββ =0 1k 2 ⇐⇒ 1 2− 2 1− 1× 2 Firstwemultiplytheaboveequationbyα βββ ,andthenbyα βββ .Hencewegettwoequations: 1 2 2 1 α βββ 2 α α βββ βββ =0 (cid:0) 1 2(cid:1) − 1 2 1 2 α α βββ βββ α βββ 2=0 1 2 1 2−(cid:0) 2 1(cid:1) Thedifferenceoftheaboveequationsyields α βββ α βββ 2=0,whichistruewhenα βββ =α βββ . (cid:0) 1 2− 2 1(cid:1) 1 2 2 1 Henceitfollowsthatβββ βββ =0 1× 2 Asaconsequence,wecansaythat Conclusion3.5. Spatialparallelismisanequivalencerelation. Conclusion 3.6. The spatial parallelism of paravectors is weaker than parallelism, ie.: If two paravectors are parallel,theymustbespatiallyparallel,too,butintheoppositedirection,implicationnolongermustoccur. Definition3.4. WecalltwosingularparavectorsΓ andΓ singularlyparallelif(Γ ,Γ =0 1 2 1 2〉 Conclusion3.7. Thefollowingconclusionsareeasytoprove: 1. Iftwoparavectorsaresingularlyparallel,thentheyaresingular. 2. Singularparallelismisanequivalencerelation. 3.2 Angles Definition3.5. Therightanglebetweentwoproperparavectors,denotedby∠(Γ ,Γ ,wecalltheparavector: 1 2〉 cosiΦ (Γ ,Γ Φ=∠(Γ ,Γ = =: 1 2〉, (19) 1 2〉 dexΦ |Γ1||Γ2| wherewecallthescalarcomponentcosinis,andthevectorcomponent–dextisofangleΦ. Definition3.6. Theleftanglebetweentwoproperparavectorswecalltheparavector: cosiΦ Γ ,Γ ) Φ=∠ Γ ,Γ )= =: 〈 1 2 , (20) 〈 1 2 siniΦ |Γ1||Γ2| wherewecallthescalarcomponentcosinis,andthevectorcomponent–sinisofangleΦ. 9 Note-Pleasenotethatthecomponentsarenottrigonometric(hyperbolic)functions-thesearejustnames, givenbecauseanglecomponentshavethesamepropertiesaswell-knowntrigonometricfunctions,makingthem easiertoimagineandtoremember. ThesenamesarederivedfromLatin.Sinistrammeansleft,anddextrammeansright. Inparavectorspace(whichisnotdefinedyet!) aswellasinEuclideanspace,weshouldidentifyapositive orientation.Wedon’tdothisinthispaper,nottoimposeanyrestrictions.Itseemsthatitwillbenecessarysooner orlater,butnotnow. Definition3.7. WecallanangleΦ=Φ Φ thecompositionof(left)anglesΦ andΦ . 1 2 1 2 cosiΦ cosiΦ  1 2 Φ Φ = = 1 2 siniΦ siniΦ   1 2  cosiΦ cosiΦ +siniΦ siniΦ  1 2 1 2 = = cosiΦ siniΦ +cosiΦ siniΦ +isiniΦ siniΦ   1 2 2 1 1× 2 cosi(Φ Φ ) cosiΦ 1 2 = = =Φ sini(Φ Φ ) siniΦ  1 2    Wecanwriteananalogouscompositionfortherightangles. Asaconsequence,wecanseefurtheranalogywithEuclideantrigonometry: Conclusion3.8. Theexplementofanangleis: ∠〈Γ1,Γ2)−=∠〈Γ2,Γ1) fortheleftangle or ∠(Γ1,Γ2〉−=∠(Γ2,Γ1〉 fortherightangle, (21) whichgives cosiΦ =cosiΦ • − siniΦ = siniΦ • − − dexΦ = dexΦ • − − Theleftandrightangleshaveanoppositeorientationinspace-theyarenotexplementary. ∠ Φ,Γ)= Φ−Γ, ∠(Φ,Γ = ΦΓ−, hencethecompositionofthisanglesis: 〈 Φ Γ 〉 Φ Γ | || | | || | Φ ΓΦΓ ∠ Φ,Γ)∠(Φ,Γ = − − =1 〈 〉 det(ΦΓ) 6 Theexplementoftheleftangle∠ Φ,Γ)istheleftangle∠ Γ,Φ),andthesameoccursfortherightangle. 〈 〈 InTable3.1areshownthepropertiesofleftanglecomponentstosimplyandintuitivelyjustifythenames chosenforthem.Therightanglehasanalogousformulas. Tab.3.1 Generalrecurrenceformulasforcomponentsoftheleftangle. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.